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1. The augmented Lagrangian function is used to solve the linear programming (LP)
problem. We de�ne the interval of the penalty coe�cient that provides a means of �nding a
solution of the original problem via a single minimization of a quadratic function on the positive
orthant.

Consider the primal and dual linear programming problems:

f∗ = min
x∈X

c>x, X = {x ∈ Rn
+ : b− Ax = 0m}, (1)

max
u∈U

b>u, U = {u ∈ Rm : c− A>u ≥ 0n}. (2)

Here and further, A denotes an m×n matrix with rank m, m < n; vectors c ∈ Rn, b ∈ Rm,
x ∈ Rn

+, u ∈ Rm, 0i is the i-dimensional null vector.
Let

H(x, u, ε) = c>x + u>(b− Ax) +
‖b− Ax‖2

2ε

denote the augmented Lagrangian function, where ε > 0 is the penalty coe�cient and ‖ · ‖ is
the Euclidean norm. Consider the auxiliary minimization problem

min
x∈Rn

+

H(x, ũ, ε). (3)

Here the Lagrange multiplier ũ is �xed. If ũ ≡ 0m, then the function H(x, 0, ε) is the well-
known quadratic penalty function. Therefore, the results obtained bellow are applicable to the
traditional exterior method based on the quadratic penalty function.

We assume that the primal LP problem (1) may have a unique solution x∗ which may be
degenerate. Let xL

∗ > 0` denote a set of positive components of vector x∗. For a nondegenerate
solution x∗ we have ` = m. We denote by IL

∗ the set of these positive components of vector x∗.
If x∗ is the unique degenerate solution, then the dual LP problem (2) has multiple solutions.
From the solution set U∗ of the dual LP problem (2) we can choose a vector u∗ which is the
nearest to some �xed vector ũ. Therefore, the vector u∗ is the unique solution of the following
quadratic problem:

min

{‖u− ũ‖2

2
: c− A>u ≥ 0n, b>u ≥ f∗

}
. (4)
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The pair [x∗, u∗] satis�es the Kuhn�Tucker conditions for problem (1) and these conditions can
be written as follows:

vL
∗ = cL −B>

L u∗ = 0`, xL
∗ > 0`;

vS
∗ = cS −B>

S u∗ = 0s, xS
∗ > 0s;

vN
∗ = cN −N>u∗ > 0r, xN

∗ = 0r;

BLxL
∗ = b.

(5)

Here the matrix A = [B
...N ] corresponds to partitioning the vector v∗ = c − A>u∗ into zero[

[vL
∗ ]>, [vS

∗ ]>
]

= [vB
∗ ]> = 0k and positive vN

∗ > 0r components, where k = ` + s ≤ m, r = n− k.
Using this partition, the vector x∗ can be represented as [x∗]> =

[
xB
∗ ]>, [xN

∗ ]>
]
. The matrix B

corresponds to partitioning the vector xB
∗ into positive xL

∗ > 0` and zero xS
∗ = 0s components,

i.e., B = [BL
...BS]. Since the solution x∗ is unique, the matrix B consists of k ≤ m linearly

independent columns, i.e., its rank is k.
Let us introduce a vector η ∈ Rk as η = (B>B)−1(cB − B>ũ). Notice that if k = m, then

η = B−1(u∗ − ũ).

Lemma 1. The solution of problem (4) is given by the vector

u∗ = ũ + Bη = ũ + BLηL + BSηS,

where ηS ≤ 0s.

Proof. Since the vector u∗ is a unique solution of problem (4), there exist Lagrange mul-
tipliers x̄ ≥ 0n, t̄ ≥ 0, such that the triple [u∗, x̄, t̄] satis�es the Kuhn�Tucker conditions for
problem (4):

D(x̄)v∗ = 0n, v∗ = c− A>u∗ ≥ 0n, x̄ ≥ 0n,
u∗ − ũ− t̄b + Ax̄ = 0m,
b>u∗ = f∗, t̄ ≥ 0.

(6)

Since the pair [x∗, u∗] satis�es the Kuhn�Tucker condition (5), it is possible to rewrite (6) as

vB
∗ = cB −B>u∗ = 0k, x̄B ≥ 0k,

vN
∗ = cN −N>u∗ > 0r, x̄N = 0r,

(7)

u∗ − ũ− t̄b + Bx̄B = 0m,
b>u∗ = f∗, t̄ ≥ 0.

(8)

Solving the system of equations (7) and (8), we have

x̄B = t̄(B>B)−1B>b− η ≥ 0k,
u∗ = ũ + t̄Mb + Bη.

(9)

Here we denote the orthogonal projector by M = I − B(B>B)−1B> and, since the vector b
belongs to the column space of matrix BL, Mb = 0n holds. The matrix B consists of linearly
independent columns, hence there exists only one vector η =

[
ηL

ηS

]
such that u∗ − ũ = Bη =

= BLηL + BSηS. We show that ηS ≤ 0s. From the condition BxB
∗ = b we obtain

xB
∗ = (B>B)−1B>b =

[
xL
∗

xS
∗

]
> 0`

= 0s
.
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From (9) and the last formula, we have

x̄B =

[
x̄L

x̄S

]
=

[
t̄xL
∗ − ηL

−ηS

]
≥ 0k. (10)

This concludes the proof of the lemma.

Further, we introduce the following penalty coe�cient:

ε∗ =





min
i∈IL∗ , (ηL)i>0

(xL
∗ )

i

(ηL)i
;

+∞, if (ηL)i ≤ 0 for all i ∈ JL
∗ .

(11)

Theorem 1. Let x∗ be a unique (possibly degenerate) solution of the LP problem (1). Then
for each 0 < ε ≤ ε∗, where ε∗ is de�ned by (11), we have:

1) the problem (3) has a unique solution x(ε) with components: xL(ε) = xL
∗ − εηL ≥ 0`,

xS(ε) = −εηS ≥ 0s and xN(ε) = 0r;

2) the solution of the dual LP problem (2) is given by

u∗ = ū +
[b− Ax(ε)]

ε
. (12)

Proof. The necessary and su�cient conditions for a minimum of problem (3) can be
formulated as follows:

ε(cL −B>
L ũ)−B>

L (b−BLxL(ε)−BSxS(ε)) = 0`, xL(ε) ≥ 0`, (13)
ε(cS −B>

S ũ)−B>
S (b−BLxL(ε)−BSxS(ε)) = 0s, xS(ε) ≥ 0s, (14)

ε(cN −N>ũ)−N>(b−BLxL(ε)−BSxS(ε)) = 0r, xN(ε) ≥ 0r. (15)

Since the m × k matrix B = [BL
...BS] has rank k, it is easy to show that the system of

equations (13), (14) has a unique solution

xB(ε) =

[
xL(ε)
xS(ε)

]
=

[
xL
∗ − εηL

−εηS

]
≥ 0k. (16)

Substituting xB(ε) into (15) yields ε(cN −N>ũ)−N>(b− BLxL
∗ + εBLηL + εBSηS) = ε(cN−

−N>(ũ + Bη)) = ε(cN −N>u∗) = εvN
∗ > 0r. The last inequality holds for any positive ε.

Inequality (16) holds due to the lemma's assertion (ηS ≤ 0s) and the existence of the interval
(0, ε] mentioned in the condition of the theorem. Hence, the system (13) � (15) is consistent
and statement 1) is proved.

Proof of assertion 2) follows from substituting the solution x(ε) into the expression (12).

Remark 1. Note the important special case where the problem (1) has a nondegenerate
solution x∗. In this case the indices of nonzero components of vectors x(ε) and x∗ coincide for
each 0 < ε < ε∗. Since xB

∗ = xB(ε) + η, we obtain a means of solving the problem (1) via a
single minimization of H(x, ũ, ε) on the positive orthant. Hence, H(x, ũ, ε) could be called �the
exact auxiliary function� if we slightly extend the notion de�ned in [1].

Remark 2. Formulas (10) and (16) show that there exists a certain connection between the
solution x(ε) of problem (3) and the optimal Lagrange multiplier x̄ for problem (4). Expression
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(10) is valid for t̄ ≥ 1

ε∗
. If we set t̄ =

1

ε
, then from (10) and (16) we obtain that for each

0 < ε ≤ ε∗ the equality xB(ε) = εx̄B holds.

2. It is well known (see, e.g., [2]), that problem (3) is dual to the following problem:

max
u∈U

[
b>u− ε

‖u− ũ‖
2

]
, U = {u ∈ Rm : c− A>u ≥ 0n}. (17)

We denote by u(ε) the solution of this problem. Then the solutions x(ε) and u(ε) are connected
by

u(ε) = ũ +
b− Ax(ε)

ε
.

The following theorem is a direct consequence of Theorem 1 due to the above duality.

Theorem 2. Let the conditions of theorem 1 hold. Then a unique solution of problem (17)
does not depend on ε and coincides with the vector u∗, that is a solution of the problem (2).

Remark 3. Paper [3] was probably the �rst where the coincidence of the solution of problem
(17) and the solution of problem (2) was investigated (in the case ũ ≡ 0m). Various estimates of
value ε∗, using the Lagrange multiplier t, for problem (4) were obtained in [4, 5, 6] for the same
case. The result concerning the �niteness of the augmented Lagrangian method (problem (3))
was �rst obtained in [7] under the assumption of solvability of the LP problem. This question
was thoroughly investigated in [8] with the help of the sensitivity function.
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