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1. Introduction
In the past twenty �ve years quite general and e�ective space transformation technique

has been developed for solving LP and NLP problems. The idea of this approach commonly
occurs in the optimization literature, it came from nonlinear programming and projective
geometry. Using a space transformation, the original problem with equality and inequality
constraints is reduced to a problem with equality constraints only. Continuous and discrete
versions of the stable gradient projection method are applied to the reduced problem. After
an inverse transformation to the original space, a class of numerical methods for solving
optimization problems with equality and inequality constraints was obtained. The proposed
algorithms are based on the numerical integration of systems of ordinary di�erential equa-
tions. Vector �elds described by these equations de�ne �ows leading to the optimal solution.
As a result of the space transformation, the vector �elds are changed and additional terms
are introduced which serve as a barrier preventing the trajectories from leaving the feasible
set. Therefore, we call these methods �barrier-projection� methods. In our algorithms we use
the multiplicative barrier functions which are continuous and equal to zero on a boundary.
We do not introduce conventional singular barriers and this feature provides a high rate of
convergence. In this paper we give a survey of principal results which were published in the
last two decades [6]�[17].

In Section 2 we describe a uni�ed methodology for �nding necessary and su�cient op-
timality conditions in extremal problems with functional equality constraints and nonfunc-
tional inequality constraints. We show how numerous families of algorithms can be developed
using various space transformations.

In Section 3, choosing an exponential space transformation, we obtain the Dikin algorithm
[5] from the family of primal barrier-projection methods. This algorithm, however, does not
posses the local convergence properties and, as a result, it converges only if starting points
belong to relative interior of the feasible set. Furthermore, the convergence rate of a discrete
version of the algorithms proves to be weaker than a linear one.

In 1984 N. Karmarkar [24] proposed a special sophisticated step-length rule in the method
similar to discrete version of the Dikin a�ne scaling algorithm. Based on this rule the poly-
nomial complexity was theoretically attained. After this publication an impressive number
of papers have been published devoted to further modi�cations and improvements of the
Dikin and Karmarkar algorithms. Many authors were trying to modify and explain these
algorithms as classical methods. Various methods were obtained along this direction and the
�rst of our algorithms published in seventies [8, 6, 9] were reinvented. Later on in eighties-
nineties, we developed more e�cient versions of these methods which are discussed here.
These asymptotically stable methods are such that a feasible set is an attractor of the vector
�elds. They preserve feasibility, but a starting point can be infeasible. They belong to a
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class of interior-infeasible point algorithms. In Section 3 we show that among the barrier-
projection algorithms there is a method which converges locally and exponentially fast to
the optimal solution (in discrete case it converges locally with a linear rate).

In subsequent sections we apply our approach to primal and dual linear programming
problems. For the sake of simplicity, we assume that these problems have unique non-
degenerate solutions. In Section 4 we use a nonconventional representation of the dual linear
programming problem and we propose a set of algorithms. Upon simplifying the problem and
choosing a particular exponential space transformation we arrive at the dual a�ne scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga [1].

2. Outline of a space transformation technique
De�ne the following NLP problem:

minimize f(x) subject to x ∈ X = {x ∈ Rn : g(x) = 0m, x ∈ P}, (1)

where the functions f and g are twice continuously di�erentiable, f(x) maps Rn onto R1 and
g(x) maps Rn onto Rm, P is a convex set with nonempty interior, 0s is the s-dimensional
null-vector, 0sk is the s× k rectangular null-matrix.

Important particular cases of (1) are a linear programming problem given in standard
form

minimize c>x subject to x ∈ X = {x ∈ Rn : b− Ax = 0m, x ≥ 0n} (2)
and its dual problem

maximize b>u subject to u ∈ U = {u ∈ Rm : v = c− A>u ≥ 0n}, (3)

where v is the n-vector of slack variables; A ∈ Rmn (m < n); c, x ∈ Rn; b, u ∈ Rm and
rank(A) = m.

We de�ne the relative interior set of X and the interior set of U as:

X0 = {x ∈ Rn : Ax = b, x > 0n}, U0 = {u ∈ Rm : v = c− A>u > 0n},

and assume that these sets are nonempty. We also introduce the following sets:

Rn
+ = {x ∈ Rn : x ≥ 0n}, Rn

++ = intRn
+ = {x ∈ Rn : x > 0n},

V = {v ∈ Rn : there exists u ∈ Rm such that v = c− A>u},
VU = {v ∈ Rn : there exists u ∈ U such that v = c− A>u}.

The set VU is the image of U under the mapping v(u) = c−A>u. Therefore, VU = V ∩Rn
+.

For convenience, assume that the primal feasible set is bounded and both primal and
dual problems are non-degenerate, which together imply that optimal solutions x∗, u∗ exist
and are unique. We split the vectors x∗ and v∗ = v(u∗) in basic and nonbasic components.
Without loss of generality we assume that

x∗ =

[
xB
∗

xN
∗

]
, v∗ =

[
vB
∗

vN
∗

]
, xB

∗ > 0m, xN
∗ = 0d, vB

∗ = 0m, vN
∗ > 0d,

where d = n−m.
We denote the components of a vector by using superscripts and the iterate numbers by

using subscripts; In denotes the identity matrix of the order n; D(z) denotes the diagonal
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matrix whose entries are the components of the vector z. The dimensionality of D(z) is
determined by the dimensionality of z.

In order to construct a family of computational methods for solving the Problems (1) �
(3) we use an approach based on space transformation. We introduce a new n-dimensional
space with the coordinates [y1, . . . , yn] and make a di�erentiable transformation from this
space to the original one: x = ξ(y). This surjective transformation maps Rn onto P or intP ,
i.e. P = ξ(Rn), where B is the topological closure of B. Let J̃(y) = dx/dy be the Jacobian
matrix of the transformation x = ξ(y) with respect to y.

Consider the transformed minimization problem

minimize f̃(y) subject to y ∈ Y, (4)

where f̃(y) = f(ξ(y)), Y = {y ∈ Rn : g̃(y) = g(ξ(y)) = 0m}.
De�ne the Lagrangian functions L(x, u), L̃(y, u) associated with the Problems (1) and

(4), respectively

L(x, u) = f(x) + u>g(x), L̃(y, u) = f̃(y) + u>g̃(y).

Then the �rst-order necessary conditions for a local minimum for the Problem (4) in the
transformed space are

L̃y(y, u) = f̃y(y) + g̃>y (y)u = 0n, g̃(y) = 0m, (5)

where f̃y = J̃>fx, g̃y = gxJ̃ .
If J̃ is a nonsingular, then there exists an inverse transformation y = δ(x), so it is possible

to return from the y-space to the x-space and we obtain in this way a matrix J(x) = J̃(δ(x))
which is now a function of x. Using this substitution, we rewrite expressions (5) in terms of
the variable x. They take the form

J>(x)Lx(x, u) = 0n, g(x) = 0m, x ∈ P. (6)

Some properties of the nonlinear systems, which are obtained after space transformations,
were investigated in [15].

Let K(x | P ) and K∗(x | P ), respectively, denote the cone of feasible directions at the
point x relative to the set P and its dual:

K(x | P ) = {z ∈ Rn : ∃λ(z) > 0 such that x + λz ∈ P, 0 < λ ≤ λ(z)},
K∗(x | P ) = {z ∈ Rn : z>y ≥ 0 ∀y ∈ K(x | P )}.

Let S(x | P ) be a linear hull of the cone K∗(x | P ). The set of all vectors orthogonal to
S(x | P ) is called orthogonal complement of S(x | P ) and is denoted by S⊥(x | P ).

We will impose the following condition on the space transformation ξ(y).

Condition 1. At each point x ∈ P the matrix J(x) is de�ned and the null-space of
J>(x) coincides with the set S(x | P ).

In particular, it follows from this condition that at all interior points x ∈ int P the matrix
J(x) is non-degenerate, becoming singular only on the boundary of the set P .

De�nition 1. Any pair [x, u] is a weak KKT pair for the Problem (1) if it satis�es the
conditions (6).
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It follows from this de�nition and condition 1 that Lx(x∗, u∗) ∈ S(x∗ | P ) at any weak
KKT pair. De�ne the Gram matrix G(x) = J(x)J>(x). Since the null-spaces of G(x) and
J>(x) coincide, conditions (6) for the pair [x∗, u∗] can be rewritten in the form

G(x)Lx(x, u) = 0n, g(x) = 0m, x ∈ P. (7)

De�nition 2. A weak KKT pair [x, u] is a KKT pair for the Problem (1) if Lx(x, u) ∈
∈ K∗(x | P ).

Let riB denote a relative interior of the set B.

De�nition 3. A KKT pair [x, u] is a strong KKT pair if Lx(x∗, u∗) ∈ ri K∗(x∗ | P ).

De�nition 4. The constraint quali�cation (CQ) for the Problem (1) holds at a point
x ∈ P if all vectors gi

x(x), 1 ≤ i ≤ m, and any nonzero vector p ∈ S(x | P ) are linearly
independent. We say that x is a regular point for the Problem (1) if the CQ holds at x.

Theorem 1. Let a regular point x∗ be a solution of the Problem (1). Then there exists
a vector u∗ ∈ Rm such that [x∗, u∗] forms a weak KKT pair for the Problem (1).

The space transformation described above can be used to derive the second-order su�-
cient conditions for a point x∗ to be an isolated minimum in the Problem (1). Introduce a
null-space N(x) = {z ∈ Rn : gx(x)J(x)z = 0m}.

Theorem 2. Assume that f and g are twice-di�erentiable functions and the space
transformation ξ(y) satis�es condition 1. Su�cient conditions for a point x∗ ∈ P to be an
isolated local minimum of the Problem (1) are that there exists a strong KKT pair [x∗, u∗]
such that

z>J>(x∗)Lxx(x∗, u∗)J(x∗)z > 0 (8)
for every z ∈ N(x∗) such that ‖J(x∗)z‖ 6= 0.

If P = Rn (in other words, the condition x ∈ P is missing), we can take the trivial space
transformation x = y. In this case we have

J(x) = In, N(x) = {z ∈ Rn : gx(x)z = 0m},
K(x | Rn) = Rn, S(x | Rn) = K∗(x | Rn) = ri K∗(x | Rn) = 0n.

The Theorem 2 reduces to the well-known second-order su�cient conditions for an isolated
local minimum (see, for example, [19]).

Suppose that the function ξ(y) is such that the matrix G(x) is continuously di�erentiable.
Let p ∈ Rn and Gx(x; p) denote a square matrix of order n whose (i, j)-element equals to

Gij
x (x; p) =

n∑

k=1

∂Gik(x)

∂xj
pk.

We impose two additional conditions on the space transformation ξ(y):

Condition 2. At each point x ∈ P for any vector p ∈ ri K∗(x | P ) the matrix Gx(x; p)
is symmetric and its null-space coincides with S⊥(x | P ).

Condition 3. If x ∈ P , then z>Gx(x; p)z > 0 for any non-zero vector z ∈ S(x | P ) and
any vector p ∈ ri K∗(x | P ).
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Let us consider an important particular case of the Problem (1), where P = Rn
+:

minimize f(x) subjectto x ∈ X = {x ∈ Rn : g(x) = 0m, x ≥ 0n}. (9)

It is convenient for this set to use a component-wise space transformation:

xi = ξi(yi), 1 ≤ i ≤ n. (10)

For such a transformation the inverse transformation y = δ(x) is also component-wise type
yi = δi(xi), 1 ≤ i ≤ n, and the corresponding matrices J(x) and G(x) are diagonal: J(x) =
= D(γ(x)), G(x) = D(θ(x)), where

γ>(x) = [γ1(x1), . . . , γn(xn)], γi(xi) = ξ̇(δi(xi)),

θ>(x) = [θ1(x1), . . . , θn(xn)], θi(xi) = [γi(xi)]2,
1 ≤ i ≤ n.

Let σ(x) = {i : xi = 0} be a set of active indices at the point x ∈ Rn
+. In this case

K∗(x | Rn
+) = {z ∈ Rn

+ : if i /∈ σ(x), then zi = 0, 1 ≤ i ≤ n},
S(x | Rn

+) = {z ∈ Rn : if i /∈ σ(x), then zi = 0, 1 ≤ i ≤ n},
Condition 1 reduces to the following

Condition 4. The vector function γ(x) is de�ned at each point x ∈ Rn
+ and γi(xi) = 0

if and only if i ∈ σ(x).

In order to insure Conditions 2 and 3 we impose the

Condition 5. The vector function θ(x) is di�erentiable in some neighborhood of Rn
+ and

θ̇i(0) > 0, 1 ≤ i ≤ n.

As a rule, we perform the following quadratic and exponential transformations

xi = ξi(yi) =
1

4
(yi)2, J(x) = D1/2(x), G(x) = D(x), (11)

xi = ξi(yi) = eyi

, J(x) = D(x), G(x) = D2(x). (12)
In these two cases the Jacobian matrix is singular on the boundary of the set P = Rn

+.
These transformations satisfy Condition 4. The Condition 5 holds only for the quadratic
transformation (11).

Let ei denote the n-th order unit vector whose i-th component is equal to one. The CQ
for the Problem (9) holds at a point x, if all the vectors gi(x), 1 ≤ i ≤ m, and all ej, such
that j ∈ σ(x), are linearly independent. The cone N(x) takes the form N(x) = {z ∈ Rn :
gx(x)D(γ(x))z = 0m}.

The strict complementary condition (SCC) holds at a pair [x, u], if Li
x(x, u) > 0 for all

i ∈ σ(x). From the Theorem 2 the following second-order su�cient optimality conditions is
obtained.

Theorem 3. Su�cient conditions for a point x∗ ∈ X to be an isolated local minimum
of the Problem (9) are that there exists a Lagrange multiplier vector u∗ such that

D(γ(x∗))Lx(x∗, u∗) = 0n,

that the SCC holds at [x∗, u∗] and that

z>D(γ(x∗))Lxx(x∗, u∗)D(γ(x∗))z > 0
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for all z ∈ N(x∗), satisfying ‖D(γ(x∗))z‖ 6= 0.

Now we will construct numerical methods for solving the Problem (1). We use the stable
version of the gradient projection method for solving the Problem (4). The numerical method
is stated as an initial-value problem involving the following system of ordinary di�erential
equations:

dy

dt
= −L̃y(y, ũ(y)), L̃y(y, ũ) = f̃y(y) + g̃>y (y)ũ, y(0, y0) = y0 ∈ Rn. (13)

The function ũ(y) is chosen to satisfy the following condition:

dg̃

dt
= g̃y

dy

dt
= −τ g̃(y), τ > 0. (14)

From this condition we obtain the system of linear algebraic equations

g̃y(y)g̃>y (y)ũ(y) + g̃y(y)f̃y(y) = τ g̃(y),

where f̃y = J̃>fx, g̃y = gxJ̃ . By di�erentiating ξ(y) with respect to y and taking into account
(13) and (14), we have

dx

dt
=

dξ

dy

dy

dt
= J(x)

dy

dt
= −G(x)Lx(x, u(x)), x(0, x0) = x0 ∈ P, (15)

Γ(x)u(x) + gx(x)G(x)fx(x) = τg(x), (16)
where Γ(x) = gx(x)G(x)g>x (x).

Lemma 1. Let the space transformation ξ(y) satisfy Condition 1, and let the CQ for
the Problem (1) hold at a point x ∈ P . Then Γ(x) is invertible and positive de�nite matrix.

Proof. We will show that the rank of the matrix B(x) = J>(x)g>x (x) is equal to m. If
x ∈ int P , it is obvious, since the matrix J(x) is non-singular, and by the CQ the rank of
the matrix g>x (x) is equal to m.

Now let x ∈ fr P . If the rank of the matrix B(x) is less then m, there is a non-zero vector
z ∈ Rn such that B(x)z = J>(x)g>x (x)z = 0. According to the Condition 1 the non-zero
vector p = g>x (x)z belongs to the space S(x | P ). Thus the vectors gi

x(x), 1 ≤ i ≤ m, and
the vector p are linearly dependent which contradicts to the CQ. Therefore, B(x) is the full
rank matrix.

Lemma 2. Let the space transformation ξ(y) satisfy Condition 1. Then the regular point
x∗ is an equilibrium state of system (15) if and only if the pair [x∗, u∗], where u∗ = u(x∗), is
a weak KKT pair for the Problem (1).

Proof. Suppose that x∗ is an equilibrium state of the system (15). Then

G(x∗)Lx(x∗, u∗) = 0,

and, therefore, Lx(x∗, u∗) ∈ ker G(x∗). But the rank of both matrices J>(x∗) and G(x∗) =
= J(x∗)J>(x∗) is equal to m. Thus, Lx(x∗, u∗) ∈ ker J>(x∗) and, by the Condition 1,
Lx(x∗, u∗) ∈ K∗(x∗ | P ). The equality g(x∗) = 0 follows from (16).

Hence, corresponding to any regular point x∗ we can de�ne a corresponding Lagrange
multiplier u(x∗) by solving linear algebraic equations (16). If a local solution of the original

6



problem (1) occurs at a regular point x∗ ∈ P , then [x∗, u(x∗)] forms a weak KKT pair for
the Problem (1) and x∗ is an equilibrium state of (15).

Let W be a m×n rectangular matrix whose rank is m. We introduce the pseudo-inverse
matrix W+ = W>(WW>)−1 and the orthogonal projector π(W ) = In − W+W . If at a
regular point x we de�ne u(x) and substitute it into the right-hand side of (15), then (15)
can be rewritten in the following projective form:

dx

dt
= −J(x)

{
π[gx(x)J(x)]J>(x)fx(x) + τ [gx(x)J(x)]+g(x)

}
. (17)

Let x(t, x0) denote the solution of the Cauchy Problem (15) with an initial condition
x0 = x(0, x0). In what follows, we assume that the initial-value problem under consideration
is always uniquely solvable. A trajectory x(t, x0) can be continued as long as points on it
are regular. By di�erentiating f(x(t, x0)) with respect to t we arrive at

df

dt
= −

∥∥∥J>(x)Lx(x, u(x))
∥∥∥
2
+ τu>(x)g(x). (18)

Hence the objective function f(x(t, x0)) monotonically decreases either on the feasible set X
or when the trajectory is close to X, i.e. ‖g(x(t, x0))‖ is su�ciently small.

The system of ordinary di�erential equations (15), where u(x) is given by (16), has the
�rst integral

g(x(t, x0)) = g(x0)e
−τt.

This means that if τ > 0, (15) has a remarkable property: all its trajectories approach the
manifold g(x) = 0m, as t tends to in�nity, and this manifold is an asymptotically stable
attractor (see [7, 10, 27]). Therefore, we can call the method (17) �the stable version of the
barrier-projection method�. If x0 ∈ X, then the trajectory x(t, x0) of (15) remains on this
manifold because g(x(t, x0)) ≡ 0m for all t ≥ 0 and the trajectories of (15) coincide with the
trajectories of the following system:

dx

dt
= −J(x)π[gx(x)J(x)]J>(x)fx(x), (19)

which can be obtained from (17) if we put τ = 0. But in contrast to (17) this system
is neutrally stable with respect to equality constraints. It means that if g(x0) = c, then
g(x(t, x0)) ≡ c for all t ≥ 0 and we have to introduce a correction procedure to remove the
violation of constraints. If the condition x ∈ P is missing, then we can put ξ(y) = y, hence
J(x) = In and (19) coincides with well-known gradient projection method [25], which is also
neutrally stable.

Note that, according to the Condition 1, the subspace S⊥(x | P ) coincides with the space
of the columns of the matrix J(x), and, since the vector G(x)Lx(x, u(x)) belongs to this
space, the velocity vector ẋ always lies in S⊥(x | P ). Thus, if x is a boundary point of P ,
then the vector ẋ belongs to the eigen subspace of the space Rn, which coincides with the
space M(x) − x, where M(x) is the intersection of the support planes of the set P at the
point x. If the cone K∗(x | P ) has a non-empty interior, then this subspace degenerates to
a single point (the origin of coordinates).

Let us show that trajectories x(t, x0) of (15) cannot cross the boundary of P . To the
contrary, suppose this is not true and a trajectory x(t, x0) starting inside P leaves P at
t1 > 0. Then there exists a vector p ∈ K∗(x(t1, x0) | P ) such that p>ẋ(t1, x0) < 0. But the
vector ẋ(t, x0) belongs to the orthogonal complement of the subspace S(x | P ) and the vector
p belongs to S(x | P ). Hence p>ẋ(t1, x0) = 0 and, consequently, x(t, x0) ∈ P for all t ≥ 0.
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Thus the matrix G(x) plays the role of a �barrier� preventing x(t, x0) from intersecting the
boundary of P . The trajectory x(t, x0) can approach the boundary points only in the limit
as t → +∞. If the initial point x0 lies on the boundary, then the entire trajectory of system
(15) belongs to the boundary of P .

By applying the Euler method for solving system (17), we obtain

xk+1 = xk − αkJ(xk)
{
π[gx(xk)J(xk)]J

>(xk)fx(xk) + τ [gx(xk)J(xk)]
+g(xk)

}
, (20)

where a step-size αk > 0.
Each equilibrium point x∗ of the system (17) is a �xed point of iterations (20), i.e. xk = x∗

implies xk+1 = x∗, and if iterates (20) converge to a regular point x∗, then the pair [x∗, u(x∗)]
satis�es conditions (7).

Theorem 4. Let [x∗, u∗] be a weak KKT pair of the Problem (1), where the CQ and the
second-order su�ciency conditions of the Theorem 2 hold. Let the space transformation ξ(y)
satisfy the Conditions 1 � 3 and τ > 0. Then x∗ is an asymptotically stable equilibrium state
of the system (17); there exists a positive number α∗ such that for any �xed 0 < αk < α∗
the sequence {xk}, generated by (20), converges locally with a linear rate to x∗ while the
corresponding sequence {uk}, where uk = u(xk), converges to u∗.

Proof. The proof is based on the Lyapunov linearization principle. The conditions
for asymptotic stability to be valid are expressed in terms of eigenvalues determined by a
matrix arisen from the right-hand side of (17) linearized about the equilibrium point x∗.
The asymptotic stability of the point x∗ implies the local, exponentially fast convergence of
a trajectory x(t, x0) to the optimal solution x∗.

Denote δx(t) = x(t, x0)− x∗ and linearize system (17) in the neighborhood of the point
x∗. Then we obtain the equation of the �rst approximation of (17) about the equilibrium
point x∗:

δẋ = −Q(x∗, u∗)δx, (21)
where

Q(x, u) = M̃(x) [G(x)Lxx(x, u) + Gx(x; Lx(x, u))] + τG(x)P̃ (x),

M̃(x) = In −G(x)P̃ (x), P̃ = Gg>x (gxGg>x )−1gx.

The stability of system (21) is determined by the properties of the roots of the charac-
teristic equation

det (Q(x∗, u∗)− λIn) = 0. (22)
Suppose that the point x∗ is such that the rank of the matrix G(x∗) is equal to s, where

s < n. Since G(x∗) is the Gram matrix, there exists an orthogonal matrix U such that
G(x∗) = UHU> and the matrix H has the form

H =

[
HB 0s,n−s

0n−s,s 0n−s,n−s

]
.

Here HB is a diagonal matrix of order s, whose diagonal elements are the positive eigenvalues
of G(x∗). Moreover, since the matrix Gx(x∗; L(x∗, u∗)) is symmetric and the matrices G(x∗)
and Gx(x∗; L(x∗, u∗)) commutate, the matrix U can be chosen in such a way that the matrix
Y = U>GxU will also be diagonal. Thus Q(x∗, u∗) can be represented in the form

Q(x∗, u∗) = UWU>, W = (In −HU>P̃U)(HU>LxxU + Y ) + τHU>Ũ

and, therefore, its eigenvalues are equal to the eigenvalues of the matrix W .
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Let the V and V ⊥ be the null-space of the matrix H and its orthogonal complement,
respectively:

V = ker H = {y ∈ Rn : y1 = . . . = ys = 0},
V ⊥ = {y ∈ Rs+1 : ys+1 = . . . = yn = 0}.

The following relations between the subspaces S(x∗ | P ), S⊥(x∗ | P ) and V , V ⊥ take place:

S(x∗ | P ) = UV, S⊥(x∗ | P ) = UV ⊥.

If z ∈ S⊥(x∗ | P ), then, according to Condition 2, Gxz = 0. Thus, GxUy = 0 for all
y ∈ V ⊥. It follows from here that the matrix Y has the form

Y = [0n,s, B], B> = [0n−s,s, C],

where C is a diagonal non-degenerate matrix of order n− s.
Denote by UB and UN submatrices of the matrix U consisting of the �rst s and last

n− s columns of U , respectively. Denote also by HB the left-hand upper square submatrix
of order s of the matrix H. Let

P̃B = (UB)>g>xB
[gxB

UBHB(UB)>g>xB
]−1gxB

UB, LB
xx = (UB)>LxxU

B.

Then the matrix W can be decomposed into the following blocks:

W =

[
W1 W3

0n−s,s W2

]
,

where the matrix W3 is not essential and

W1 = (Is −HBP̃B)HBLB
xx + τHBP̃B, W 2 = (UN)>GxU

N .

The characteristic equation for the matrix W splits into two equations:

|W1 − λiIs| = 0, |W2 − λjIn−s| = 0, 1 ≤ i ≤ s, s + 1 ≤ j ≤ n. (23)

At �rst we will �nd the solution of the second equation. Let zj ∈ Rn−s be the eigenvector,
corresponding to the eigenvalue λj. Then the following equalities take place:

(UN)>GxU
Nzj = λjzj, s + 1 ≤ j ≤ n. (24)

Multiplying both sides of (24) by z>j , we have

z>j (UN)>GxU
Nzj = λ‖zj‖2, s + 1 ≤ j ≤ n.

The vectors hj = UNzj belong to the subspace S(x∗ | P ). Therefore, according to Condi-
tion 3, the eigenvalues

λj = z>j (UN)>GxU
N zj

‖zj‖2
=

h>j Gxhj

‖zj‖2
(25)

are real and strictly positive. Denote

λ̂1 = min
s+1≤j≤n

λj > 0.
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Let A be the square root of the matrix H, and let ΛB be the upper left-hand square
submatrix of Λ of the order s. Instead of �nding the roots of the �rst equation (23) we will
�nd the eigenvalues of the matrix Ω1 = (ΛB)−1W1Λ

B which is similar to the matrix W1. We
have the following characteristic equation:

|Ω1 − λiIs| = |M̂L̂B
xx + τ P̂ − λiIs| = 0, 1 ≤ i ≤ s,

where
M̂ = Is − P̂ , P̂ = ΛBP̃BΛB, L̂B

xx = ΛBLB
xxΛ

B.

The matrices M̂ and P̂ are projection matrices for the tangent subspace

K̂(x∗) = {x̄ ∈ Rs : gxB
(x∗)UBΛBx̄ = 0m}

and its orthogonal complement K̂⊥(x∗), respectively. Furthermore we have

P̂ M̂ = 0ss, P̂ P̂ = P̂ , M̂M̂ = M̂. (26)

Let λi and zi be an eigenvalue and a corresponding nonzero eigenvector of the matrix Ω1.
Then

(M̂L̂B
xx + τ P̂ )zi = λizi, zi ∈ Rs. (27)

If P̂ zi 6= 0s, then premultiplying (27) by the matrix P̂ and taking into account (26), we
obtain λi = τ . If P̂ zi = 0s, then zi ∈ K̂(x∗) and multiplying (27) by z>i we have

λi = z>i ΛBLB
xx(x∗, u∗)Λ

B zi

‖zi‖2
. (28)

Now we will take into account that UBΛBzi = UΛhi = J(x∗)hi for some vector hi ∈ Rs,
whose �rst s components ate equal to the corresponding components of the vector zi. Then
(28) can be rewritten in the form

λi =
h>i J>(x∗)LxxJ(x∗)hi

‖zi‖2
. (29)

It follows from zi ∈ K̂(x∗), zi 6= 0s, that hi ∈ N(x∗) and J(x∗)hi 6= 0n. Taking into
account (8) we conclude that any eigenvalue λi corresponding to the eigenvector zi from the
tangent manifold K̂(x∗) is strictly positive and

λ̂2 = min
i∈∆(x∗)

λi > 0, ∆(x∗) = {i : zi ∈ K̂(x∗)}.

These results imply that all roots of the characteristic equation for the matrix Q are
real and the smallest root λ∗ = min[λ̂1, λ̂2, τ ] is positive. Hence, according to Lyapunov's
linearization principle [2], the equilibrium point x∗ is asymptotically stable and the following
estimation holds:

lim
t→∞ sup

‖x(t, x0)− x∗‖
t

≤ −λ∗.

Denote α∗ =
2

λ∗
, where λ∗ = max

1≤i≤n
λi. If the step-size αk < α∗, then by Theorem

2.3.7 in [7] the linear convergence of the discrete version (20) follows from the proof given
above.

The Theorem 4, being applied to the Problem (9), gives the the following statement.
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Theorem 5. Let [x∗, u∗] be a weak KKT pair of the Problem (9), where the CQ and
the second-order su�ciency conditions of the Theorem 3 hold. Let the component-wise space
transformation (10) satisfy the Conditions 4, 5 and τ > 0. Then x∗ is an asymptotically
stable equilibrium state of system (17); there exists a positive number α∗ such that for any
�xed 0 < αk < α∗ the sequence {xk}, generated by (20), converges locally with a linear rate
to x∗ while the corresponding sequence {uk} converges to u∗.

This theorem was proved in [10, 12].
The preceding results and algorithms admit straightforward extensions for problems in-

volving general functional inequality constraints by using space dilation. Consider a problem

minimize f(x) subject to x ∈ X = {x ∈ Rn : g(x) = 0m, h(x) ≤ 0c}, (30)

where h(x) maps Rn into Rc.
Space transformation approach can be used in this case by extension of the space and

by converting the inequality constraints to equalities. We introduce an additional variable
p ∈ Rc, de�ne q = m + c, combine primal, dual variables and all constraints:

z =

[
x
p

]
∈ Rn+c, w =

[
u
v

]
∈ Rq, Φ(z) =

[
g(x)

h(x) + p

]
.

Then the original Problem (30) is transformed into the equivalent problem

minimize f(x) subject to z ∈ Z = {z ∈ Rn+c : Φ(z) = 0q, p ∈ Rc
+}. (31)

Here P is a positive orthant in Rc. This problem is similar to (9). In order to take
into account the constraint p ≥ 0c we introduce a surjective component-wise di�erentiable
mapping ξ : Rc → Rc

+ and make the space transformation p = ξ(y), where y ∈ Rc, ξ(Rc) =
= Rc

+. Let ξy(y) be the square c × c Jacobian matrix of the mapping ξ(y) with respect
to y. We assume that it is possible to de�ne the inverse transformation y = ψ(p) and hence
we obtain the c× c Jacobian and Gram diagonal matrices:

J(p) = ξy(y)|y=ψ(p) = D(γ(p)), G(p) = J(p)J>(p) = D(θ(p)).

Combining variables and constraints for the reduced problem, let us de�ne

ẑ =

[
x
y

]
∈ Rn+c, Ψ̂(ẑ) =

[
g(x)

h(x) + ξ(y)

]
, Φ̂ẑ =

[
gx 0mc

hx ξy

]
.

The Problem (31) can be formulated as follows:

minimize f(x) subject to ẑ ∈ Ẑ = {ẑ ∈ Rn+c : Φ̂(ẑ) = 0q}. (32)

In the last Problem we have only equality constraints, therefore we can use the numerical
method described above. After an inverse transformation to the space of x and p we obtain
from (15), (16)

dz

dt
= −G̃(p)Lz(z, w(z)). (33)

Here
L(z, w) = f(x) + w>Φ(z), Lz(z, w) = fz(z) + Φ>

z (z)w,

Φz(z)G̃(p)Lz(z, w(z)) = τΦ(z),
(34)

11



G̃(p) =

[
In 0nc

0cn G(p)

]
, −Φz =

[
0mc−Φx Ic

]
, −Φx =

[
gx

hx

]
, −fz =

[
fx

0c

]
.

System (33) can be rewritten in the more detailed form

dx

dt
= −Lx(x,w(z)),

dp

dt
= −G(p)v(z), (35)

where the function w>(z) = [u>(z), v>(z)] is found from the following linear system of q
equations:

Γ(z)w(z) + Φx(x)fx(x) = τΦ(z), Γ(z) = Φx(x)Φ>
x (x) +

[
0mm 0mc

0cm G(p)

]
.

Condition (34) can be written as

dg(x)

dt
= −τg(x),

d(h(x) + p)

dt
= −τ(h(x) + p).

Therefore, system (35) has two �rst integrals:

g(x(t, z0)) = g(x0)e
−τt, h(x(t, z0)) + p(t, z0) = (h(x0) + p0)e

−τt, z>0 = [x>0 , p>0 ]. (36)

Similarly to (18) we obtain

df

dt
= −‖Lx‖2 − ‖J>(p)v‖2 + τ [u>g + v>(h + p)].

Consider the simpli�ed version of method (35). Suppose that along the trajectories of
system (35) the following condition holds:

h(x(t, z0)) + p(t, z0) ≡ 0c.

From this equality we can de�ne p as a function of h. We exclude from system (35) the
additional vector p and integrate the system which does not employ this vector:

dx

dt
= −Lx(x, w(x)), (37)

where

Γ(x)w(x) + Φx(x)fx(x) = τ

[
g(x)
0c

]
, Γ(x) = Φx(x)Φ>

x (x) +

[
0mm 0mc

0cm G(−h(x))

]
. (38)

Along the trajectories of (37) we have

dg

dt
= −τg(x),

dh

dt
= −G(−h(x))v(x),

df

dt
= −‖Lx(x,w(x))‖2 − ‖J>(−h(x))v(x)‖2 + τu>(x)g(x).

(39)

Let us show that the solution x(t, x0) does not leave the set X for any t > 0, if x0 ∈ X.
Suppose to the contrary that this is not true and hi(x(t, x0)) > 0 for some t > 0. Then
there is an earlier instant 0 < t1 < t such that hi(x(t1, x0)) = 0 and ḣi(x(t1, x0)) > 0. This
contradicts (39) since θi(0) = 0. Hence x(t, x0) ∈ X for all t ≥ 0. Thus the matrix G(−h(x))
plays the role of a �barrier� preventing x(t, x0) from intersecting the hypersurface hi(x) = 0.
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The method (37) is closely related to (15). Let us consider the Problem (9). We have the
two alternatives ensuing from (15) or (37). The main body of computational work required
when using any numerical integration method is to evaluate the right-hand sides of equations
for various values of x. This could be done by solving the linear system (16) of m equations
or the system (38) of m + n equations, respectively. One might expect that introducing a
slack variable p increases the computational work considerably. However, with allowance
made for the the simple structure of (38), we can reduce the computational time by using
the Frobenius formula for an inverse matrix Upon some transformations we �nd that (37),
(38) can be written in the form of (15), (16), respectively, if we put

G(x) = D(µ(x)), µi(xi) =
θi(xi)

1 + θi(xi)
, 1 ≤ i ≤ n.

Therefore, the performances of both methods which seem at a glance to be unrelated are in
fact very similar.

3. Primal barrier-projection methods for solving LP problem
Applying the stable barrier-projection method (15) for solving the Problem (2), we obtain

the following continuous and discrete versions:

dx

dt
= −G(x)[c− A>u(x)], x(0, x0) = x0, (40)

xk+1 = xk − αkG(xk)[c− A>uk], uk = u(xk), (41)
where the function u(x) is found from the linear equation (16) which can be rewritten as

AG(x)A>u(x)− AG(x)c = τ(b− Ax). (42)

By di�erentiating the objective function with respect to t we obtain

c>
dx

dt
= −‖J(x)(c− A>u(x))‖2 + τu>(x)(b− Ax).

The system of ordinary di�erential equations (40) has the �rst integral

Ax(t, x0) = b + (Ax0 − b)e−τt. (43)

Under the non-degeneracy assumption all feasible points are regular, and each weak KKT
pair [x, u(x)] is such that x is an equilibrium state of system (40). The pair [x, u(x)] is a
strong KKT pair if and only if x = x∗.

Denote α∗ = 2/µ∗,

µ∗ = max
[
τ, max

m+1≤i≤n
θ̇i(xi

∗)v
i
∗

]
, µ∗ = min

[
τ, min

m+1≤i≤n
θ̇i(xi

∗)v
i
∗

]
.

Here µ∗ and µ∗ are, respectively, the largest and smallest eigenvalues of the �rst approxima-
tion matrix of the right-hand side of (40) at the optimal solution x∗.

Theorem 6. Let x∗, u∗ be unique non-degenerate solutions of the Problems (2) and
(3), respectively. Assume that the component-wise space transformation ξ(y) satisfy the
Conditions 4, 5 and τ > 0. Then the following statements are true:
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1) The point x∗ is an asymptotically stable equilibrium state of system (40).

2) The solutions x(t, x0) of system (40) converge locally exponentially fast to the optimal
point x∗.

3) For any �xed 0 < αk < α∗ the sequence {xk}, generated by (41), converges locally with
a linear rate to x∗ while the corresponding sequence {uk} converges to u∗.

4) All extreme feasible points of X are unstable equilibrium points of (40) and (41), except
the optimal solution x∗.

The exponential rate of convergence of the solution x(t, x0) of (40) to the equilibrium
point x∗ implies that there exist a neighborhood ∆(x∗) of x∗ and a constant C > 0 such that

‖x(t, x0)− x∗‖ ≤ C‖x0 − x∗‖e−µ∗t

for all x0 ∈ ∆(x∗), t > 0.
In (40) we can take a starting vector x0 such that ‖Ax0−b‖ 6= 0. Moreover, if the Condi-

tion 5 holds then the components of x0 corresponding to nonbasic components of the vector
x∗ may be negative. In this case the entire trajectory x(t, x0) is infeasible. Nevertheless,
owing to the local convergence property, the trajectory x(t, x0) converges to x∗, if ‖x0− x∗‖
is su�ciently small. It follows from (43) that, if initially Ax0 = b, then Ax(t, x0) ≡ b for all
t ≥ 0. Still further if x0 ≥ 0n, then the trajectory x(t, x0) of (40) remains in the feasible set X
and the objective function monotonically decreases along x(t, x0). (40) preserves feasibility,
hence it is an interior point method. If Condition 5 holds, then this method allows to start
the computation from an infeasible point. Therefore, we can call it an interior-infeasible
method.

If we use the quadratic and exponential space transformations, then (40) and (41) can
be cast in the form

dx

dt
= Dβ(x)(A>u(x)− c), ADβ(x)A>u(x) = ADβ(x)c + τ(b− Ax), (44)

xk+1 = xk + αkD
β(xk)[A

>uk − c], (45)
where β = 1 for (11), and β = 2 for (12).

The continuous version of (44) had been studied by Smirnov [26]. He proved that the
following estimate:

‖xN(t, x0)‖ =

{
O(e−µ∗t), if β = 1,
O(t1/(1−β)), if β > 1

holds for the vector of nonbasic components. Hence the trajectories of (44) derived with the
help of the quadratic space transformation locally converge faster than the trajectories of
(44), derived with the help of the exponential transformation. Therefore, in our codes we
have mainly used the quadratic space transformation.

It was shown that if β is odd, then x∗ is an asymptotically stable point of (44) and
the local convergence takes place. If β is even, then the optimal point x∗ is unstable and
trajectories converge to x∗ provided that x0 ∈ ∆(x∗) ∩X0.

If we set β = 2, τ = 0, then (44) leads to the Dikin a�ne scaling method

dx

dt
= D2(x)(A>u(x)− c), AD2(x)A>u(x) = AD2(x)c. (46)

14



Discrete and continuous versions of (46) were investigated in numerous papers (see, for
example, [3, 4, 5, 22, 23, 28, 29]). It is worthy of note that the optimal solution x∗ proves
to be unstable equilibrium point and, therefore, (46) does not possess the local convergence
property. In the latter case a starting point x0 should meet a constraint x0 ∈ ∆(x∗)∩X0 for
the convergence to take place.

If we set β = 1, τ = 0, then (44) yields
dx

dt
= D(x)(A>u(x)− c), AD(x)A>u(x) = AD(x)c. (47)

Since the quadratic space transformation is used here, the Condition 5 holds and we have
the exponential rate of convergence (in discrete case a linear rate). However owing to the
simpli�cation τ = 0 a starting point x0 must be such that x0 ∈ ∆(x∗), Ax0 = b. The
convergence property of the method (47) is more attractive, than (46). Therefore, the
method (47) is considered in the West as essential improvement of Dikin�Karmarkar method.
The book [21] claims that (47) �is identical with the gradient �ow for linear programming
proposed and studied extensively by Faybusovich (1991). Independently this �ow was also
studied by Herzel, Recchioni and Zirilli (1991)... Starting from the seminal work of Khachian
and Karmarkar, there has been a lot of progress in developing ulterior point algorithms for
linear programming and nonlinear programming, due to Bayer, Lagarias and Faybusovich�.

In point of fact, (47) has been proposed and analyzed as far back as 1977 in [9], and later
on a comprechensive exposition of this method was described in numerous our papers and
in the book [7] appeared in English in 1985 and three years before in Russian.

Still further, the nonlocal convergence analysis of (47) was carried out in [14]. We assumed
that a condition

n∑
i=1

xi = 1 was introduced among the other equality constraints. In this case
the Lyapunov function

V (x) =
m∑

i=1

xi
∗[ln xi

∗ − ln xi] (48)

decreases along the trajectories of the system (47) insofar as
dV

dt
= c>(x∗ − x) ≤ 0 (49)

everywhere on the feasible set X. Using (49) we evaluated a number of iterations required
for �nding ε-solution of (2), using step-sizes αk determined by the steepest descent approach.

Numerous papers have been published in the West on the interior point techniques [3,
4, 18, 20, 22, 23, 28]. Some remarks deserve to be made concerning the main di�erences
between the methodology adopted in these papers and our original approach:

1. Along with the LP problems we considered the NLP problems as well.

2. We developed asymptotically stable interior-infeasible-point algorithms. Our analysis
was not con�ned to the interior point technique. For this reason the current points are
in general allowed to be infeasible, however if the initial or current points are feasible,
then the corresponding trajectory remains in the feasible set.

3. In all proposed methods multiplicative barriers were used and we did not resort to
singular penalties.

4. The steepest descent approach was employed in computations. The trajectory could
move along the boundary of the feasible set.

All these items can be considered as advantages of presented approach.
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4. Dual barrier-projection methods for solving LP problem
By extension of the space and by converting the inequality constraints to equalities, we

transform the original dual problem (3) into the following equivalent problem:

maximize b>u with respect to u and y subject to ξ(y) + A>u− c = 0n, (50)

where v = ξ(y) ∈ Rn
+, ξ(Rn) = Rn

+.
The Problem (50) is similar to (32). System (35) being applied to solving (50) can be

rewritten in terms of u and v as follows:
du

dt
= b− Ax(u, v),

dv

dt
= −G(v)x(u, v), (51)

where Φ(v)x(u, v) = A>b + τ(v + A>u− c) and Φ(v) = G(v) + A>A.
If u0 ∈ U , then we can get rid of the equation for v and this way simplify systems (51).

In this case, (51) can be expressed as

du

dt
= b− Ax(u),

(
G(v(u)) + A>A

)
x(u) = A>b, (52)

where u(0, u0) = u0 ∈ U .
For this system we obtain the following inequality:

b>
du

dt
= ‖b− Ax(u)‖2 + x>(u)G(v(u))x(u) ≥ 0.

Hence the objective function of the dual problem monotonically increases on a feasible set.
By applying the Euler numerical integration method we obtain the following iterative

algorithm:
uk+1 = uk + αk(b− Axk), vk+1 = vk − αkG(vk)xk,(

G(vk) + A>A
)
xk = A>b + τ(vk + A>uk − c).

(53)

Similarly for the system (52) we have

uk+1 = uk + αk(b− Axk),
(
G(vk) + A>A

)
xk = A>b, (54)

where vk = v(uk). Both variants solve the primal and dual problems simultaneously.
Denote

α∗ =
2

λ∗
, λ∗ = max

[
τ, max

1≤i≤m
θ̇(0)xi

∗

]
, λ∗ = min

[
τ, min

1≤i≤m
θ̇(0)xi

∗

]
,

where λ∗ and λ∗ are, respectively, maximum and minimum eigenvalues of the matrix of the
equation of the �rst approximation about the optimal solution u∗.

Theorem 7. Let x∗ and u∗ be unique non-degenerate solutions of the Problems (2) and
(3), respectively, and let v∗ = c−A>u∗. Assume that the component-wise space transforma-
tion ξ(y) satis�es Conditions 4, 5 and τ > 0. Then the following statements are true:

1) The pair [u∗, v∗] is an asymptotically stable equilibrium state of system (51).

2) The solutions u(t, z0), v(t, z0) of system (51) converge locally exponentially fast to the
pair [u∗, v∗]. The corresponding function x(u(t, z0), v(t, z0)) converges to the optimal
solution x∗ of the primal Problem (2).
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3) The point u∗ is an asymptotically stable equilibrium state of system (52).

4) The solutions u(t, u0) of system (52) converge locally exponentially fast to the optimal
solution u∗ of the dual Problem (3). The corresponding function x(u(t, u0)) converges
to the optimal solution x∗ of the primal Problem (2).

5) For any �xed 0 < αk < α∗ the sequence {uk, vk}, generated by (53), converges locally
with a linear rate to [u∗, v∗] while the corresponding sequence {xk} converges to x∗.

6) There exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the sequence {uk}, generated
by (54), converges locally with a linear rate to u∗ while the corresponding sequence {xk}
converges to x∗.

The method (52) was proposed and studied in 1977 (see [9]). Method (51) was given in
[11]. In [16] we describe nonlocal convergence analysis of dual method. We supposed the
Problem (2) is such that Ae = 0m, where e is a vector of ones in Rn. We used the Lyapunov
function similar to (48):

V (u) =
n∑

i=m+1

vi
∗[ln vi

∗ − ln vi(u)].

Let P be a full rank d × n matrix such that AP> = 0md. Therefore, the columns of
P> are linearly independent and form a basis for the null-space of A. We partition A as
A = [B,N ], where the square matrix B is nonsingular. We can now write the matrix P as

P = [−N(B>)−1 | Id].

The de�nitions of the sets V and VU can be rewritten as follows:

V = {v ∈ Rn : P (v − c) = 0d}, VU = {v ∈ Rn
+ : P (v − c) = 0d}.

Let x̄ ∈ Rn be an arbitrary vector which satis�es the constraint Ax̄ = b. Then

max
u∈U

b>u = max
u∈U

x̄>A>u = max
v∈VU

x̄>(c− v) = x̄>c− min
v∈VU

x̄>v.

Hence the solution of the dual Problem (3) can be substituted by the following equivalent
minimization problem:

min
v∈VU

x̄>v.

Applying the stable barrier-projection method (40) to this problem, we obtain

dv

dt
= G(v)(P>x(v)− x̄), (55)

PG(v)P>x(v) = PG(v)x̄ + τP (c− v). (56)
If a point v is such that the matrix PG(v)P> is invertible, then we can solve the linear
equation (56) and obtain

x(v) = (PG(v)P>)−1(PG(v)x̄ + τP (c− v)).

Let H(v) = Gl/2(v) and introduce the pseudo-inverse and projection matrices

(PH)+ = (PH)>(PGP>)−1, (PH)# = (PH)+PH.
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The system (55), (56) can be rewritten in the following projective form:

dv

dt
= H[τ(PH)+P (c− v)− (In − (PH)#)Hx̄]. (57)

The �rst vector in the square brackets belongs to the null-space of AH−1 and the second
vector belongs to the row space of this matrix. Furthermore,

P
dv

dt
= τP (c− v), P (c− v(t, v0)) = P (c− v0)e

−τt.

Hence, the trajectories v(t, v0) approach the set V as t →∞.
If v0 ∈ VU and v0 > 0, then the entire trajectory does not leave the feasible set VU ,

the objective function x̄>v(t, v0) is a monotonically decreasing function of t and (57) can be
rewritten as follows:

dv

dt
= −G(v)

(
In − P>(PG(v)P>)−1PG(v)

)
x̄, v0 ∈ ri VU . (58)

Theorem 8. Suppose that the conditions of the Theorem 7 hold. Then:

1) the point v∗ is an asymptotically stable equilibrium point of system (55);

2) the solutions v(t, v0) of (57) converge locally to v∗ with an exponential rate of conver-
gence;

3) there exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the discrete version

vk+1 = vk − αkG(vk)(x̄− P>xk), xk = x(vk), (59)

converges locally with a linear rate to v∗ while the corresponding sequence {xk} con-
verges to x∗.

Since for system (58) P v̇ = 0d, it follows that the vector v̇ belongs to null-space of P
which coincides with the row space of A. Therefore, there exists a vector λ ∈ Rm such that

v̇ = A>λ. (60)

If v > 0n, then after left multiplying both sides of (60) with AG−1(v) and in view of (58)
we obtain

λ = −(AG−1(v)A>)−1Ax̄ = −(AG−1(v)A>)−1b.

Hence, on the set riVU the method (58) takes the form

dv

dt
= −A>(AG−1(v)A>)−1b, v0 ∈ ri VU .

In u-space this method can be written as

du

dt
= (AG−1(v(u))A>)−1b, u0 ∈ U0.

If we use the quadratic and exponential space transformations (11), (12) we obtain

du

dt
= (AD−1(v(u))A>)−1b, u0 ∈ U0, (61)
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and
du

dt
= (AD−2(v(u))A>)−1b, u0 ∈ U0, (62)

respectively. The system (62) coincides with the continuous version of the dual a�ne scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga in 1989 (see [1]).

According to the Theorem 8, the solution of (55) converges locally with an exponential
rate to the equilibrium point v∗ = v(u∗). Therefore, the solutions of (61) also converge to
the point u∗ on the set U0.

The discrete version of (61) consists of the iteration

uk+1 = uk + αk(AD−1(vk)A
>)−1b, u0 ∈ U0, (63)

where vk = v(uk). Taking into account the [7, Theorem 2.3.7] we conclude that the expo-
nential rate of convergence of (61) insures local linear convergence of the discrete variant
(63) if the step length αk is su�cient small.
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