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The class of barrier-projective methods for solving non-linear programming problems is
considered. A general approach to their construction, based on a transformation of spaces,
is developed. The main attention is devoted to asymptotically stable versions of the meth-
ods. Convergence of the continuous and discrete versions of the methods is proved and
estimates of the rate of convergence are given.

INTRODUCTION

The gradient projection method was one of the �rst numerical methods to be used to
solve linear and non-linear programming problems [1] � [5]. The ideas of gradient projection
and the barrier functions method were subsequently combined, and the approach was used to
solve problems of linear and quadratic programming in [6, 7]. It was then applied to general
problems of non-linear programming and operations research in [8] � [12]. Interest in this
subject intensi�ed considerably after the publication of a paper by Karmarkar in 1984 [13].
This was followed by further papers [14, 15, 16], in which di�erent versions of interior point
methods for solving linear programming problems were proposed.

This paper develops the results obtained in [8] � [12]. We describe a uni�ed approach to the
construction of barrier-projective methods which involves a change to new spaces in which the
structure of the admissible set is considerably simpler than in the initial space. The gradient
projection method in its pure form can then be used to �nd solutions in the transformed space.
Returning to the original space, we obtain di�erent versions of the barrier-projective methods
described in [12], concentrating on stable versions for which the initial approximation does
not have to belong to the admissible set. If the initial approximations are taken from the
admissible set, these methods are similar to interior point relaxation, in that the trajectories
that they generate do not go out of the admissible set and the minimized function decreases
along trajectories. For admissible sets of quite general form it is shown that, if the selected
transformation of spaces satis�es certain conditions, the solution of the non-linear programming
problem is an asymptotically stable position of equilibrium for all the continuous versions of
barrier-projective methods, and their discrete analogues converge locally to this solution at the
rate of a geometric progression.
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1. A STABLE VERSION OF THE GRADIENT PROJECTION METHOD FOR
SOLVING PROBLEMS WITH EQUALITY-TYPE CONSTRAINTS

Let x be a vector of n-dimensional Euclidean space En. The scalar function f(x) and
vector-function g(x) : En → Em are de�ned everywhere in En. Suppose that f and g and their
�rst derivatives are continuous everywhere. We will assume that all the optimization problems
formulated below have solutions. Suppose that we are looking for

f∗ = min
x∈X

f(x), X = {x ∈ En : g(x) = 0m}. (1.1)

Here and below 0ij is an i× j null matrix, 0i is the zero i-dimensional vector, and Ii is the unit
matrix of order i. The subscripts in the null and unit matrices will be omitted whenever this
does not lead to confusion.

We will introduce the vector of binary variables u ∈ Em and, forming the Lagrange function,
compute its gradient:

L(x, u) = f(x) + u>g(x), Lx(x, u) = fx(x) + g>x (x)u.

Here gx is the m× n matrix of the �rst derivatives.
We will consider the following system of n ordinary di�erential equations:

dx/dt = −Lx(x, u(x)), x(x0, 0) = x0. (1.2)

The function u(x) on the right-hand side of (1.2) is chosen so that all trajectories of the
system approach the admissible set X as t → +∞. To do this, we require that

dg/dt = −τg(x), τ > 0. (1.3)

Di�erentiating the function g(x), from (1.2) and (1.3) we have

dg/dt = −gx(x)[fx(x) + g>x (x)u(x)] = −τg(x). (1.4)

If the Gram matrix Γ(x) = gx(x)g>x (x) is non-degenerate, we can �nd the function u(x)
from this condition:

u(x) = Γ−1(x)[τg(x)− gx(x)fx(x)].

Substituting this function into the right-hand side of (1.2), we have

dx/dt = −{fx(x) + g>x (x)Γ−1(x)[τg(x)− gx(x)fx(x)]}. (1.5)

By virtue of this system, the derivative of the function f(x) is equal to

df/dt = −‖Lx(x, u(x))‖2 + τu>(x)g(x). (1.6)

Here and below ‖ · ‖ is the Euclidean norm in En, and 〈·, ·〉 is the Euclidean scalar product.
If the point x0 ∈ X or τ = 0, system (1.2), (1.4) represents the gradient projection method

in which

dx/dt = −[fx(x) + g>x (x)u(x)], x0 ∈ X, (1.7)
gx(x)g>x (x)u(x) + gx(x)fx(x) = 0. (1.8)

According to (1.6), the function f(x(x0, t)) is monotone decreasing in this case. This function
might be non-monotone in the general case, and only monotone decreasing in the set X or near
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it, where the norm ‖g(x)‖ is small. The system (1.7), (1.8) is neutrally stable with respect to
the admissible set, since if g(x0) = c, ||c|| 6= 0, we have g(x(x0, t)) ≡ c. By (1.4), the system
(1.5) is asymptotically stable relative to the constraints. In fact, if the solutions of system (1.5)
are continuable as t →∞, we have

g(x(x0, t)) = g(x0)e
−τt, lim

t→∞ g(x(x0, t)) = 0.

Hence, as t →∞ the trajectories of the system approach points of the admissible set X.
De�nition 1. The constraint regularity condition (CRC) for problem (1.1) is satis�ed at

the point x ∈ En if the columns of the matrix g>x (x) are linearly independent.
Let K⊥(x) denote the vector space generated by vectors g1

x(x), . . . , gm
x (x). If the CRC holds

at the point x, the subspace K⊥ is of dimensions m, and its orthogonal complement will be the
subspace K(x) = {x̄ ∈ En : gx(x)x̄ = 0m} of dimensions d = n−m.

Let W be an m× n matrix of maximum rank m. The n×m matrix W+ denotes the right
pseudo-inverse of W , that is, W+ = W>(WW>)−1, WW+ = Im. Let π(W ) denote the matrix
π(W ) = In −W+W . System (1.5) can be written in projective form:

dx/dt = −π(gx(x))fx(x)− τ(gx(x))+g(x). (1.9)

The �rst vector on the right-hand side is the projection of the antigradient of f(x) on to
the tangent subspace K(x) of the manifold g(x) = const, and the second vector lies in the
orthogonal subspace K⊥(x).

Points x ∈ En, at which the right-hand sides (1.9) vanish are called stationary.
Lemma 1. A point x∗ at which the CRC is satis�ed is stationary if and only if the pair

[x∗, u∗], where u∗ = u(x∗), is a Kuhn�Tucker point, that is,

Lx(x∗, u∗) = 0n, g(x∗) = 0m. (1.10)

Proof. Su�ciency is obvious, and so we need only prove necessity. Let x∗ be a stationary
point. Then, in view of the fact that the vectors on the right-hand side of (1.9) are orthogonal,
we have

π(gx(x∗))fx(x∗) = 0n, (gx(x∗))+g(x∗) = 0n.

The �rst n relations here are the same as the �rst n relations of (1.10). By virtue of the CRC,
the next n relations can only hold if g(x∗) = 0. Thus [x∗, u∗] is a Kuhn�Tucker point, which it
was required to prove.

If the su�cient conditions of second order of an isolated local minimum for problem (1.1)
given in [17] are satis�ed at the stationary point x∗, then the trajectories of system (1.9) locally
converge exponentially to x∗, and the trajectories of the system (1.7), (1.8) locally converge to
X∗ on the admissible set X. This follows from the more general result obtained in Section 3.

2. ALLOWANCE FOR ADDITIONAL CONSTRAINTS OF SIMPLE
STRUCTURE

The approach explained in the previous section can be used for problems with more com-
plicated constraints. Suppose we have the problem of �nding

f∗ = min
x∈X

f(x), X = {x ∈ En : g(x) = 0m, x ∈ Π}, (2.1)

where Π ⊂ En is a closed convex set with a non-empty interior.
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We introduce the new n-dimensional Euclidean space En with coordinates [y1, . . . , yn]. We
use the transformation x = ξ(y) to change this space to the initial space. This transformation
is constructed so that it is a surjection from En into Π or at least from En into int Π. Then
each element of Π (or int Π) is the image of not fewer than one element of En and the closure of
the image of the set En coincides with Π. Suppose also that the mapping ξ(y) is continuously
di�erentiable everywhere on En. We replace the initial problem (2.1) by the following: it is
required to �nd

f̃∗ = inf
y∈Y

f̃(y), Y = {y ∈ En : g̃(y) = 0m}. (2.2)

Here f̃(y) = f(ξ(y)), g̃(y) = g(ξ(y)), with f̃∗ = f∗.
Suppose that the point y∗, is a solution of problem (2.2). Then the point x∗ = ξ(y∗) will

be a solution of problem (2.1). Thus problem (2.2) can be solved by the method described in
the previous section, after which one can revert to coordinates [x1, . . . , xn], giving a method of
solving problem (2.1) in the initial space. In a space y ∈ En, the method (1.2), (1.4) takes the
form:

dy/dt = −[f̃y(y) + g̃>y (y)ũ(y)], y(y0, 0) = y0 ∈ En, (2.3)

g̃y(y)g̃>y (y)ũ(y) + g̃y(y)f̃y(y) = τ g̃(y). (2.4)

The gradients of the functions f̃ , g̃ and f , g are connected by the obvious relations f̃y(y) =
= J̃>(y)fx(ξ(y)), g̃>y (y) = J̃>(y)g>x (ξ(y)). Here J̃(y) = dξ(y)/dy is a Jacobian matrix. At
non-singular points of the transformation x = ξ(y), where the Jacobian is non-zero, the inverse
transformation y = ξ−1(x) exists. If this transformation is used and the vector x is taken as
the argument of the Jacobian, we will obtain the matrix J(x) = J̃(ξ−1(x)) which now depends
on x. Using the relations

dx

dt
=

dξ(y)

dy

dy

dt
= J̃(y)

dy

dt
= J(x)

dy

dt
,

we can �nd di�erential equations for the trajectories corresponding to (2.3), (2.4) in the space
of x. It must be borne in mind here that if the condition x0 = ξ(y0) ∈ Π holds automatically
for (2.3), (2.4), we must have x0 ∈ Π in the space of x. From (2.3), (2.4) we have

dx/dt = −G(x)Lx(x, u(x)), x(x0, 0) = x0 ∈ Π, (2.5)

Γ(x)u(x) + gx(x)G(x)fx(x) = τg(x). (2.6)
The two Gram matrices Γ(x) = gx(x)G(x)g>x (x) and G(x) = J(x)J>(x) have been introduced
here. The analogue of formula (1.6) will be

df/dt = −||J>(x)Lx(x, u(x))||2 + τu>(x)g(x). (2.7)

When τ = 0, the method becomes:

dx/dt = −G(x)Lx(x, u(x)), x(x0, 0) = x0 ∈ X, (2.8)

Γ(x)u(x) + gx(x)G(x)fx(x) = 0. (2.9)
Methods of the type (2.5), (2.6), (2.8), (2.9) are called barrier-projective methods.

Let K(x|Π) and K∗(x|Π), respectively, denote the cone of admissible directions at the point
x relative to the set Π and its dual:

K(x|Π) = {z ∈ En : ∃λ(z) > 0 s.t. x + λz ∈ Π ∀ 0 < λ < λ(z)},
K∗(x|Π) = {z ∈ En : 〈z, y〉 ≥ 0 ∀y ∈ K(x|Π)}.
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Let S(x|Π) be a linear hull of the cone K∗(x|Π).
De�nition 2. The CRC for problem (2.1) holds at a point x ∈ Π if all the vectors gi

x(x),
1 ≤ i ≤ m, and any non-zero vector p ∈ S(x|Π) are linearly independent.

We will impose the following condition on the transformation ξ(y).
Condition 1. At each point x ∈ Π the matrix J(x) is de�ned and the kernel ker J>(x) is

the same as S(x|Π).
In particular, it follows from this condition that at all interior points x ∈ int Π the matrix

J(x) is non-degenerate, only becoming singular on the boundary of the set Π.
Note also that, according to Condition 1, the subspace S⊥(x|Π) orthogonal to S(x|Π) co-

incides with the space of the columns of the matrix J(x), and since the vector −J(x)J>(x)
Lx(x, u(x)) belongs to that space, the velocity vector ẋ always lies in the orthogonal subspace
S⊥(x|Π). Thus, if x is a boundary point of Π, owing to the degeneracy of the matrix J>(x) the
vectors ẋ will belong to the characteristic subspace of the space En, which coincides with the
space M(x)− x, where M(x) is the intersection of all support planes of the set Π at the point
x. If the cone K∗(x|Π) has a non-empty interior, this subspace degenerates to a single point
(the origin of coordinates).

In (2.5), (2.6) the matrix G(x) acts as a barrier to the trajectories in the set Π. In fact,
for the trajectory x(x0, t) starting inside Π to leave Π at a time t1 > 0, there must be a vector
p ∈ K∗(å(x0, t1)|Π) such that 〈ẋ(x0, t1), p〉 < 0. But, as we have noted, the vector ẋ always lies
in the orthogonal subspace of S(x|Π), to which the vector p belongs.

Lemma 2. Let the transformation ξ(y) satisfy Condition 1. Then if the CRC is satis�ed
at the point x, the matrix Γ(x) is positive de�nite.

Proof. We will show that the rank of the matrix B(x) = J>(x)g>x (x) is equal to m. Then,
from the relation Γ(x) = B>(x)B(x), it will follow that the matrix Γ(x) is non-singular and
positive semi-de�nite. If x ∈ intΠ, this is obvious, since the matrix J(x) is non-singular, and
by the regularity condition the rank of the matrix g>x (x) is equal to m.

Now let x ∈ frΠ. If the rank of the matrix B(x) is less than m, there is a non-zero vector
z ∈ En such that B(x)z = J>(x)g>x (x)z = 0. But then, according to Condition 1, the vector
p = g>x (x)z, which is non-zero, will belong to the space S(x|Π). Thus the vectors gi

x(x),
1 ≤ i ≤ m, and the vector p will be linearly dependent, which contradicts the CRC. Thus, the
matrix B(x) has total rank m.

On the basis of the statement of Lemma 2, we know that the matrix Γ(x) will be non-
singular at all points x ∈ Π if the CRC holds. Thus, the unique dependence u(x) can be found
by solving (2.6):

u(x) = Γ−1(x)[τg(x)− gx(x)G(x)fx(x)].

After substituting u(x) into the right-hand side of (2.5), we can rewrite method (2.5), (2.6) in
projective form, similar to (1.9):

dx/dt = −J(x)[π(gx(x)J(x))J>(x)fx(x) + τ(gx(x)J(x))+g(x)]. (2.10)

De�nition 3. The point [x∗, u∗] ∈ Π×En is called a Kuhn�Tucker point for problem (2.1)
if

Lx(x∗, u∗) ∈ K∗(x∗|Π), g(x∗) = 0. (2.11)
If Lx(x∗, u∗) ∈ S(å∗|Π) and the second equation of (2.11) holds, then [å∗, u∗] is called a weak
Kuhn�Tucker point.

Lemma 3. Let the transformation ξ(y) satisfy Condition 1. Then the point x∗ ∈ Π at which
the CRC holds is stationary for system (2.10) if and only if the pair [x∗, u∗], where u∗ = u(x∗),
is a weak Kuhn�Tucker point for problem (2.1).
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Proof. At a stationary point

G(x∗)Lx(x∗, u∗) = 0,

that is, Lx(x∗, u∗) ∈ kerG(x∗). But the matrices J>(å∗) and G(x∗) = J(x∗)J>(x∗) both have
rank m, and their null spaces coincide. Thus Lx(x∗, u∗) ∈ kerJ>(x∗) and, therefore, the �rst
inclusion of (2.11) holds. The equation g(x∗) = 0 follows from (2.6). This proves the lemma.

The strict supplementary sti�ness condition (SSSC) holds at a Kuhn�Tucker point if

Lx(x∗, u∗) ∈ riK∗(x∗|Π), (2.12)

where riB is the relative interior of the set B.
Now suppose that all the functions f(x), gi(x), 1 ≤ i ≤ m, are twice continuously di�eren-

tiable. Also, let N(x) = {h ∈ En : gx(x)J(x)h = 0}. The su�cient second-order conditions of
[17] for problem (2.1) can be reformulated as follows.

Theorem 1. Let the function ξ(y) satisfy Condition 1. Furthermore, let the SSSC be
satis�ed at the Kuhn�Tucker point [x∗, u∗] and

〈h, J>(x∗)Lxx(x∗, u∗)J(x∗)h〉 > 0 (2.13)

for any h ∈ N(x∗) such that J(x∗)h 6= 0n. Then x∗ is the point of an isolated local minimum
in problem (2.1).

Proof. If x∗ is not the point of an isolated local minimum in problem (2.1), there is a
sequence of admissible points {xk} which converges to x∗ such that f(xk) ≤ f(x∗). We will
represent xk in the form xk = x∗ + λksk, where ||sk|| = 1, λk > 0, λk → 0. Without loss
of generality, we can assume that sk → s∗, ‖s∗‖ = 1. Since sk ∈ K(x∗|Π) for all k > 0,
s∗ ∈ clK(x∗|Π), where álB is the closure of the set B. We have

f(xk)− f(x∗) = λk〈fx(x∗ + λkθ
0
ksk), sk〉 ≤ 0, (2.14)

gi(xk) = λk〈gi
x(x∗ + λkθ

i
ksk), sk〉 = 0, 1 ≤ i ≤ m. (2.15)

Here 0 ≤ θi
k ≤ 1, 0 ≤ i ≤ m. Multiplying (2.15) by ui

∗ and adding them to (2.14), after
dividing by λk and taking the limit we have 〈Lx(x∗, u∗), s∗〉 ≤ 0. But, according to (2.12),
〈Lx(x∗, u∗), s∗〉 ≥ 0, and Lx(x∗, u∗) 6= 0n. Comparing these two inequalities, we conclude that
〈Lx(x∗, u∗), s∗〉 = 0, that is, the vector s∗ is orthogonal to the vector Lx(x∗, u∗) ∈ S(x∗|Π).

We will show that the vector s∗ belongs to the orthogonal subspace S⊥(x∗|Π). In fact, if
it did not, the vector s∗ could be represented in the form s∗ = a + b, where a ∈ S(x∗|Π),
b ∈ S⊥(x∗|Π), a 6= 0. We have 〈Lx(x∗, u∗), s∗〉 = 〈Lx(x∗, u∗), a〉 = 0. Thus, these two non-
zero vectors lie in the same subspace and are orthogonal to one another. But the linear hull
riK∗(x∗|Π) actually coincides with the linear hull of the cone K∗(x∗|Π), equal to S(x∗|Π).
Moreover, if p ∈ ri K∗(x∗|Π), then any vector of the subspace S(x∗|Π) which lies in some
neighborhood of the vector p will also belong to riK∗(x∗|Π). Thus, by virtue of (2.12), we can
�nd a vector q ∈ ri K∗(x∗|Π) for which 〈s∗, q〉 < 0, contrary to the inclusion s∗ ∈ cl K(x∗|Π).
Thus, s∗ ∈ S⊥(x∗|Π). It follows from Condition 1 that S⊥(x∗|Π) is the same as the space of
columns of the matrix J(x∗). Thus s∗ = J(x∗)h∗ for some non-zero vector h∗ ∈ En.

Now expanding the functions f(x) and gi(x) in a Taylor series up to the second term
inclusive, we have

f(xk)− f(x∗) = λk〈fx(x∗), sk〉+
λ2

k

2
〈sk, fxx(x∗ + λkθ

0
ksk)sk〉 ≤ 0, (2.16)

gi(xk) = λk〈gi
x(x∗), sk〉+

λ2
k

2
〈sk, g

i
xx(x∗ + λkθ

i
ksk)sk〉 = 0, (2.17)
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0 ≤ θi
k ≤ 1, 0 ≤ i ≤ m. Again multiplying (2.17) by ui

∗ and adding them to (2.16), we have

〈Lx(x∗, u∗), sk〉+
λk

2

[
〈sk, fxx(x∗ + λkθ

0
ksk)sk〉+

m∑

i=1

ui
∗〈sk, g

i
xx(x∗ + λkθ

i
ksk)sk〉

]
≤ 0. (2.18)

It follows from sk ∈ K(x∗|Π), Lx(x∗, u∗) ∈ K∗(x∗|Π) that 〈Lx(x∗, u∗), sk〉 ≥ 0. Thus, apart
from (2.18), we have

〈sk, fxx(x∗ + λkθ
0
ksk)sk〉+

m∑

i=1

ui
∗〈sk, g

i
xx(x∗ + λkθ

i
ksk)sk〉 ≤ 0.

Taking the limit in these inequalities we obtain 〈s∗, Lxx(x∗, u∗)s∗〉 ≤ 0, or

〈h∗, J>(x∗)Lxx(x∗, u∗)J(x∗)h∗〉 ≤ 0, (2.19)

with h∗ ∈ N(x∗) and ||J(x∗)h∗|| 6= 0. The inequality (2.19) contradicts (2.13). This proves the
theorem.

In the special case when the set Π coincides with the whole space En, taking ξ(y) as the
identity transformation x = y we �nd that the statement of the theorem reduces to the su�cient
conditions for an isolated local minimum for problem (1.1) given in [17].

3. THE CONVERGENCE OF BARRIER-PROJECTIVE METHODS

We will investigate the local behaviour of trajectories of system (2.10) in the neighborhood
of the point x∗. Suppose that the function ξ(y) is such that the matrix G(x) is continuously
di�erentiable. Suppose p ∈ En. Let Gx(x; p) denote a square matrix of order n whose element
(i, j) is equal to

Gij
x (x; p) =

n∑

k=1

∂Gik(x)

∂xj
pk.

We impose two additional conditions on the transformation ξ(y):
Condition 2. At each point å ∈ Π for any vector p ∈ ri K∗(x|Π) the matrix Gx(x; p) is

symmetric and its null space coincides with S⊥(x|Π).
Condition 3. If x ∈ Π, then h>Gx(x; p)h > 0 for any non-zero vector h ∈ S(x|Π) and for

any vector p ∈ riK∗(x|Π).
Under Conditions 1 and 2, the matrices G(x) and Gx(x; p) at each point å ∈ Π commute

with one another. For since J(x)a ∈ S⊥(x|Π) for any vector a ∈ En, we have Gx(x; p)J(x)a ≡
≡ 0n. But this means that the matrix Gx(x; p)J(x) is a zero matrix and so Gx(x; p)G(x) =
= Gx(x; p)J(x)J>(x) = 0nn. On the other hand, since Gx(x; p) is symmetric,

G(x)Gx(x; p) = J(x)J>(x)Gx(x; p) = J(x)[Gx(x; p)J(x)]> = 0nn.

Notice that, owing to the fact that K∗(x|Π) = {0}, at points x ∈ int Π the matrix Gx(x; p)
itself will always be zero.

Theorem 2. Let the function ξ(y) satisfy Conditions 1 − 3. Also let the CRC and the
su�cient conditions of second order of Theorem 1 hold at a point x∗ which is a solution of
problem (2.1). Then for any τ > 0 the point x∗ is an exponentially stable position of equilibrium
for system (2.10).

Proof. The equation in variations for system (2.10) has the form

δẋ = −Q(x∗, u∗)δx, (3.1)
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where
Q(x, u) = M̃(x)[G(x)Lxx(x, u) + Gx(x; Lx(x, u))] + τG(x)P̃ (x), (3.2)

M̃(x) = In −G(x)P̃ (x), P̃ (x) = g>x (x)[gx(x)G(x)g>x (x)]−1gx(x).

Suppose, to �x our ideas, that the point x∗ is such that the rank of the matrix G(x∗) is
equal to s, where s < n. Since G(x∗) is a symmetric matrix, we can �nd an orthogonal matrix
U such that G(x∗) = UHU> and the matrix H has the form

H =

[
HB 0s,n−s

0n−s,s 0n−s,n−s

]
.

Here HB is a diagonal matrix of order s, whose diagonal elements are the non-zero eigenva-
lues of the matrix G(x∗). Since G(x∗) is a non-negative de�nite matrix, they are all strictly
positive. Moreover, since the matrix Gx(x∗; Lx(x∗, u∗)) is symmetric and the matrices G(x∗)
and Gx(x∗; Lx(x∗, u∗)) commute, the matrix U can be chosen in such a way that the matrix
Y = U>GxU will also be diagonal. Thus Q(x∗, u∗) can be represented in the form

Q(x∗, u∗) = URU>, R = (In −HU>P̃U)(HU>LxxU + Y ) + τHU>P̃U

and, therefore, its eigenvalues are equal to the eigenvalues of the matrix R.
Let V and V ⊥ be the null space and orthogonal complement of the matrix H, respectively:

V = kerH = {y ∈ En : y1 = . . . = ys = 0},
V ⊥ = {y ∈ En : ys+1 = . . . = yn = 0}.

The relation which holds between the subspaces S(x∗|Π), S⊥(x∗|Π) and V , V ⊥ is: S(x∗|Π) =
= UV , S⊥(x∗|Π) = UV ⊥.

According to Condition 2, Gxz = 0 if z ∈ S⊥(x∗|Π). Thus GxUy = 0 for all y ∈ V ⊥. It
follows that the matrix Y has the form

Y = [0n,s, B], B> = [0n−s,s, C],

where C is a diagonal non-degenerate matrix of order n− s.
Let UB and UN denote submatrices of the matrix U consisting, respectively, of the �rst s

and last n− s of its rows. Also, let HB denote the left-hand upper square submatrix of order
s of the matrix H. Let

PB = (UB)>g>xB
[gxB

UBHB(UB)>g>xB
]−1gxB

UB, LB
xx = (UB)>LxxU

B.

Then the matrix R can be written in the following block-diagonal form:

R =

[
R1 R3

0n−s,s R2

]
.

Here
R1 = (Is −HBPB)HBLB

xx + τHBPB, R2 = (UN)>GxU
N .

The characteristic equation for the matrix R splits into two equations:

|R1 − λiIs| = 0, |R2 − λjIn−s| = 0, 1 ≤ i ≤ s, s + 1 ≤ j ≤ n.

We will �rst �nd the solution of the second equation. If λj is the eigenvalue corresponding
to the eigenvector zj ∈ En−s, we have

(UN)>GxU
Nzj = λjzj, s + 1 ≤ j ≤ n,
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or, multiplying on the right by z>j ,

z>j (UN)>GxU
Nzj = λj||zj||2, s + 1 ≤ j ≤ n.

Since the vectors hj = UNzj ∈ S(x∗|Π), according to Condition 3 the numbers

λj =
z>j (UN)>GxU

Nzj

||zj||2 =
h>j Gxhj

||zj||2 (3.3)

will be real and strictly positive. Put

λ̂1 = min
s+1≤j≤n

λj > 0.

Let Λ be the square root of the matrix H, and ΛB the upper left-hand square submatrix
of order s. Instead of �nding the roots of the �rst equation, we can �nd the eigenvalues of the
matrix W1 = (ΛB)−1R1Λ

B, similar to the matrix R1. After elementary algebra we have

|W1 − λiIs| = |M̂L̂B
xx + τ P̂ − λiIs| = 0, 1 ≤ i ≤ s,

where M̂ = Is − P̂ , P̂ = ΛBPBΛB, L̂B
xx = ΛBLB

xxΛ
B.

Thus, the matrices M̂ and P̂ are idempotent, and M̂ × M̂ = M̂ , P̂ × P̂ = P̂ , M̂ × P̂ = 0.
The matrix M̂ projects any s-dimensional vector on to the tangent manifold:

K̂(x∗) = {x̄ ∈ Es : gxB
(x∗)UBΛBx̄ = 0m}.

The matrix P̂ projects s-dimensional vectors on to the orthogonal complement K̂⊥(x∗) of this
space.

Let zi be an eigenvector and λi the corresponding eigenvalue of the matrix W1; then

(M̂L̂B
xx + τ P̂ )zi = λizi, zi ∈ Es. (3.4)

If the non-zero eigenvector zi is such that ||P̂ zi|| 6= 0, multiplying (3.4) on the left by the matrix
P̂ we obtain λi = τ . Now if ||P̂ zi|| = 0, that is, zi ∈ K̂(x∗), multiplying (3.4) on the left by z>i ,
we �nd

λi =
z>i ΛBLB

xxΛ
Bzi

||zi||2 . (3.5)

We will now take into account that UBΛBzi = UΛhi = Jhi for some vector hi ∈ En, whose �rst
s components are equal to the corresponding components of the vector zi. Then (3.5) can be
rewritten in the form

λi =
h>i J>LxxJhi

||zi||2 . (3.6)

It follows from zi ∈ K̂(x∗), zi 6= 0s, that hi ∈ N(x∗), Jhi 6= 0n. Thus we conclude on the basis
of inequality (2.13) that any eigenvector zi of the matrix W1 of the tangent manifold K̂(x∗)
corresponds to a positive eigenvalue λi and

λ̂2 = min
i∈∆(x∗)

λi > 0, ∆(x∗) = {i : zi ∈ K̂(x∗)}.

Thus, the eigenvalues of the matrix Q split into three groups:
(1) the n− s roots of (3.3),
(2) the k roots λ = τ , and
(3) the s− k roots of (3.6).
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If τ > 0, then all the eigenvalues of the matrix Q are strictly positive and, according to Lya-
punov's theorem about asymptotic stability with respect to a �rst approximation, the position
of equilibrium x = x∗ is locally exponentially stable.

The proof of Theorem 2 implies the following estimate for the rate of convergence of solutions
of system (2.10):

lim
t→∞

ln |xi(x0, t)− xi
∗|

t
≤ −λ∗, λ∗ = min[τ, λ̂1, λ̂2], 1 ≤ i ≤ n. (3.7)

Notice that if x0 ∈ X, then the trajectories of system (2.5), (2.6) coincide with those of
system (2.8), (2.9). Thus, on the basis of Theorem 2 it can be stated that the method (2.8),
(2.9) is locally exponentially convergent to the point x∗ on the admissible set X. The estimate
(3.7) still applies, but with λ∗ replaced by λ∗ = min[λ̂1, λ̂2]. Notice also that if the set Π is the
whole space En, taking x = y as ξ(y), we go from (2.5), (2.6) to the method (1.2), for which
the convergence conditions given in Theorem 2 now hold.

Consider the discrete version of method (2.10), which can be written in the form

xk+1 = xk − αkG(xk)Lx(xk, uk), (3.8)
uk = Γ−1(xk)[τg(xk)− gx(xk)G(xk)fx(xk)], (3.9)

where αk > 0 is the integration step of system (2.10) according to Euler's scheme.
Theorem 3. In problem (2.1) let the conditions of Theorem 2 hold. Then the method (3.8),

(3.9) converges locally to the point x∗ at the rate of a geometric progression if the step αk is
constant and equal to α, where

0 < α < 2/λ∗, (3.10)
and λ∗ is the maximum eigenvalue of the matrix Q given by (3.2).

Proof. We will represent (3.8), (3.9) as a simple iteration:

xk+1 = Φ(xk), Φ(x) = x− αG(x)Lx(x, u(x)). (3.11)

The point x = x∗ is a �xed point of the operator Φ(x). According to Ostrowski's theorem (see
[18]) a su�cient condition for linear local convergence of method (3.11) is that the spectral
radius ρ of the matrix Φx(x∗) shall be less than one. Consider the characteristic equation
|Φx(x∗)− χIn| = 0. It is easy to see that Φx(x∗) = In − αQ, where the matrix Q is de�ned by
formula (3.2). Let λ be any eigenvalue of the matrix Q; the corresponding value of χ is equal
to 1−αλ. In the proof of Theorem 2 it was established that all the eigenvalues of the matrix Q
are real positive numbers. Thus if the step a satis�es Condition (3.10), then |χ| < 1 and hence
ρ < 1.

Theorem 3 gives su�cient conditions for the local convergence of method (3.8), (3.9). The
rate of convergence is linear, that is, for any ε > 0 and su�ciently large k,

||xk − x∗|| ≤ C(ρ + ε)k,

where ρ = max[|1 − αλ∗|, |1 − αλ∗|], λ∗ is the smallest eigenvalue of the matrix Q, and ` is a
positive constant.

We shall consider the important special case of problem (2.1) where the set Π is the positive
orthant En

+ of the space En. Then a transformation of coordinates can be constructed in the
following separable form: åi = ξi(yi), 1 ≤ i ≤ n. The matrices J(x) and G(x) for such
transformations will be diagonal:

J(x) = D(γ(x)) = diag(γ1(x1), . . . , γn(xn)), γi(t) = ξi((ξi)−1(t)),
G(x) = D(θ(x)) = diag(θ1(x1), . . . , θn(xn)), θi(t) = [γi(t)]2.
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Let σ(x) = {i : xi = 0} be the set of active indices at the point x ∈ Π. The cone K∗(x|Π)
and the subspace S(x|Π) for Π = En

+ have the form

K∗(x|Π) = {z ∈ En
+ : zi = 0, i /∈ σ(x)},

S(x|Π) = {z ∈ En : zi = 0, i /∈ σ(x)}.
Thus in this case Condition 1 reduces to the form γi(0) = 0 and γi(t) > 0 if t > 0. For
Conditions 2 and 3 to hold, we only need the functions θi(t), 1 ≤ i ≤ n, to be di�erentiable
and

θ̇i(0) > 0. (3.12)
The simplest examples of transformations of this form are:

xi = (yi)2/4, xi = e−yi

, 1 ≤ i ≤ n.

For these we have, respectively, G(x) = D(x) and G(x) = D2(x). Condition (3.12) holds for
the �rst but is violated for the second.

We shall now consider the case of problem (2.1) where the set Π is a �parallelepiped�:

Π = {x ∈ En : a ≤ x ≤ b}, a ∈ En, b ∈ En.

Here too it is better to construct the transformation ξ(y) in separable form, leading to diagonal
matrices G(x) = D(θ(x)). For example, if we use the transformations

x =
1

2
[a + b + (b− a) sin y], x =

1

2

[
a + b +

2(b− a)

π
arctg y

]
, (3.13)

we obtain, respectively,

θ(x) = (b− x)(x− a), θ(x) =
(b− a)2

π2
cos4 π(2x− a− b)

2(b− a)
.

Condition 3 reduces to the conditions θ̇(ai) > 0, θ̇(bi) < 0. It is satis�ed only by the �rst
transformation of (3.13).

4. PROBLEMS WITH INEQUALITY-TYPE CONSTRAINTS

We will now consider problem (2.1) with the equality replaced by inequality-type constraints:

min
x∈X

f(x), X = {x ∈ En : g(x) ≤ 0m, x ∈ Π}. (4.1)

The introduction of additional non-negative variables enables the problem to be reduced to
the form (2.1) and enables method (2.5), (2.6) to be used to solve it, avoiding equations for the
additional arti�cial variables in the �nal numerical schemes. This method was investigated for
the case when Π = En

+ in [10, 12].
There is another approach to the construction of barrier-projective methods for solving

problem (4.1) similar to that considered in [19]. We form the modi�ed Lagrange function:

M(x, u, τ) = L(x, u)− 1

2τ
〈Lx(x, u), G(x)Lx(x, u)〉.

The dependence u(x), found from (2.6), is the solution of the unconditional parametric maxi-
mization

max
u∈Em

M(x, u, τ),
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and method (3.8), (3.9) can be interpreted as simple iteration for solving the system of equations

G(x)Lx(x, u(x)) = 0n. (4.2)

It can be extended to case (4.1) by the following iteration:

uk = arg max
u∈Em

+

M(xk, u, τ), xk+1 = xk − αG(xk)Lx(xk, uk), (4.3)

where α > 0 is the integration step of the system.
We will put σ0(å) = {1 ≤ i ≤ m : gi(x) = 0}, N1(x) = {h ∈ En : gi

x(x)J(x)h = 0,
i ∈ σ0(x)}. The CRC and SSSC for problem (4.1) can be reformulated as follows.

De�nition 4. The CRC for problem (4.1) holds at the point x ∈ Π if all the vectors gi
x(x),

i ∈ σ0(x), and any non-zero vector p ∈ S(x|Π) are linearly independent.
De�nition 5. The point [x∗, u∗] ∈ Π × Em

+ is a Kuhn�Tucker point for problem (4.1) and
the SSSC holds there if

Lx(x∗, u∗) ∈ riK∗(x∗|Π), g(x∗) = Lu(x∗, u∗) ∈ −riK∗(u∗|Em
+ ).

The following statements are the analogues of Theorems 1 and 2.
Theorem 4. Let the function ξ(y) satisfy Condition 1. Also, let the SSSC for problem

(4.1) hold at the Kuhn�Tucker point [x∗, u∗], and for any h ∈ N1(x∗) such that J(x∗)h 6= 0n let
(2.13) be satis�ed. Then x∗ is the point of an isolated local minimum in problem (4.1).

Theorem 5. Let the function ξ(y) satisfy Conditions 1 − 3. Also, let the CRC and the
su�cient conditions of Theorem 4 of second order be satis�ed at the point x∗, which is a solution
of problem (4.1). Then for any τ > 0 and any α satisfying inequality (3.10), the iterative process
(4.3) converges locally to x∗ at a linear rate.

The proof of Theorem 5 is based on the use of Ostrowsky's theorem and repeats the proof
of Theorem 2 almost word-for-word, while the matrix P̃ , which occurs in the de�nition of the
matrix (3.2), comprises only the gradients of the active constraints gi

x(x∗), i ∈ σ0(x∗).
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