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1. Introduction
Much attention has been paid to the development of numerical methods for solving optimal

control problems. The most popular approach in this �eld turned to be the reduction of the
original problem to a nonlinear programming problem (NLP) (see, for example, [16, 2, 18, 19]).
In [3] it was shown that the computation of the gradient in this particular case is closely
related with fast automatic di�erentiation (FAD) techniques (see [13, 14, 11, 15, 12]). In [4],
using generalized FAD expressions, the exact gradient of the objective functional was derived
in a very simple canonical form. The aims of this paper is to show the application of these
canonical formulas to optimal control processes being integrated by Runge�Kutta family of
numerical methods.

In Section 2 of this paper we present the canonical formulas and in Section 3 we apply them
to the discrete version of the optimal control problem. Some �nal remarks are presented in
Section 4.

2. Canonical Formulas
The basic optimal control problem can be described as follows. Let a process governed by

a system of ordinary di�erential equations

dx(t)

dt
= f(x(t), u(t), ξ), T0 ≤ t ≤ Tf , (1)

where the state function x has its values in Rnx , the control u is an arbitrary piecewise contin-
uous function of t having its values in a given compact set U ⊂ Rnu and the vector of design
parameters ξ ∈ V ⊂ Rnξ . The solution of (1) is a function x(t) with initial condition x(T0) = x0.
In general, the scalars T0, Tf and vector x0 are �xed. If T0, Tf or x0 must be optimized then
we can include them into vector of design parameters ξ.
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The problem is to �nd a control function u(t) ∈ U and a vector of design parameters ξ ∈ V
that minimize the cost functional

W (T0, Tf , x(Tf ), u(Tf ), ξ) (2)

subject to mixed constraints on state, control and vector of design parameters

h(x(t), u(t), ξ) = 0, q(x(t), u(t), ξ) ≤ 0, T0 ≤ t ≤ Tf . (3)

As a rule, this problem is reduced to a mathematical programming problem using a dis-
cretization scheme. Control function u(t) is approximated by a piecewise constant function in
which the accuracy of discretization depends on the problem to be solved. Sometimes it must be
rather high and the software should permit us to provide it. Having some experience in solving
practical problems, we came to the conclusion that very often the accuracy of integration must
be higher than accuracy of founded optimal control. Therefore, for the sake of simplicity it is
possible to assume that control vector u is constant at each interval of integration. Discretizing
system (1) we obtain a N step process in which functions x and u are naturally represented as
vectors

x> = [x>0 , x>1 , . . . , x>N ], u> = [u>0 , u>1 , . . . , u>N ],

where xi = x(ti) ∈ Rnx , ui = u(ti) ∈ Rn−U and ti = T0 +
i−1∑
k=0

hk for 0 ≤ i ≤ N , 0 < hi ∈ R are
the discretization steps satisfying

N−1∑

i=0

hi = (Tf − T0), (4)

x ∈ Rnx×(N+1), u ∈ Rnu×(N+1), and v> means the transposition of vector v. The discrete version
of (1) is split into the N relations

xi = F (Xi, Ui, ξ), 1 ≤ i ≤ N, (5)

where Xi and Ui are given sets of variables xj and uj, respectively, and the index j takes values
from 0 to N . At initial step we have X0 = U0 = ∅ and for simplicity we write x0 = F (X0, U0, ξ).
T he mixed constraints (3) are considered at each grid point

h(xi, ui, ξ) = 0, q(xi, ui, ξ) ≤ 0, 0 ≤ i ≤ N (6)

and the discretized optimal control problem for an approximated solution of the original problem
is to minimize

W (T0, Tf , xN , uN , ξ) (7)
with respect to control vector u and vector of design parameters ξ and subject to ui ∈ U for
0 ≤ i ≤ N , ξ ∈ V and constraints (6).

From (5), �xing control vector u and vector of design parameters ξ, we obtain the state
vector xN(u, ξ) and substitute it in the expression W (T0, Tf , xN , uN , ξ). Then we de�ne the
composite function Ω(u, ξ) = W (T0, Tf , xN(u, ξ), uN , ξ). For numerical minimization of this
function it is important to know the total derivatives of Ω with respect to u and ξ as it allows
us to use e�cient gradient type minimization algorithms. In [4] it was shown that, for multistep
process (5), formulas to compute total derivatives dΩ

du
and dΩ

dξ
can be obtain as follow.
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For each set Xi and Ui we introduce the sets of indices Qi and Ki containing the indices of
all variables xj and uj belonging to the sets Xi and Ui, respectively. Then

Qi = {j : xj ∈ Xi}, Ki = {j : uj ∈ Ui}

and we de�ne its conjugate indices sets

Qi = {j : xi ∈ Xj}, K i = {j : ui ∈ Uj}.

The sets Qi and Ki are the input indices sets at i-th step, while Qi and K i are the output
indices sets at i-th step. Let us de�ne adjoints vectors pi ∈ Rnx for 0 ≤ i ≤ N , total adjoint
vector p> = [p>0 , p>1 , . . . , p>N ] ∈ Rnx×(N+1) and introduce the new auxiliary function

E(x, u, ξ, p) = W (T0, Tf , xN , uN , ξ) +
N∑

i=o

F (Xi, Ui, ξ)
>pi. (8)

Finally, formulas for the computation of adjoint vectors pi and total derivatives dΩ

du
and dΩ

dξ
can be written in the following canonical form:

xi = Epi
(x, u, ξ, p), (9)

pi = Exi
(x, u, ξ, p) = Wxi

(T0, Tf , xN , uN , ξ) +
∑

j∈Qi

Fxi
(Xj, Uj, ξ)

>pj, (10)

dΩ(u, ξ)

dui

= Eui
(x, u, ξ, p) = Wui

(T0, Tf , xN , uN , ξ) +
∑

j∈Ki

Fui
(Xj, Uj, ξ)

>pj (11)

and
dΩ(u, ξ)

dξ
= Eξ(x, u, ξ, p) = Wξ(T0, Tf , xN , uN , ξ) +

∑

j=0

Fξ(Xj, Uj, ξ)
>pj, (12)

where i varying from 0 to N and Hy denotes, from now on, the partial derivative of function
H with respect to y, i.e., Hy =

∂H

∂y
whereas dH

dy
denotes the total derivative of H with respect

to y. We assume that relation (9) de�nes an explicit process, i.e., at each i-th step the input
set Qi is such that for any k ∈ Qi the inequality k < i holds. In this case, from (10), we have

pN = WxN
(T0, Tf , xN , uN , ξ). (13)

Note that, considering expression (10), we can conclude that adjoints values pi are partial
derivatives of Ω with respect to state variables xi.

3. Application to Runge�Kutta Methods
As a practical application we consider multistep process (5) given by Runge�Kutta family

methods
x0

i+1 = F (Xi+1, Ui+1, ξ) = x0
i + hi

ρ−1∑

j=0

[αjf(zj
i )], i = 0, . . . , N − 1 (14)

and
xj+1

i = x0
i + βjhif(zj

i ), j = 0, . . . , ρ− 2, i = 0, . . . , N − 1, (15)
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where αj are de�ned for j = 0, . . . , ρ − 1 and βj for j = 0, . . . , ρ − 2, x0
i ≡ xi, and t0i ≡ ti for

i = 0, . . . , N , auxiliary vectors xj
i ∈ Rnz , tji = ti + βj−1hi, uj

i = u(tji ) and zj
i = (xj

i , u
j
i , ξ) for

i = 0, . . . , N and j = 0, . . . , ρ−1. As we are assuming that control variables ui are constant into
the integration step we have ui = uj

i and zj
i = (xj

i , u
j
i , ξ) for i = 0, . . . , N and j = 0, . . . , ρ− 1.

Table shows some examples of Runge�Kutta family methods (see, for example, [17]).

Examples of Runge�Kutta family methods

ρ Integration Method Values
1 Runge�Kutta order 1 α0 = 1

or Euler
2 Runge�Kutta order 2 α0 = 0, α1 = 1

or Modi�ed Euler β0 = 0.5
2 Runge�Kutta order 2 α0 = 0.5, α1 = 0.5

β0 = 1

4 Runge�Kutta order 4 α0 =
1

6
, α1 =

1

3
, α2 =

1

3
, α3 =

1

6
β0 = 0.5, β1 = 0.5, β2 = 1

Applying canonical formulas (9) � (12) to Runge�Kutta de�nition (14) � (15) we obtain

E(x, u, ξ, p) = W (T0, Tf , z
0
N) +

N−1∑

i=0

ρ−2∑

j=0

[xj+1
i ]>pj+1

i +
N−1∑

i=0

[x0
i+1]

>p0
i+1 (16)

and replacing, in (16), x0
i+1 and xj+1

i for its values in (14) and (15) we arrive to

E(x, u, ξ, p) = W (T0, Tf , z
0
N)+

N−1∑

i=0

ρ−2∑

j=0

[x0
i +βjhif(zj

i )]
>pj+1

i +
N−1∑

i=0

[x0
i +hi

ρ−1∑

j=0

[αjf(zj
i )]

>p0
i+1. (17)

Now, di�erentiating (17) we obtain

p0
i =

dE(x, u, ξ, p)

dx0
i

= Wx0
i
(T0, Tf , z

0
N)+p1

i +[β0hifx0
i
(z0

i )]
>p1

i +p0
i+1+

[
hi[α0fx0

i
(z0

i )]
]>

p0
i+1, (18)

pj
i =

dE(x, u, ξ, p)

dxj
i

= Wxj
i
(T0, Tf , z

0
N) + [βjhifx0

i
(zj

i )]
>pj+1

i + hi[αjfxj
i
(zj

i )]
>p0

i+1, (19)

dE(x, u, ξ, p)

dui

= Wui
(T0, Tf , z

0
N) +

ρ−2∑

j=0

[βjhifui
(zj

i )]
>pj+1

i + hi

ρ−1∑

j=0

[αjfui
(zj

i )]
>p0

i+1, (20)

dE(x, u, ξ, p)

duN

= WuN
(T0, Tf , z

0
N) (21)

and

dE(x, u, ξ, p)

dξ
= Wξ(T0, Tf , z

0
N) +

N−1∑

i=0

ρ−2∑

j=0

[βjhifξ(z
j
i )]

>pj+1
i +

N−1∑

i=0


hi

ρ−1∑

j=0

[αjfξ(z
j
i )]



>

p0
i+1, (22)

where i = 0, . . . , N − 1 and j = 1, . . . , ρ − 1. Finally, rearranging formulas (18) � (22) and
discarding null derivatives, we arrive to the subroutine for the computation of Ω(u, ξ), dΩ(u, ξ)

du
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and dΩ(u, ξ)

dξ
. It is necessary to remark that the approach presented above (formulas (18)

� (22)) is simpler and closer to computer implementation than analogous results given in [2]
(pages 379�382). Meanwhile our formulas can be used for wide class of Runge�Kutta methods.
This improvement comes from the application of auxiliary function (8) and canonical formulas
(9) � (12) introduced in [4].

Subroutine 3.1
Set x0

0 ← x0.
For i = 0, . . . , N − 1 (increasing loop)

{
For j = 0, . . . , ρ− 2 (increasing loop de�ned only for ρ ≥ 2)

{
Set y ← f(zj

i ),
compute xj+1

i = x0
i + hiβjy and

compute x0
i+1 = x0

i+1 + hiαjy.
}

Set y ← f(zρ−1
i ) and

compute x0
i+1 = x0

i+1 + hiαρ−1y.
}

Compute W (T0, Tf , z
0
N).

Set dE(x, u, ξ, p)

dξ
← Wξ(T0, Tf , z

0
N),

set dE(x, u, ξ, p)

duN

← WuN
(T0, Tf , z

0
N) and

set pN ← WxN
(T0, Tf , z

0
N).

For i = N − 1, . . . , 0 (decreasing loop)
{
Compute dE(x, u, ξ, p)

dξ
=

dE(x, u, ξ, p)

dξ
+ hiαρ−1[fξ(z

ρ−1
i )]>pi+1,

compute dE(x, u, ξ, p)

dui

= hiαρ−1[fui
(zρ−1

i )]>pi+1,
compute v = hiαρ−1[fxρ−1

i
(zρ−1

i )]>pi+1 and
compute pi = pi+1 + v.
For j = ρ− 2, . . . , 0 (decreasing loop de�ned only for ρ ≥ 2)

{
Compute y = αjpi+1 + βjv,
compute dE(x, u, ξ, p)

dξ
=

dE(x, u, ξ, p)

dξ
+ hiαj[fξ(z

j
i )]

>y,

compute dE(x, u, ξ, p)

dui

=
dE(x, u, ξ, p)

dui

+ hiαj[fui
(zj

i )]
>y,

compute v = hi[fxj
i
(zj

i )]
>y and

compute pi = pi + v.
}

}
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In subroutine above, y, v ∈ Rnz are auxiliary vectors for intermediate computations. It is
important to remark that there is not need to save adjoints values pj

i of intermediate variables
xj

i with j 6= 0. For this reason we use notation pi for adjoints values p0
i of x0

i . This kind of
implementation is a mixed strategy which try to �nd an equilibrium between computational
cost and memory storage. It is easy to see that, as W and its partial derivatives Wξ, WuN

and WxN
are being computed together, we should call to a unique function which compute

all of them using reverse mode. This is not the case of function f and its derivatives which
are being computed at di�erent times. For this reason it is not possible to take advantage of
common expressions between f and fxi

, fui
and fξ. We call this strategy of hybrid FAD. In

this implementation we are sacri�cing computational time to save memory storage.
A particular and important class of control problems are such in which the goal is to minimize

the duration of the process. A possible strategy to handle this situation is to introduce a new
design parameter ξnξ , de�ne goal function (7) as

W (T0, Tf , z
0
N) = (Tf − T0)ξ

nξ , (23)

i.e, goal function is the duration of controlled process, and rewrite (1) as

dx(t)

dt
= f̄(x, u, ξ) = ξnξf(x, u, ξ), T0 ≤ t ≤ Tf , (24)

0 ≤ ξnξ ≤ +∞. (25)
If we apply subroutine 2.1 to compute the gradient of this particular case it will compute

f two times at the same point. First one to compute f̄(x, u, ξ) = ξnξf(x, u, ξ) and the second
one to compute f̄ξ

nξ (x, u, ξ) = f(x, u, ξ). This problem comes from the way in which we apply
canonical formulas (9) � (12). To solve it we should use, instead of auxiliary vector y ∈ Rnx , a
three dimensional array y ∈ Rnx×N×ρ (or N × ρ vectors y ∈ Rnx). In this way f(zj

i ) values will
be saved in yj

i as (N +1)×ρ vectors xj
i ∈ Rnx are being saved) to be used in the computation of

f̄ξ
nξ (z

j
i ). This modi�cation comes from the observation of subroutine 2.1 or from the application

of canonical formulas to the following reformulation of Runge�Kutta family methods:

x0
i+1 = F (Xi+1, Ui+1, ξ) = x0

i + hi

ρ−1∑

j=0

[αjξ
nξfij], i = 0, . . . , N − 1,

xj+1
i = x0

i + βjhiξ
nξf j

i , j = 0, . . . , ρ− 2, i = 0, . . . , N − 1

and
f j

i = f(zj
i ), j = 0, . . . , ρ− 1, i = 0, . . . , N − 1.

This is an special modi�cation for a particular case. In this new approach we are doubling the
storage space in order to avoid the computational cost of evaluate f twice.

4. Conclusions
In this work we show how to apply the methodology introduced in [4] to Runge�Kutta

family of integration methods. An equivalent approach can be applied to other integration
methods like, for example, Newton�Cotes and Adams�Moulton (see [17] and its numerous
references [1, 5, 6, 7, 20]). Initial optimal control problem (1) � (3) is approximated by discrete
process (14) � (15) with constraints (6) and goal function (7). This discrete problem can
be solved by many nonlinear programming methods like augmented Lagrangian, linearization,
Newton's methods, interior point techniques, etc. There are many ways to take into account
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constraints (6). If we use sequential minimization techniques (as penalty function methods)
then part of these constraints, as for example box constraints, can be considered explicitly
in the optimization process while other constraints can be penalized. In all cases, rewriting
auxiliary function (8), canonical formulas (9) � (12) and subroutine 3.1 are applicable for the
computation of total derivatives. Moreover, in the same way, derivatives of higher order can be
computed.
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