
3rd IFIP WG-7.6 Working Conference on
Optimization-Based
Computer-Aided Modelling and Design
Prague, Czech Republic, May 24�26, 1994
PROCEEDINGS, pp. 3�12
J. Dole�zal, J. Fidler (Eds.)
Published by the Institute of Information Theory
and Automation Academy of Sciences of the Czech
Republic, Prague 1995

Fast Automatic Di�erentiation
and Optimal Control Theory1

(Revised version 28 December 2003)

Yuri G. Evtushenko
Computing Center
40 Vavilov Str.
117967 Moscow GSP-1, Russia
e-mail: evtushenko@ccas.ru

1. GENERAL FORMULAS

Many publications have been devoted to the technique of fast automatic di�erentiation (FAD),
which is used for di�erentiating a function of many variables. We refer to the proceedings of
the �rst SIAM Workshop on the Automatic Di�erentiation of Algorithms which was held in
Brekenridge, Colorado in 1991 (see [1]). An overview of the history and the state of the art of
automatic di�erentiation and related techniques is given by M. Iri in [6]. In many cases, FAD is
far superior to symbolic di�erentiation or to divided di�erence approximation. When studying
the papers about FAD, we felt that this approach is very close to one which had been used for
the discrete optimal control problem with delay. We decided to �nd general formulas that would
permit us to get as a particular case the FAD formulas and the formulas for the evaluation of
a gradient in systems described by a discrete approximation of a continuous system governed
by di�erential equations. Some preliminary results in this �eld were published in [2]�[5]. Here
we develop this approach and apply it to a system described by a partial di�erential equation.

There are many ways to reach the method of FAD among which the shortest and most
general way is based on the well-known implicit function theorem. Suppose that for vectors z ∈
∈ Rn and u ∈ Rr the di�erentiable functions W (z, u), Φ(z, u) de�ne mappings W : Rn ×Rr →
→ R1, Φ : Rn × Rr → Rn. Vectors z and u satisfy the following nonlinear system of n scalar
algebraic equations:

Φ(z, u) = 0n, (1)
where 0s is the s-dimensional null vector.

We assume that the matrix Φ>
z (z, u) is nonsingular. According to the implicit function

theorem this system de�nes a continuous function z = z(u) which is di�erentiable and whose
derivatives satisfy the following linear algebraic system:

Φ>
u (z(u), u) + N(u)Φ>

z (z(u), u) = 0rn, (2)
1Research supported by the grant N◦ 93-012-450 from Russian Scienti�c fund

1

where 0αβ is the α× β rectangular null matrix, N is a rectangular matrix of dimension r × n:

N(u) =
dz>

du
= −Φ>

u (z(u), u)[Φ>
z (z(u), u)]−1. (3)

The composite function Ω(u) = W (z(u), u) is di�erentiable and

dΩ(u)

du
= Wu(z(u), u) + N(u)Wz(z(u), u). (4)

We introduce the Lagrange function L(z, u) = W (z, u)+Φ>(z, u)p with the Lagrange multiplier
p ∈ Rn. This vector is found by solving the following linear system:

Lz(z, u) = Wz(z, u) + Φ>
z (z, u)p = 0n. (5)

The formula (4) for the derivative of the composite function Ω(u) with respect to u can be
rewritten in the form

dΩ(u)

du
= Wu(z(u), u) + Φ>

u (z(u), u)p = Lu(z(u), u). (6)

The formulas (4) and (6) are mathematically equivalent, but from the computational point of
view there is a crucial di�erence. A slight variation in the way the function is di�erentiated
will result in a drastic change in the e�ciency of computation. In the �rst case we use the
auxiliary matrix N ; in the second case we use an additional Lagrange vector p. We shall show
that the formula (4) corresponds to the so-called �forward� (or �contravariant�, or �bottom-up�)
di�erentiation, the formula (6) � to the �reverse� (or �covariant�, or �backward�, or �top-down�)
di�erentiation.

Usually in multistep problems, the vectors z and u are naturally partitioned into vectors of
lower dimensionally:

z> = [z>1 , z>2 , . . . , z>k], u> = [u>1 , u>2 , . . . , u>k], zi ∈ Rs, ui ∈ Rm.

Under this assumption the relation (1) is split into k vector relations as follows:

zi = F (i, Zi, Ui), 1 ≤ i ≤ k, n = s · k, r = m · k, (7)

where Zi, Ui are given sets of vectors zj, uj, respectively, and the index i takes integer values
from 1 to k. More generally we shall write i ∈ D. The number of elements of set D is denoted
|D| and is equal to k. For each i ∈ D we introduce two sets of indices Qi and Ki, containing
the indices of all vectors zi and ui belonging to the sets Zi and Ui, respectively. Then,

Qi = {j ∈ D : zj ∈ Zi}, Ki = {j ∈ D : uj ∈ Ui}.
Let us introduce the conjugate index sets

Q̄i = {j ∈ D : zi ∈ Zj}, K̄i = {j ∈ D : ui ∈ Uj}
and the corresponding vector sets

Z̄i = {zj : j ∈ Q̄i}, Ūi = {uj : j ∈ K̄i}.
It follows from the de�nition of these sets that if zq ∈ Z̄i, ue ∈ Ūs (that is, if q ∈ Q̄i, e ∈ K̄s),
then the following functional dependencies are valid:

zq = F (q, . . . , zi, . . .), ze = F (e, . . . , us, . . .).

2

Therefore, the sets Qi and Ki may be called the input index sets, while Q̄i and K̄i are the
output index sets. The vector function Φ(z, u) in (1) can be represented as the union of vector

functions F (i, Zi, Ui)− zi, where i ∈ D. We de�ne the matrix Nij =
∂z>j
∂ui

of dimension m× s.
For the process (7) we can rewrite formulas (2) and (4) as follows:

Nij = F>
ui

(j, Zj, Uj) +
∑

q∈Qj

NiqF
>
zq

(j, Zj, Uj), (8)

dΩ

dui

= Wui
(z, u) +

∑

j∈D

NijWzj
(z, u). (9)

With multiplier vectors pj ∈ Rs we introduce the Hamiltonian function

H(z, u, p) = W (z, u) +
∑

j∈D

F>(j, Zj, Uj)pj,

and rewrite (7), (5) and (6) in the canonical form:

zi = Hpi
(z, u, p), (10)

pi = Hzi
(z, u, p) = Wzi

(z, u) +
∑

q∈Q̄i

F>
zi

(q, Zq, Uq)pq, (11)

dΩ

dui

= Hui
(z, u, p) = Wui

(z, u) +
∑

q∈K̄i

F>
ui

(q, Zq, Uq)pq. (12)

We say that zi is an output vector if the index set Q̄i is empty. In this case,

pi = Wzi
(z, u). (13)

If Qj and Kj are empty, then zj is an input state vector j and Nij = 0sm for all i ∈ D.
We say that the multistep process (7) is explicit if for every i ∈ D the input set Qi is

such that for any element j ∈ Qi the inequality j < i holds. According to (8) and (11) each
matrix Nsi and each vector zi can be expressed by means of the previous matrices Nsj and
vectors zj, respectively, where 1 ≤ j ≤ i. In the last computational step we obtain zk and
calculate pk = Wzk

(z, u). After that, we �nd from (11) all components pi. Formulas (9) and
(12) give all derivatives. We say that zi and Nsi are found in forward mode because during their
computation the index i increases from 1 to k. On the other hand, all vectors pi are found in
the reverse, or top-down, mode, which means that i decreases from i = k to i = 1. All matrices
Nsi vanish if i ≥ s. Explicit formulas are often used in discrete optimal control problems, where
continuous di�erential equations are integrated by using explicit numerical schemes.

If implicit integration formulas are used, then at each step i we have to solve the system
of nonlinear equations (7) and de�ne the vector zi. Next, from the linear algebraic systems
(8) and (11), we de�ne Nij and pi, respectively. We consider simple examples that illustrate
the characteristic properties of the two approaches presented for evaluating gradients. In some
cases the reverse mode of computation has an advantage over the forward mode, in other cases
not.

Assume that the functions Φ and W are twice di�erentiable. In this case the composite
function Ω(u) is also twice di�erentiable and

d2Ω

du2
= Luu + NLzu + LuzN

> + NLzzN
>. (14)

3

Introduce matrices M and R of dimensions n× r and n× n, respectively. These matrices are
found from the following linear systems:

Φ>
z M + Lzu = 0nr, Φ>

z RΦz = Lzz.

Instead of using (14) we can compute the second derivative as follows:

d2Ω

du2
= Luu + Φ>

u M + M>Φu + Φ>
u RΦu.

This formula was used in [5] for solving the optimal control problem with state-vector con-
straints by Newton's method.

2. DIFFERENTIATION OF ELEMENTARY FUNCTIONS

The following functions: ax (a > 0), xα, loga x (a > 0, a 6= 1), sin x, cos x, tgx, ctg x, arcsin x,
arccos x, arctg x, arcctg x are called main elementary functions. We suppose that the codes for
calculation of main elementary functions and their derivatives are stored in a computer and
these calculations are carried out exactly (or with machine precision).

We say that a function f(x) is an elementary function if it can be represented as a �nite
composition of main elementary functions and arithmetic operations.

Suppose that we have to calculate the partial derivatives of a scalar-valued function f(u),
u ∈ Rr, with respect to all variables ui. The function f is assumed to be a di�erentiable
elementary function. Therefore, f(u) can be de�ned by a sequential program. We introduce a
new vector z ∈ Rk of intermediate variables. The evaluation of f(u) is now carried out as a
k-step computational process:

z1 = F (1, Z1, U1), z2 = F (2, Z2, U2), . . . , zk = F (k, Zk, Uk),

where zj ∈ R1, zk = f(u), z1 = Z2, Z1 is empty and each F (i, Zi, Ui) is a unary or binary basic
operation. In the �rst case F is a main elementary function of a single argument. In the second
case F is an arithmetic operation. In both cases the partial derivatives of F with respect to all
arguments are known.

We de�ne the vector p ∈ Rk and introduce the Hamiltonian function

H = zk +
k∑

i=1

F (i, Zi, Ui)p
i.

The sets Zi consist of the already computed quantities zj with j < i. In other words, F
is the composition of basic operations whose derivatives are assumed to be computable for all
arguments of interest. In (10) � (12) we set W = zk, therefore (13) yields pk = 1. Using (11),
(12), we �nd the gradient of f(u) in reverse mode. In this way we obtain the following formulas
for FAD:

pi =
∑

q∈Q̄i

F>
zi (q, Zq, Uq)p

q,
∂f(u)

∂ui
=

∑

q∈K̄i

F>
ui(q, Zq, Uq)p

q.

There are many papers analyzing various algorithms for automatic di�erentiation from the
point of view of computational complexity. We refer to [1, 7, 8, 9]. Let T0 denote the total time
for calculating the value of the underlying function f(u). Let Tg denote the additional time for
computing all partial derivatives ∂f(u)

∂ui
, 1 ≤ i ≤ r, required after evaluation of f(u).

4

Theorem 1. Suppose that

1) f(u) is an elementary scalar-valued di�erentiable function of vector u ∈ Rr,

2) the time for computing the derivative of each main elementary function is less than twice
the time needed for the evaluation of the main elementary function itself,

3) the time required for memory processing and for execution of the assignment operator is
negligible.

If the formulas for fast automatic di�erentiation of function f(u) are used, then the ratio
R = Tg/T0 is bounded above by 3.
For a comparison we recall that if we use the approximation of derivatives by divided

di�erences, this ratio is R = r, and the gradient is not exact for any nonlinear scalar func-
tion f .

3. ROUNDING ERROR ESTIMATION

Suppose that at each step of process (7) we determine every state vector zi with an error εi.
Thus, instead of (7) we use the following formula:

zi = F (i, Zi, Ui) + εi, 1 ≤ i ≤ k. (15)

The Hamiltonian can be written as

H(z, u, ε) = W (z, u) +
∑

j∈D

[F>(j, Zj, Uj) + εj]pj.

In the case of explicit formulas, the components εi are the machine precision of an arithmetic
computation of the value F (i, Zi, Ui). In the implicit case the error norms ‖εi‖ tend to be much
larger and are mainly determined by the accuracy of the solution to the nonlinear equations
(15). Now Ω and p become the composite functions of the control vector u and the error vector
ε> = [ε>1 , ε>2 , . . . , ε>k]. Therefore, we can write Ω(u, ε), p(u, ε). Let us use canonical equation
(10) � (12). We consider εi in these formulas as a component of the control vector u. We obtain
exactly the same formula as (11). Therefore, from (12) one obtains,

dΩ(u, ε)

dεi

= pi(u, ε).

Suppose that the control vector u is given with an error and that, instead of u, we use
ū = u + δ. Then,

Ω(ū, ε)− Ω(u, o) =
k∑

i=1

[
〈pi(u, o), εi〉+

〈
dΩ(u, o)

dui

, δi

〉]
+ O(‖ε‖2 + ‖δ‖2),

where the derivatives of Ω with respect to ui are obtained from (12). This estimation can
be used instead of a laborious interval analysis. Theoretical and practical aspects of such an
approach were developed by M. Iri [6].

5

4. DERIVATIVES WITH RESPECT TO INITIAL CONDITIONS

To compare the forward and reverse modes of di�erentiation, we start from the simplest problem
in which we have to di�erentiate a function W (z), z ∈ Rn, with respect to the initial condition
z1.

Let the process be described by the following system of ordinary di�erential equations:

dz

dt
= f(z), t1 ≤ t ≤ t2. (16)

The solution of (16) is z(t, z1), with initial state z(t1, z1) = z1. We will �nd the derivative of
W (z(t2, z1)) with respect to z1. We introduce a matrix N(t) with size n×n and an n-dimensional
vector p as follows:

N(t) =
∂z>(t, z1)

∂z1

, p(t) =
∂W (z(t2, z1))

∂z(t, z1)
,

with p(·) ∈ Rn, and the boundary conditions

N(t1) = In, p(t2) =
∂W (z(t2, z1))

∂z(t2, z1)
,

where Is is the s× s identity matrix.
We di�erentiate both sides of equation (16) with respect to z1. Using the chain rule, we get

the matrix di�erential equation

dN(t)

dt
= N(t)

∂f>(z(t, z1))

∂z(t, z1)
. (17)

It easy to show that p(t) satis�es the following vector di�erential equation:

dp(t)

dt
= −f>z (z(t, z1))p(t). (18)

The gradient of the function W can be found in two ways:

dW

dz1

= N(t2)
∂W (z(t2, z1))

∂z(t2, z1)
,

dW

dz1

= p(t1).

Both formulas give exactly the same result, but in the �rst case we have to integrate the matrix
system (17), which consists of n2 scalar di�erential equations, while in the second case we
integrate only the vector equation (18) which consists of n scalar di�erential equations. Thus
the second approach will be n times less costly than the �rst approach. The last formula was
given in [9].

We also mention the case where forward di�erentiation is less time consuming than backward
di�erentiation. This case arises when we must �nd gradients of m functions Wi(z(t2, z1)), where
m > n. We de�ne N(t2) from (17), and all gradients are found as follows:

∂Wi(z(t2, z1))

∂z1

= N(t2)
∂Wi(z(t2, z1))

∂z(t2, z1)
.

Therefore, if m > n, then the forward mode is more e�cient than the reverse mode.

6

5. OPTIMAL CONTROL PROBLEM

The basic problems of optimal control can be described as follows. Let a control system be
governed by a system of ordinary di�erential equations:

dz

dt
= f(t, z, u), t1 ≤ t ≤ t2, z(t1, z1) = z1, (19)

where u(·) ∈ Rs, z(·) ∈ Rr. The problem is to �nd a control u that minimizes the cost functional
W (z(t2, z1)). We use the simplest discrete approximation of (19) which is given by the Euler
formula

zi = zi−1 + hf(ti−1, zi−1, ui−1) = F (i, zi−1, ui−1)

for i = 2, . . . , k, and z1 is given.
The objective function is W (zk) and the Hamiltonian is

H = W (zk) +
k∑

i=2

〈F (i, zi−1, ui−1), pi〉.

All vectors pi ∈ Rs and the derivatives of W are found from

pk = Wz(zk), pi = pi+1 + hf>z (ti, zi, ui)pi+1,
dW

dui

= hf>u (ti, zi, ui)pi+1, 1 ≤ i ≤ k − 1. (20)

If h → 0 and k →∞, then we obtain from (20)

ṗ = −f>z (t, z, u)p, p(t2) = Wz(z(t2, z1)).

This is the so-called adjoint di�erential equation, which is used in the Pontryagin maximum
principle.

6. OPTIMAL CONTROL PROBLEM OF A PARABOLIC SYSTEM

In this section we turn our attention to a control system governed by a partial di�erential
equation. For the sake of simplicity we consider the second order parabolic heat equation

∂z

∂t
= a2 ∂2z

∂x2
+ u(x, t), (21)

where z(x, t) is the temperature at moment t in a point x; u(x, t) is a distributed control.
The initial and boundary conditions are given by

z(x, 0) = ϕ(x), 0 ≤ x ≤ `,

∂z(0, t)

∂x
= 0,

∂z(`, t)

∂x
= ν[g(t)− z(`, t)], 0 ≤ t ≤ T,

(22)

where g(t) is a boundary control. The problem is to �nd control functions u(x, t), g(t) that
minimize the cost functional

W (u, g) =

t∫

0

Ψ(z(s, T))ds. (23)

The problem is discretized by a �nite di�erence approximation scheme. Denote

w = {(xi, tj) : xi = i∆x, tj = j∆t, i = 0, . . . , k, j = 0, . . . , m},
∆x = `/k, ∆t = t/m, zi,j = z(i∆x, j∆t), ui,j = u(i∆x, j t),

ϕi = ϕ(i∆x), gj = g(j∆t), i = 0, . . . , k, j = 0, . . . , m.

7

The cost function (23), the di�erential equation (21) and the conditions (22) are replaced by

W = ∆x
k∑

i=0

αiΨ(zi,m),

zi,j =





(1− 2λ)zi,j−1 + λ(zi−1,j−1 + zi+1,j−1) + ∆tui,j−1, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m,
z1,j, i = 0, 1 ≤ j ≤ m,
µzk−1,j + µν∆xgj, i = k, 1 ≤ j ≤ m,
ϕi, 0 ≤ i ≤ k, j = 0,

where λ = a2∆t/(∆x)2, αi � some coe�cients, µ = 1/(1 + ν∆x).
Introduce adjoint variables pi,j and the Hamiltonian function

H =
k−1∑

i=1

m∑

j=1

[(1− 2λ)zi,j−1 + λ(zi−1,j−1 + zi+1,j−1) + ∆tui,j−1]pi,j +

+
m∑

j=1

z1,jp0,j + µ
m∑

j=1

(zk−1,j + ν∆xgj)pk,j +
k∑

i=0

ϕipi,0 + ∆x
k∑

i=0

αiΨ(zi,m).

Applying formula (11) we obtain

pi,j =





(1− 2λ)pi,j+1 + λ(pi−1,j+1 + pi+1,j+1), 2 ≤ i ≤ k − 2, 0 ≤ j ≤ m− 1,

(1− 2λ)p1,j+1 + p0,j + λp2,j+1, i = 1, 0 ≤ j ≤ m− 1,

λp1,j+1, i = 0, 0 ≤ j ≤ m− 1,

(1− 2λ)pk−1,j+1 + µpk,j + λpk−2,j+1, i = k − 1, 0 ≤ j ≤ m− 1,

λpk−1,j+1, i = k, 0 ≤ j ≤ m− 1,

αi∆xΨzi,m
, i ∈ [0 : k]/{1, k − 1}, j = m,

αi∆xΨzi,m
+ p0,m, i = 1, j = m,

αi∆xΨzk−1,m
+ µpk,m, i = k − 1, j = m.

Using (12) we �nd the formulas for gradients

dW

dui,j

= ∆tpi,j+1, 1 ≤ i ≤ k − 1, 0 ≤ j ≤ m− 1,

dW

dgj

= µν∆xpk,j, 1 ≤ j ≤ m.

If we let k →∞ ∆t → 0, ∆x → 0, then we obtain that the function p(x, t) satis�es the following
conditions

∂p

∂t
= −a2 ∂2p

∂x2
,

∂p(0, t)

∂x
= 0,

∂p(`, t)

∂x
= νp(`, t), p(x, T) = Ψz(z(x, T)), 0 ≤ x ≤ 1.

(24)

Equation (24) is conjugate to (21).
The approach which we described here enables us to �nd quick formulas for exact gradients

in various complicated problems and to use them in numerous minimization algorithms. These
gradient algorithms usually require signi�cantly fewer iterations and function evaluations than
the methods which use only the evaluation of the function values.

8

References
[1] Automatic di�erentiation of algorithms. Theory, implementation and application. Edited by

A. Griewank, G.F. Corliss, SIAM, Philadelphia (1991).

[2] K.R. Aida-Zade, Y.G. Evtushenko. Fast automatic di�erentiation. Mathematical Modelling, 1,
pp. 121�139 (1989) (in Russian).

[3] Y.G. Evtushenko, V.P. Mazouric. Optimization software. Znanie, Moscow (1989) (in Russian).

[4] Y. Evtushenko. Automatic di�erentiation viewed from optimal control theory. In [1], pp. 25�30.

[5] Y.G. Evtushenko. Numerical Optimization techniques. Optimization software. Inc. Publications
Division. New York (1985).

[6] M. Iri. History of Automatic di�erentiation and rounding error estimation. In [1], pp. 3�16.

[7] W. Baur, V. Strassen. The complexity of partial direvatives. Theoretical Computer Sciences, 22
(1983), pp. 317�320,

[8] K. Kim, Y. Nesterov, V. Skokov, B. Cherkasskij. E�cient algorithm for di�erentiation and ex-
tremal problem. Economy and mathematical methods, 20 (1984), pp. 309�318 (in Russian).

[9] M. Iri. Simultaneous computation of functions, partial derivatives and estimates of rounding
errors-complexity and practicality. Japan Journal of Applied Mathematics, 1 (1984), pp. 223�252.

9

