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Abstract: Numerical methods for �nding global solutions of nonlinear programming and multicrite-
rial optimization problems are proposed. The sequential deterministic approach is used which is based
on the non-uniform space covering technique as a general framework. The de�nitions of the ε-solution
for the nonlinear programming problem and the multicriterial optimization problems are given. It
is shown that if all the functions, which de�ne these problems, satisfy a Lipschitz condition and the
feasible set is compact, then ε-solutions can be found in the process, of only one covering of the feasible
set on a non-uniform net with a �nite number of function evaluations. Space covering techniques are
applied to solving systems of nonlinear equations and minimax problems.

1. Introduction

The purpose of this paper is to describe a uni�ed sequential space covering technique for �nding
approximate global solutions of various optimization problems. The global optimization is of
great importance to all �elds of engineering, technology and sciences. In numerous applications
the global optimum or an approximation to the global optimum is required.

Numerical methods for seeking global solutions of multiextremal problems, in spite of their
practical importance, have been rather poorly developed. This is, no doubt, due to their ex-
ceedingly great complexity. We do not detail all the available approaches to this problem.
Instead, we shall concentrate on one very promising direction, which is based on the idea of a
non-uniform covering of a feasible set. This approach has turned out to be quite universal and,
as we shall show, can be used not only for seeking global extrema of functions but also for non-
linear programming problems (NLP), for nonlinear integer programming, for solving systems
of nonlinear equations, sequential minimax problems and, most importantly, for multicriterial
optimization problems (MOP). For these problems we introduce the notion of ε-solutions and
describe numerical methods for �nding these solutions. Sequential deterministic algorithms and
practical results have been obtained for Lipschizian optimization, where all functions which de-
�ne the problem satisfy a Lipschitz condition. If moreover a feasible set is compact then an
ε-solution of MOP can be found after only one covering of the feasible set on a non-uniform net.
This property of the proposed approach simpli�es the solution process radically in comparison
with the traditional approaches which are based on the use of scalarization techniques (con-
volution functions, reference point approximation, etc.). In our algorithm the computing time
which is needed for �nding the approximate solution of a multicriterial optimization problem
is close to the time which is needed for the search of the global minima of a single function
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on the same feasible set. This approach was proposed in Evtushenko (1985), Evtushenko and
Potapov (1984, 1985, 1987), Potapov (1984).

In this paper we brie�y present some results in the �eld of global optimization which were
obtained in the Computing Center of Russian Academy of Sciences. Our methods were im-
plemented on a computer and were used in practice. On the basis of the proposed approach
we have developed the packages Solvex and Globex, implemented in Fortran and C language.
The libraries of algorithms which were included in these packages enable a user to solve the
following classes of problems:

1. Unconstrained global and local minimization of a function of several variables.

2. Nonlinear global and local minimization of a function under the equality and inequality
constraints.

3. Nonlinear global solution of a multicriterial problem with equality and inequality con-
straints.

These packages give opportunity to combine the global approach with local methods and
this way speeds up the computation considerably. Global nonlinear problems that are solvable
in reasonable computer time must be of limited dimension (of order 10 to 20); however, the
use of multiprocessors, parallel computing, and distributed processing substantially increases
the possibilities of this approach. Our preliminary results of computations on a parallel trans-
puter system are encouraging. The description of the packages for global optimization and the
computational experiments will be given in subsequent papers.

2. General concept

We consider the global optimization problem

f∗ = global min
x∈X

f(x), (1)

where f : Rn → R1 is a continuous real valued objective function and X ⊂ Rn is a nonempty
compact feasible set.

Since maximization can be transformed into minimization by changing the sign of the objec-
tive function, we shall consider only the minimization problem here. Subscripts will be used to
distinguish values of quantities at a particular point and superscripts will indicate components
of vectors.

As a special case, we consider the situation, where X is a right parallelepiped P with sides
parallel to the coordinate axes (a box in the sequel):

P = {x ∈ Rn : a ≤ x ≤ b, a ∈ Rn, b ∈ Rn}. (2)

Here and below, the vector inequality q ≤ z, where q, z ∈ Rn, means that the componentwise
inequalities qi ≤ zi hold for all i = 1, . . . , n.

The set of all global minimum points of the function f (the solutions set) and the set of
ε-optimal solutions are de�ned as follows

X∗ = {x∗ ∈ X : f∗ = f(x∗) ≤ f(x), ∀x ∈ X}, (3)
Xε
∗ = {xε ∈ X : f(xε) ≤ f∗ + ε}. (4)

For the sake of simplicity of the presentation, we assume throughout this paper that global
minimizer sets exist. The existence of an optimal solution in (1) is assured by the well-known
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Theorem of Weierstrass. The sets X∗, Xε
∗ are nonempty because of the assumed compactness

of X and continuity of f(x).
The global optimal value of f is denoted by f∗ = f(x∗), x∗ ∈ X∗. Our goal is to �nd at

least one point xε ∈ Xε
∗ . Any value f(xε), where xε ∈ Xε

∗ , is called an ε-optimal value of f
on X. Let Nk = {x1, x2, . . . , xk} be a �nite set of k points in X. After evaluating the objective
function values at these points, we de�ne the record value

Rk = min
1≤i≤k

[f(x1), f(x2), . . . , f(xk)] = f(xr), (5)

where r ∈ [1 : k]; any such point xr is called a record point.
We say that a numerical algorithm solves the problem (1) after k evaluations if a set Nk

is such that Rk ≤ f∗ + ε, or, equivalently, xr ∈ Xε
∗ . The algorithm is de�ned by a rule for

constructing such a set Nk.
We introduce the Lebesgue level set in X

K(`) = {x ∈ X : `− ε ≤ f(x), ` ∈ R1, ε ∈ R1}. (6)

Theorem 1. Let Nk be a set of k feasible points such that

X ⊆ K(Rk), (7)

then any record point xr ∈ Nk belongs to Xε
∗ .

Proof. The set of solutions satis�es X∗ ⊆ X ⊆ K(Rk). Let a point x∗ belong to X∗, then
according to (6) and (7) we have x∗ ∈ K(Rk) and, therefore, f(xr) = Rk ≤ f(x∗)+ ε. It means
that xr ∈ Xε

∗ .

If condition (7) holds, then we will say that the set X is covered by K(Rk).
It is very di�cult to implement this result as a numerical algorithm because the level set

K(Rk) can be very complicated; in general it is not compact and it requires a special program
to store it in computer memory. Therefore, we have to weaken the statement of this theorem
and impose an additional requirement on the function f . We suppose that for any point z ∈ X
and any level value `, where ` ≤ f(z), it is possible to de�ne set B(z, `) as follows

B(z, `) = {x ∈ G(z) : `− ε ≤ f(x)}, (8)

where G(z) ⊂ Rn is a closed bounded nonempty convex neighborhood of the point z such that
the Lebesgue measure mes (G(z)) of a set G(z) is positive and z ∈ G(z).

Theorem 2 (Main Theorem). Let Nk be a set of feasible points such that

X ⊆ ⋃

xj∈Nk

B(xj, Rk), (9)

then any record point xr ∈ Nk belongs to Xε
∗ .

Proof. It is obvious that

B(z, f(z)) ⊆ K(f(z)),
⋃

xj∈Nk

B(xj, Rk) ⊆ K(Rk).

Therefore, from condition (9) follows (7), that proves the theorem.
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If the set X is compact, then a �nite set Nk, which satis�es the conditions of this Theorem,
exists.

The construction of numerical methods is split in two parts: 1) the de�nition of a set B(z, `),
2) the de�nition of covering rule. Let us consider the �rst part. Assume that the function f
satis�es a Lipschitz condition on Rn with constant L. It means that for any x and z ∈ Rn, we
have

|f(x)− f(z)| ≤ L‖x− z‖. (10)
In this case, we can write that

B(z, `) = {x ∈ Rn : ‖x− z‖ ≤ r = [ε + f(z)− `]/L}, (11)

i.e. B(z, `) is a ball of radius r and a center z. If x ∈ B(z, `) and ` ≤ f(z), then from (10)
we obtain that condition `− ε ≤ f(x) holds. If f(z) = `, then the ball B(z, f(z)) has minimal
radius ρ = ε/L. The smallest edge of a hypercube inscribed into ball B(z, f(z)) is 2ρ/

√
n.

Suppose the function f is di�erentiable and for any x and z of the convex compact set X
we have

‖fx(x)− fx(z)‖ ≤ M‖x− z‖,
where M is a constant. In this case, B(z, `) can be constructed as a ball centered at z̄ with
radius r̄:

B(z̄, `) = {x ∈ Rn : ‖x− z̄‖ ≤ r̄}, z̄ = z − fx(z)/M,

r̄2M2 = [‖fx(z)‖2 + 2M [f(z) + ε−Rk]].

These formulas were given in Evtushenko (1971, 1985). Other more complicated cases were
considered in Evtushenko and Potapov (1984, 1987).

If f(x) satis�es (10), then, evaluating the function on a regular orthogonal grid of points,
2ρ/

√
n apart in each direction, and choosing the smallest function value solves the problem.

But this is generally impractical due to the large number of function evaluations that would
be required. Many authors proposed various improvements to the grid method. The main idea
of non-uniform grid methods is the following: a set of spheres is constructed such that the
minimum of the function over the union of the spheres di�ers by at most ε from the minimum
of the function at their centers. When a su�cient number of spheres is utilized (such that X
is a subset of their union), the problem is solved. Such an approach is more e�cient than the
use of a simple grid.

In recent years a rapidly-growing number of deterministic methods has been published for
solving various multiextremal global optimization problems. Many of them can be viewed as
realization of a basic covering concept. Theorem 2 suggests a constructive approach for solving
problem (1). If inclusion (9) holds, i.e. the union of sets B(xj, Rk) covers the feasible set,
then the set Nk solves the problem (1). As a rule we construct sample sequence of feasible
points Nj = {x1, x2, . . . , xj} where the function f(x) has been evaluated and such that the
set W =

⋃
xj∈Nk

B(xj, Rj) covers X. According to (5) Rj ≥ Rk for any 1 ≤ j ≤ k, hence

B(xj, Rj) ⊆ B(xj, Rk). If X ⊆ W , then condition (9) holds. A family of numerical methods
based on such an approach is called a space covering technique. Many optimization methods
have been developed on the basis of the covering idea.

The volume of the current covering set B(z, Ri) essentially depends on the current record
value Ri and it is greatest for Ri = f∗, but the value f∗ is usually not known. Hence, to extend
this set it is desirable that the current record value be as close as possible to f∗. For this
purpose we use the auxiliary procedures of �nding a local minimum in the problem (1). If in

4



the computation process we obtain that f(xi+1) < Ri, then we use a local search algorithm
and if we �nd a point x̄ ∈ X at which f(x̄) < f(xi+1) then we take the quantity f(x̄) as a
current record value and the vector x̄ as a current record point. After this we continue the
global covering process. Therefore, the optimization package which we developed for global
minimization includes a library of well-known algorithms for local minimization. The coherent
utilization of both these techniques substantially accelerates the computation.

All results given in this paper can be extended straightforwardly to integer global opti-
mization problems and mixed-integer programming. In this case all functions which de�ne a
problem must satisfy the Lipschitz condition (10) for any feasible vectors x, y whose compo-
nents are integers. When solving practical problems, we often take the accuracy ε = 0.1 and
the Lipschitz constant L = 10, therefore, the minimal radius of the covering ball is equal to
ρ = ε/L = 0.01. Assume that we compute the value of a function f at a point x ∈ X with
integer coordinates, then we can exclude all points which are inside of the hypercube centered
at x and having the edge lengths equal to two. Therefore, the minimal radius of the covering
balls is greater or equal to one. We take the covering set B into account and exclude the union
of the hypercube and B. It is possible to consider another common case where only a part of
the variables are integers. For this case we use di�erent covering sets in the spaces of integer
and continuous variables. All methods presented here can be used for solving nonlinear integer
programming problems and integer multicriterial optimization problems. Moreover, the integer
assumption accelerates and simpli�es greatly the covering process.

Sometimes we can take advantage of special knowledge about the problem and suggest
modi�cations customized to use the additional information. For example, suppose that we
have some prior knowledge about the upper bound Θ for optimal value f∗. We de�ne positive
numbers 0 < δ1 < δ2 ≤ ε such that ε ≥ Θ − f∗ + δ2, where f∗ ≤ Θ. Let introduce a covering
ball

Hj = {x ∈ Rn : ‖x− xj‖ ≤ rj}, rj = (f(xj)−Θ− δ1)/L.

Now we cover the set X by balls Hj. For a sequence of feasible points x1, x2, x3, . . . we evaluate
the objective function and using (5) we determine the record value and the corresponding record
point. Suppose that for all 1 ≤ j < s we have f(xj) > Θ + δ2, rj > (δ2 − δ1)/L > 0. If xs is
the �rst point such that f(xs) ≤ Θ + δ2, then we conclude that Rs = f(xs) ≤ f∗ + ε, xs ∈ Xε

∗ .
We say that the global approximate solution of Problem (1) is found after s evaluations and
we terminate computations.

Theorem 3. Let Nk be a set of k feasible points such that X ⊆ k⋃
j=1

Hj. Assume that f(z)

satis�es the Lipschitz condition (10) and X∗ is nonempty. Suppose that an upper estimation
Θ of f∗ is known. Then there exists an index i such that xi ∈ Xε

∗ , f(xi) ≤ Θ + δ2, where
1 ≤ i ≤ k.

Proof. By contradiction. Assume that Rk > Θ + δ2. According to (10) for any point x,
which belongs to Hj, we have:

f(x) ≥ f(xj)− L‖x− xj‖ ≥ f(xj)− rjL = θ + δ1 > f∗.

Therefore, f(x) > f∗ on Hj. Because of arbitrariness of j, 1 ≤ j ≤ k, the same property holds
everywhere on X. It means that X∗ is empty. Hence there exists a point xi ∈ Nk such that
xi ∈ Xε

∗ .

We can use Theorem 2 and 3 simultaneously taking sequentially the following covering
radius

r̄j =
f(xj)−min[Rj − ε, Θ + δ1]

L
.

5



All covering algorithms can easily be modi�ed and still retain their basic form.
We will not describe here all non-uniform covering techniques, instead we only mention

some directions: the layerwise covering algorithm (Evtushenko (1971, 1985)), the bisection
algorithm (Evtushenko and Ratkin (1987), Ratschek et. al. (1988)), the branch and bound
approach (Volkov (1974), Evtushenko and Potapov (1987), Potapov (1984), Horst and Tuy
(1989)), the chain covering algorithm (Evtushenko et. al. (1992)). The covering rules are
developed mainly for the case where X is a right parallelepiped. In most of these papers the
feasible set X is covered by hypercubes inscribed into covering balls B.

Other non-determenistic approaches for global optimization can be found in the recent
survey by Betro (1991), and in the books by Horst and Tuy (1990), Torn and Zilinskas (1991).

3. Solution of nonlinear programming problems

The approach described in the preceding section carries over to solving nonlinear programming
problems. The feasible set X can be nonconvex and nonsimply connected. Therefore, very
often, it is di�cult to realize algorithmically a covering of X by balls or boxes. It is easier to
cover a rather simple set P that contains the set X. For example, if all components of a vector
x are bounded, then P can be the �box� de�ned by (2). Suppose the global minimum is sought:

f∗ = global min
x∈P∩X

f(x), (12)
X = {x ∈ Rn : Ψ(x) = 0} (13)

where Ψ : Rn → R1 and the intersection P ∩X is nonempty.
The scalar function Ψ(x) is equal to zero everywhere on X, and greater than zero out-

side X. As before, we denote by X∗, the global solutions set of problem (12), which is assumed
to be nonempty, X∗ ⊆ P ∩ X. It is obvious that X∗ ⊆ P . We extend the feasible set X
by introducing the ε-feasible set Xε, de�ne the set of approximate global solutions Xε

∗ of the
problem (12) and two Lebesgue level sets in P :

Xε = {x ∈ Rn : Ψ(x) ≤ ε}, (14)

Xε
∗ = {x ∈ P ∩Xε : f(x)− ε ≤ f∗},

T (ε) = {x ∈ P : 0 < ε < Ψ(x), ε ∈ R1},
K(`) = {x ∈ P : `− ε ≤ f(x), ` ∈ R1}.

(15)

Let Nk = {x1, . . . , xk} be a set of k points from the set P , where the functions f(x) and Ψ(x)
have been evaluated. The record point xr and the record value Rk are de�ned similarly to (5):

Rk = min
xi∈Nk∩Xε

f(xi) = f(xr).

If the intersection Nk ∩Xε is empty, then Rk is not de�ned and the set K(Rk) is assumed to
be empty.

Theorem 4. Assume that the set of global solutions X∗ of problem (12) is nonempty. Let
Nk be a set of points from P such that

P ⊆ K(Rk) ∪ T (ε), (16)

then there exists at least one record point xr ∈ Nk which belongs to Xε
∗ .

Proof. The intersection X∗ ∩ T (ε) is empty because Ψ(x) > ε > 0 for any point x ∈ T (ε).
Therefore, all points from T (ε) can not belong to the set X∗ of global solutions of prob-

6



lem (12). Hence using (16), we obtain X∗ ⊆ P ⊆ K(Rk). It means that K(Rk) is nonempty
and the intersection Nk ∩Xε is also nonempty. If x∗ ∈ X∗, then there exists a record point xr

such that xr ∈ Nk, xr ∈ P ∩Xε and f(xr)− ε ≤ f(x∗). Taking into account the de�nition (15),
we conclude that xr ∈ Xε

∗ .

If functions f(x) and Ψ(x) satisfy the Lipschitz condition with the same constant L, then
with each point xs ∈ Nk we associate a ball Bsk centered in xs and with radius rsk:

Bsk = {x : ‖x− xs‖ ≤ rsk}, rsk = max[r̂sk, r̃sk],
r̂sk = (f(xs)−Rk + ε)/L, r̃sk = (Ψ(xs)− δ)+/L,

(17)

where a+ = max[a, 0], 0 < δ < ε.

Theorem 5. Assume that the set of global solutions X∗ of problem (12) is nonempty.
Suppose that the functions f and Ψ satisfy the Lipschitz condition (10) and the set Nk of the
points from P is such that P ⊆ k⋃

i=1
Bik. Then any record point xr belongs to Xε

∗ .

Proof. The solution set satis�es X∗ ⊆ P ⊆ k⋃
i=1

Bik. Consider a point x∗ ∈ X∗. Then there
exists at least one covering ball Bsk such that x∗ ∈ Bsk. Hence, according to the de�nition of a
ball Bsk, we have ‖x∗ − xs‖ ≤ rsk. We prove that rsk > 0. Suppose that the radius of this ball
is equal to r̃sk, then we have

‖x∗ − xs‖ ≤ r̃sk = (Ψ(xs)− δ)+/L.

If Ψ(xs) ≥ δ, then r̃sk = (Ψ(xs) − δ)ÃL and, taking into account the Lipschitz condition, we
obtain

Ψ(x∗) ≥ Ψ(xs)− L‖x∗ − xs‖ ≥ δ > 0.

The above inequality is impossible because x∗ ∈ X∗ and Ψ(x∗) = 0.
If Ψ(xs) < δ, then r̃sk = 0 and Ψ(xs) < ε. Therefore, xs ∈ Xε and there exist xr and Rk

such that
r̂sk =

f(xs)−Rk + ε

L
≥ ε

L
> r̃sk = 0.

This contradicts the de�nition (17) of rsk. Hence we have rsk = r̂sk = (f(xs)− Rk + ε)/L.
Using the Lipschitz condition (10), we obtain

f(x∗) ≥ f(xs)− L‖x∗ − xs‖ ≥ Rk − ε = f(xr)− ε.

Taking into account the de�nition of Xε
∗ , we conclude that xr ∈ Xε

∗ .

If a current point xs ∈ Nk, where s ≤ k, is such that xs ∈ Xε then Ψ(xs) ≤ ε, f(xs) ≥
≥ Rs ≥ Rk and the radius of a covering ball satis�es rsk ≥ ε/L. If xs /∈ Xε, then Ψ(xs) > ε
and rsk ≥ (ε− δ)/L. Consequently, if the set P is compact, then a �nite set Nk, which satis�es
the conditions of Theorem 5, exists.

As a rule in a practical computation a right parallelepiped (2) plays the role of the set P ,
which is used in the statement (12). Due to it all covering methods mentioned in previous section
can be used for solving (12). During the computational process the sequence Ri monotonically
decreases, therefore, Bii ⊂ Bik for any 1 ≤ i ≤ k. Problem (12) will be solved, if we �nd the
sequence Nk such that the union of balls Bik or Bii, 1 ≤ i ≤ k covers the set P . Such a �nite
set exists.
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Consider the particular case of problem (1) where
f∗ = global min

x∈P
f(x). (18)

It is worthwhile to compare problem (18) of �nding the minimum of f(x) on P with the
problem (12) under the additional constraint x ∈ X. At �rst glance, it seems paradoxical
(although it is true), that �nding the global solution of problem (12) is simpler than solving
problem (18). The constraint x ∈ X provides an additional possibility to increase the radii of
the covering balls on P\X. Hence, the additional constraints merely simplify the problem of
�nding global solutions. If we know some properties of the problem we should add them to the
de�nition of the set X. We illustrate this idea using a simple version of problem (18). Suppose
that f(x) is di�erentiable on a box P , then the necessary conditions of the minimum can be
written in the form

ϕi(x) = (xi − ai)(bi − xi)
∂

∂xi
f(x) = 0, 1 ≤ i ≤ n.

We introduce the feasible set as follows

X = {x ∈ Rn :
n∑

i=1

(ϕi(x))2 = 0}.

Now we solve the problem (12) instead of (18) and simplify the covering process in this way.
The function Ψ(x) which de�nes the feasible set can be found on the basis of penalty

functions. Consider the case where the feasible set is de�ned by equality and inequality type
constraints

X = {x ∈ Rn : h(x) ≤ 0, g(x) = 0}, h : Rn → Rc, g : Rn → Rm. (19)
Introduce the vector-valued function h+(x) = [h1

+(x), . . . , hc
+(x)], hi

+ = max[0, hi]. Let ‖z‖p

denote a H�older vector norm of a vector z ∈ Rs:

‖z‖p =

(
s∑

i=1

|zi|p
)1/p

, 1 ≤ p ≤ ∞.

If p = 1, 2,∞, then we have the Manhatten, Euclidean and Chebyshev norms, respectively:

‖z‖1 =
s∑

i=1

|zi|, ‖z‖2 =

(
s∑

i=1

(zi)2

)1/2

, ‖z‖∞ = max
1≤i≤s

|zi|.

Suppose that each component of h and g satis�es the Lipschitz condition with constant L:
|hi(x)− hi(y)| ≤ L‖x− y‖, |gi(x)− gi(y)| ≤ L‖x− y‖.

Then using Theorem 1.5.2 from Evtushenko (1985), it is easy to show that h+(x) satis�es a
Lipschitz condition with the same constant L. If we use the well-known inequality

|‖a‖ − ‖b‖| ≤ ‖a− b‖,
then we obtain that the function

Ψ(x) =

∥∥∥∥∥
h+(x)
g(x)

∥∥∥∥∥
p

=




c∑

i=1

(hi
+(x))p +

m∑

j=1

|gj(x)|p



1/p

, (20)

also satis�es the Lipschitz condition with constant L.
The great advantage of the proposed approach lies in the tact that the constraints need

not be dealt with separately and that the classical and modern local numerical methods can
be used as auxiliary procedures to improve the record values and in this way to accelerate the
computations.
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4. Numerical solution of global multicriterial minimization problem

The multicriterial minimization problem has numerous applications in diverse �elds of science
and technology and plays a key role in many computer-based decision support systems. Various
complex engineering problems and practical design require multicriterial optimization. The non-
uniform covering technique developed above can be extended for the solution of multicriterial
minimization problems.

In minimizing a number of objective functions F 1(x), F 2(x), . . . , Fm(x) it can not be ex-
pected in general that all of the objective functions attain their minimum value simultaneously.
The objectives usually con�ict with each other in that any improvement of one objective can
be achieved only at the expense of another. For such multiobjective optimization the so-called
Pareto optimality is introduced.

De�ne the vector-valued function F>(x) = [F 1(x), F 2(x), . . . , Fm(x)], F : Rn → Rm. Let
Y = F (X) be the image of X under the continuous mapping F (x). The problem of global
multicriterial minimization of the vector-valued function F (x) on an admissible set X is denoted
by

global min
x∈X

F (x). (21)

The set X∗ of solutions of this problem is de�ned as follows:

X∗ = {x ∈ X : if it exists w ∈ Xsuch that F (w) ≤ F (x), then F (w) = F (x)}. (22)

To solve problem (21) means to �nd the set X∗. In papers on multicriterial optimization,
X∗ is usually called the set of e�ective solutions, and its image Y∗ = F (X∗) is called the Pareto
set. The sets X∗ and Y∗ are assumed to be nonempty.

In many practical problems x is a vector of decisions and y = F (x) is a criterion vector or
outcome of the decisions. Therefore, we say that x belongs to the decision space Rn and that
y belongs to the criteria space Rm. We can rewrite the de�nition (22) in the criteria space:

Y∗ = {y ∈ Y : if it exists q ∈ Y such that q ≤ y, then q = y}. (23)

We say that a vector y1 is better than or preferred to y2 if y1 ≤ y2 and y1 6= y2. From
de�nition (23) it follows that a point y1 belongs to the Pareto set, if there are no points in Y ,
which are better than the point y1. In the same way we can compare the points in decision
space. We say that x1 ∈ X is better than x2 ∈ X if F (x1) ≤ F (x2), F (x1) 6= F (x2). In the last
case we can say also that x2 is worse than x1.

A Pareto-optimal solution is e�cient in the sense that none of the multiple objective func-
tions can be downgraded without any other being upgraded. Any satisfactory design for the
multiple objectives must be a Pareto-optimal solution.

The structure of X∗ turns out to be very complicated even for the simplest problems. It
often happens that this set is not convex and not simply connected, and every attempt to
describe it with the help of approximation formulas is extremely di�cult to realize. Therefore,
in Evtushenko and Potapov (1984,1987) and Potapov (1984) we de�ned the new concept of an
ε-optimal solution and gave a rule for �nding it.

De�nition 1. A set A ⊆ X is called an ε-optimal solution of problem (21) if

1) for each point x∗ ∈ X∗ there exists a point z ∈ A such that F (z)− εe ≤ F (x∗), e means
the m-dimensional vector of ones;

2) the set A does not contain two distinct points x and z such that F (x) ≤ F (z).
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Numerical methods for �nding global extrema of functions of several variables can be used
for constructing the ε-optimal solution of problem (21). Let Nk = {x1, . . . , xk} be a set of k
points in X. We shall de�ne a sequence of sets Ak ⊆ Nk as k increases, while trying in the �nal
analysis to �nd ε-optimal solutions.

RULE 1 FOR CONSTRUCTING Ak. The set A1 consists of the single point x1 ∈ N1 ⊆ X.
Suppose that Nk, Nk+1, and Ak are known. We compute the vector F (xk+1) at a point xk+1 ∈
∈ Nk+1 ⊆ X. Three cases are possible:

1. If it turns out that among the elements xi ∈ Ak there are some such that F (xk+1) ≤ F (xi),
F (xk+1) 6= F (xi), then they are all removed from Ak, the point xk+1 is included in Ak

and this new set is denoted by Ak+1.

2. If it turns out that there exists at least one element xi ∈ Ak such that F (xi) ≤ F (xk+1),
then xk+1 is not included in Ak, and the set Ak is denoted by Ak+1.

3. If the conditions of the two preceding cases do not hold, then the point xk+1 is included
in the set Ak, which is denoted now by Ak+1.

In the �rst case we exclude from Ak all points which are worse than the new point xk+1. In
the second case the new point xi is worse than at least one point from Ak, therefore, this point
is not included in the set Ak. In the last case the point xk+1 is equivalent (or equally preferred)
to all points which belong to the set Ak.

The de�nition of the Lebesgue set (6) is replaced now by

K(`) = {x ∈ X : `− εe ≤ F (x), ` ∈ Rm, e ∈ Rm, ε ∈ R1}. (24)

Theorem 6. Let the �nite set Ak of admissible points be such that

X ⊆ ⋃

xj∈Ak

K(F (xj)). (25)

Then the set Ak determined by the �rst rule for constructing Ak forms an ε-optimal solution of
the multicriterial problem (21).

Proof. From the covering condition (25) it follows that the set X∗ is also covered, i.e. for
any point x∗ ∈ X∗ there exists a point xs ∈ Ak such that x∗ ∈ K(F (xs)). Then from de�nition
(24) we obtain F (xs)− εe ≤ F (x∗). Because of arbitrariness of the point x∗ ∈ X∗ we conclude
that the set Ak forms an ε-optimal solution set of problem (21).

In a manner similar to the second section we suppose that for any point z ∈ X and level
vector ` ∈ Rm, where ` ≤ F (z), it is possible to de�ne the set

B(z, `) = {x ∈ G(z) : `− εe ≤ F (x)}.
From the inclusion B(z, `) ⊆ K(F (z)) it follows that the set Ak is an ε-optimal solution if

X ⊆ ⋃

xs∈Ak

B(xs, F (xs)).

We assume now that each component of the vector-valued function F (x) satis�es a Lipschitz
condition on X with one and the same constant L. Therefore, for any x and z in X, we have
the vector condition

F (z)− eL‖x− z‖ ≤ F (x).
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In this case we can use the following covering balls

B(xj, F (xi)) = {x ∈ Rn : ‖x− xj‖ ≤ ri
jk},

where ri
jk = [ε + hi

jk]/L, the index i is a function of indexes j, k and it is found as a solution
of the following maximin problem

hi
jk = max

xc∈Ak

min
s∈[1:m]

(F s(xj)− F s(xc)) = min
s∈[1:m]

(F s(xj)− F s(xi)), xi ∈ Ak. (26)

The inequality hi
jk > 0 holds if there exists at least one point xc ∈ Ak such that F (xc) < F (xj),

otherwise hi
jk = 0 and the radius of the covering ball is minimal, i.e. it is equal to ρ = ε/L.

As in the third section, we can take into account constraint restrictions. Suppose that
problem (21) is replaced by the following problem

global min
x∈P∩X

F (x). (27)

Let X∗ denote the set of global solutions of this problem. This set is de�ned by (22) with
additional requirements: x ∈ P ∩X, w ∈ P ∩X.

We extend the admissible set by introducing the set Zε = P ∩ Xε, where Xε is given by
(15). The de�nition of an ε-optimal solution carries over to the case of problem (27) with the
following change: instead of the condition A ⊂ X it is required that A ⊂ Zε. The rule for
determining Ak is also changed. Suppose that Nk is a set of k points belonging to P .

RULE 2 FOR CONSTRUCTING Ak. Assume that Nk, Nk+1, and Ak are known (Ak may
be empty). At the point xk+1 ∈ Nk+1 it is checked whether xk+1 ∈ Zε. If not, then xk+1 is
not included in Ak, and Ak is then denoted by Ak+1; otherwise, the same arguments as in the
construction of Ak are carried out with a check of the three cases which were described above.

Denote
B̄(xj, F (xj)) = {x ∈ Rn : ‖x− xj‖ ≤ r̄jk},

r̄i
jk = (1/L) max[ε + hi

jk, Ψ(xj)− δ],

where 0 < δ < ε and i, hi
jk are given by (26), the feasible set X is de�ned by (13).

Theorem 7. Suppose that the set of global solutions X∗ of the multicriterial problem (21)
is nonempty. Assume that the vector-valued function F and the function Ψ satisfy a Lipschitz
condition on P . Let the set Nk of points in P be such that

P ⊆
k⋃

j=1

B̄(xj, F (xi)). (28)

Then the set Ak constructed by the second rule forms an ε-optimal solution of the multicriterial
problem (27).

The proof is very similar to that of Theorem 5 and, therefore, is omitted. Any radius r̄jk

cannot be less that the quantity (ε − δ)/L > 0. Therefore, �nite sets Nk and Ak satisfying
the conditions of Theorem 7 exist in the case where the set P is compact. Theorem 7 is very
interesting: it provides a simple rule for �nding global ε-solution of a multicriterial problem. A
set Nk satisfying condition (28) can be constructed by using diverse variants of the non-uniform
covering method which were developed for �nding a global extremum of a function of several
variables. As before, local methods for improving the current ε-optimal solution Nk can be
used. Some variants of local iterative methods for solving multicriterial problem are described
in Zhadan (1988).
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For an approximate solution of the problem, it su�ces to implement a covering of an ad-
missible set P by a non-uniform net. This is an essential advantage of such an approach in
comparison with the well-known scalarization schemes. We mention for example the refer-
ence point approximation, the method of successive concessions, the method of inequality and
other traditional methods which require, for their realization, a multiple global minimization
of auxiliary functions on the feasible set X (see, for example Jahn, Merkel (1992)).

The set Ak obtained by computer calculations is transmitted to a user (a designer solving the
multicriterial problem). The designer may wish to examine some or all the alternatives, make
his tradeo�s analysis, make his judgment, or develop his preference before making rational
decision. As the �nal solution, the user chooses a concrete point from the set Ak, starting
from the speci�cs of the problem, or from some additional considerations not re�ected in the
statement of the problem (21).

The main result of this section is that, for the constructive solution of multicriterial op-
timization problems, it is possible to use the non-uniform covering technique developed in
research on global extrema of functions of several variables. The approach presented here is
developed in Evtushenko (1985), Evtushenko and Potapov (1984,1987), Potapov (1984).

Another approach to the solution of problem (27) can be obtained if we consider the func-
tion Ψ(x) as an additional component of an outcome vector, which also should be minimized.
We introduce extended multicriterial problem

global min
x∈P

F̄ (x), (29)

where
F̄>(x) = [F 1(x), . . . , Fm+1(x)], Fm+1(x) = Ψ(x).

For this problem the set of optimal solutions P∗ is de�ned by the condition

P∗ = {x ∈ P : if it exists w ∈ P such that F̄ (w) ≤ F̄ (x), then F̄ (w) = F̄ (x)}.

For the solution of problem (27) we can use the method which we used for solving problem (21),
where X = P . Now the sets Nk and Ak consist of points from the set P . If Ak is an ε-optimal
solution of problem (29), then for each point x∗ ∈ P∗ there exists a point x ∈ Ak such that

F (x)− εe ≤ F (x∗), Ψ(x)− ε ≤ Ψ(x∗).

The solutions set X∗ of problem (27) belongs to the solutions set P∗ of problem (29) because
the latter includes the points x∗ such that Ψ(x∗) > 0. Now the set of ε-optimal solutions can
be found in similar way as for problem (21). A third variant of solution of problem (27) can be
constructed by analogy with the approach described in Evtushenko (1985).

The multicriterial approach can be used for solving the nonlinear programming problem. In
this case we introduce a bicriterial minimization problem. Let the vector-valued function F (x)
consist of two components: F>(x) = [f(x), Ψ(x)]. Instead of the original problem (12) with
feasible set X de�ned by (13) we de�ne problem

global min
w∈P

F (x).

The Pareto set for this problem coincides with the sensitivity function of problem (12). Using
the approach described in this section, we obtain an ε-approximation of the sensitivity function.
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5. Solution of a system of nonlinear equalities and inequalities

In this section we con�ne ourselves to the problem of �nding a feasible point which belongs to
the set X given by (19). To solve this problem approximately it su�ces to �nd at least one
point from the set

Xε = {x ∈ P : Ψ(x) ≤ ε},
where Ψ(x) is de�ned by (20).

We assume that further computations for sharpening the solution will involve local methods.
When X∗ is empty, the algorithm should guarantee that the assertion concerning the absence
of approximate solutions be true. The problem of �nding a point x∗ ∈ X∗ is equivalent to the
minimization of Ψ(x) on P . De�ne

Ψ∗ = min
x∈P

Ψ(x). (30)

If X∗ is nonempty, then Ψ∗ = 0; otherwise, Ψ∗ > 0. Suppose that the mappings h(x), g(x)
satisfy a Lipschitz condition on P with constant L.

Now for �nding an approximate solution of problem (30) we can use Theorem 5. For the
sequence of points {xk} from P we use (5) to determine the record point xr, we record the
value Rk and de�ne a covering ball Bsk with radius rsk:

Bsk = {x ∈ Rn : ‖x− xs‖ ≤ rsk},
rsk = [Ψ(xs)−min[Rk − ε, δ]]/L, 0 < δ < ε.

The stopping rule of covering procedures consists only in veri�cation of inequality Ri ≤ ε,
i = 1, 2, . . . , k. If for some s it is true, then xs ∈ Xε and an approximate solution xs is found,
otherwise we have to cover all set P and �nd a minimal value of Ψ(x) on P with accuracy ε.

Theorem 8. Suppose that Ψ(x) satis�es a Lipschitz condition and the set Nk of the points
from P is such that P ⊆ k⋃

i=1
Bik. Then

1) if X∗ is nonempty, then xr ∈ Xε;

2) if Rk > ε, then X∗ is empty.

The proof follows from the above observations and is therefore omitted.
If we know that X∗ is nonempty, then we can cover P by balls Hj which we de�ned in the

second section and set Θ = f∗ = 0, δ2 = ε, 0 < δ1 < ε, then rj = [Ψ(xj)− δ1]/L.

6. Solution of minimax problems

Let f(x, y) be a continuous function of x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm. We consider the minimax
problem

f∗ = min
x∈X

max
y∈Y

f(x, y). (31)

Here we have internal maximization and external minimization problems. We can rewrite
Problem (31) in the following equivalent way

f∗ = min
x∈X

ϕ(x), (32)

where ϕ(x) = f(x, y), y ∈ W (x), W (x) = arg max
y∈Y

f(x, y), i.e. W (x) is the set of all solutions
of the internal problem.
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Denote z> = [x>, y>] ∈ Ω = X×Y and f̄(z) = f(x, y). By Theorem 1.5.2 from Evtushenko
(1985), if f̄(z) satis�es a Lipschitz condition on Ω = X ×Y with constant L, then the function
ϕ(x), de�ned by (32), also satis�es a Lipschitz condition with the same constant L. This
property opens broad possibilities to use the method of �nding global extrema of multiextremal
function for the solution of minimax problems. The same method can be used sequentially for
solving internal as well as external problems. The subprograms of local search usually are chosen
di�erently, since the functions f(x, y) are often di�erentiable and their local maximization is
carried out using properties of smoothness of f in y. The function ϕ is only directionally
di�erentiable, and it has to be locally minimized by other methods.

Comparing the problem (31) with the problem of �nding the global extremum of f in z
on Ω, we can conclude that (31) has an important advantage. Indeed, let the current record
value of ϕ(xr) be known. If at some other point xs ∈ X we have to �nd the value of ϕ(xs), the
process of maximization of f in y can be stopped as soon as at least one point y1 ∈ Y has been
found such that f(xs, y1) ≥ ϕ(xr) since in this case a priori ϕ(xs) ≥ ϕ(xr) and the knowledge
of the exact value ϕ(xs) will not improve the current record value ϕ(xr). This property makes
it possible in a number of cases to terminate the process of solving the internal problem.

Theoretically, this approach makes it possible to solve sequential minimax problems and
opens the door to solving the discrete approximation of di�erential games. For example, the
simplest Isaacs dolichobrachistochrone game problem was solved in Evtushenko (1985, see pages
463, 464). Full details of the �rst layerwise variant of the covering algorithm and codes in
ALGOL-60 are given in Evtushenko (1972).

7. Computational results

In this section we present some computational experiments using the non-uniform covering
techniques. The branch and bound algorithm was applied to a number of standard test func-
tions. This algorithm requires an upper bound L∗ for the Lipschitz constant L. At the very
beginning we run the algorithm with some constants Li which are much smaller than L∗. In-
correct (diminished) Lipschitz constants are used in order to �nd good record points and use
them in subsequent computations with bigger Lipschitz constants. If we take L2 > L1 ≥ L∗
and run the algorithm, taking L = L1 and L = L2, then the di�erence between record values
must be less than ε. This condition is necessary but not su�cient for the Lipschitz constant
L1 to be greater or equal to the true value.

Everywhere for the local search we use the Brent modi�cation of Powell method (Brent
(1973)). The accuracy ε is �xed, we set ε = 0.1. In Tables 1 � 3 we give the Lipschitz constants
Li, the record values Rk, the record points xr and k � the number of function evaluations.

The following simple examples illustrate the space covering approach.

Example 1. Griewank function (Torn (1989))

f(x) = (x1)2/200 + (x2)2/200− cos (x1
√

2) cos (x2
√

2) + 1,
x ∈ R2, −2 ≤ xi ≤ 3, x∗ = [0, 0], f(x∗) = 0, x0 = [3, 3], f(x0) = 0.8851.
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Table 1. Results for Griewank function

L Rk x1
k x2

k k
0.1 0.1349 -2.0000 -2.0000 100
0.2 0.0491 2.2104 2.2104 96
0.4 0.0491 2.2104 2.2104 26
0.8 0.0000 0.0000 0.0000 117
1.6 0.0000 0.0000 0.0000 362

Example 2. Goldstein-Price function (Goldstein (1971))

f(x) = (1 + (x1 + x2 + 1))2(19− 14x1 + 3(x1)2 + 3(x2)2 − 14x2 + 6x1x2))·
· (30 + (2x1 − 3x2)2(18− 32x1 + 12(x1)2 + 48x2 − 36x1x2 + 27(x2)2),

x ∈ R2, −2 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 2,
x∗ = [0,−1], f(x∗) = 3, x0 = [0, 1], f(x0) = 28611.

Table 2. Results for Goldstein-Price function

L Rk x1
k x2

k k
100 3.0000 0.0000 -0.9999 114
180 3.0000 0.0000 -0.9999 4963

Example 3. Hartman function (Torn (1989))

f(x) = −
4∑

j=1

cje−[aj
1(x1−bj

1)2+aj
2(x2−bj

2)2+a3(x3−bj
3)2],

where
a1 = [3, 0.1, 3, 0.1], a2 = [10, 10, 10, 10], a3 = [30, 35, 30, 35],
b1 = [0.3689, 0.4699, 0.1091, 0.03815], b2 = [0.117, 0.4387, 0.8732, 0.5743],
b3 = [0.2673, 0.747, 0.5547, 0.8828], c = [1, 1.2, 3, 3.2],
x ∈ R3, −2 ≤ xi ≤ 2, i = 1, 2, 3,
x∗ = [0.1146, 0.5556, 0.8526], f(x∗) = −3.8628, x0 = [2, 2,−2], f(x0) = 0.

Table 3. Results for Hartman function

L Rk x1
k x2

k x3
k k

0.1 -3.8628 0.1146 0.5556 0.8526 221
2 -3.8628 0.1146 0.5556 0.8526 6
4 -3.8628 0.1146 0.5556 0.85 1615

We also solved Branin and so-called Camel problems. Starting from various initial points,
we found the global solution using the local method from the very beginning of computation.
Therefore, these examples were not very interesting for illustration of global covering technique.
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8. Conclusion

The non-uniform covering technique has given rise to numerous theoretical results and e�ective
computational procedures for solving various global optimization problems. Recent develop-
ments indicate that these results can be generalized and extended signi�cantly for parallel
computations.
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