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1. INTRODUCTION

From the mathematical point of view multicriteria optimization (MCO) is a natural generaliza-
tion of optimization problems. The need of decision making in contradictory situations makes
MCO methods so interesting for us. MCO deals with one of the most sophisticated aspects of
human activity which is to achieve several goals by the single act of decision making. MCO
models and ordinary optimization are not very much di�erent in task de�nition, giving us hope
to use the similar numerical methods.

This paper gives the overview of the MCO package as one of the main parts of the DISO
� dialogue system for optimization problem solving which was developed in the Computing
Center of the USSR Academy of Sciences. Two MCO methods are described in this paper.
Both methods are based on the idea of non-uniform covering technique and inclusion function
approach, which was initially developed for global extremum search [1]�[5]. The complexity of
MCO tasks makes it necessary to create e�ective numerical methods to �nd both a single point
of Pareto set and an approximation of this set also. The paper describes two MCO algorithms
which di�er in the interpretation of the solution and as a consequence in the complexity of
numerical calculations. The main features of the MCO package are described also.

2. OVERVIEW OF THE DISO SYSTEM

The basic feature of the DISO system is the integration principle. Unlike other dialogue systems
of this class the DISO system includes several interconnected packages for the solution of the
following tasks:

• unconstrained minimization;
• nonlinear programming;
• optimal control;
• linear programming;
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• global optimization;
• multicriteria optimization;
• linear algebra;
• nonlinear algebraic equations.

For all these tasks the DISO system delivers for the user the uni�ed set of dialogue capa-
bilities, which includes:

• task de�nition and analysis in text mode;
• automatic optimization class recognition and correspondent dialogue package initiation;
• local analysis of task de�nition functions in a given point;
• changing of optimization method and its control parameters in the dialogue session;
• asynchronous control of the solution process which makes it possible to stop the process

at any moment;
• control of the hierarchical solution process with the automatic or manual creation of the

subordinate tasks from the list mentioned above;
• choice of the numerical or analytical di�erentiation schemes;
• control of the numerical and graphical interaction in the process of solution.

From the implementation point of view dialogue capabilities of the DISO system are based
on the new approach of the multiwindow technique which includes the capability to access the
values of the variables using special �elds in the windows. The methods in each optimization
class have di�erent forms of graphical output in accordance with their basic mathematical
schemes.

The integrated mode of the DISO system makes it really power-full instrument for the so-
lution of di�erent application tasks. It is essential, that the system makes it possible to change
the task de�nition in the process of the solution and to transfer the task from one mathematical
model to another. The typical example of such transformation takes place if you add a restric-
tions to the initial unconstrained optimization problem thus creating nonlinear programming
problem. Another example: transforming all the criteria but one to the restrictions will change
the MCO problem to the more simple class of nonlinear programming. It is important to note
that all the numerical results achieved so far will remain accessible after these transformations.

Most optimization models have hierarchical structure. The nonlinear programming me-
thods, for example, may reduce the task to unconstrained minimization on every iteration.
Optimal control methods usually create subordinate tasks of nonlinear programming and so
on. In all these cases the DISO system provides the dialogue capabilities of the correspondent
class for the solution of the subordinate problem. Finishing the solution will move the user
again to the level of the initial problem. This feature of the DISO system proved to be really
valuable for the solution of several di�cult applied problems saving time and increasing the
accuracy of the solution.

The MCO dialogue package plays a central role in the DISO system, because its mathema-
tical model can be obviously treated as a generalization of the other optimization models listed
above.

3. STATEMENT OF MCO PROBLEM

The multicriteria problem that we consider has the following form:

min
x∈X

F (x), (1)
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where x ∈ Rn is a vector of decision variables, X is the feasible decision set, F = [F 1, F 2, . . . , Fm]
is the objective vector, F : Rn → Rm, vector-function F is continuous on X. The decision set
X is assumed to be a closed and bounded (therefore, compact). The goal is to �nd the e�cient
(Pareto) set X∗ of X with respect to F , that is

X∗ = {x ∈ X : if F (w) ≤ F (x) for some w ∈ X, then F (w) = F (x)}. (2)

We shall use the following convention: if a, b ∈ Rs, then a ≤ b if and only if ai ≤ bi for all
1 ≤ i ≤ s.

We propose two extensions of ε-optimality concept which were developed for scalar opti-
mization problem to vector case. In the �rst extension we introduce ε-e�cient set as follows:

Xε
∗ = {x ∈ X : F (x) ≤ F (x∗) + ε, where x∗ ∈ X∗}, (3)

where vector ε ∈ Rm has all positive components and is named accuracy vector.
The set W ε

∗ is called ε-net of the Pareto set if:

1) for any point x ∈ X∗ there exists a point z ∈ W ε
∗ such that F (z) ≤ F (x) + ε;

2) there are no two di�erent points x and z in W ε
∗ such that F (x) ≤ F (z).

Let X and Pi be a compact right parallelepipeds parallel to the coordinate axis (abbreviated
as a box in the sequel):

X = {x ∈ Rn : a ≤ x ≤ b},
Pi = {x ∈ Rn : ai ≤ x ≤ bi}, Pi ⊂ X, ai ∈ Rn, bi ∈ Rn, i = 1, 2, . . . .

The main diagonal of the box Pi we denote as di = bi − ai, the midpoint of the box is ci =
= (1/2)(bi + ai).

Let's introduce the m-dimensional vector-function Q(P ), for which every j-th component
is de�ned by the condition:

Qj(P ) = min
x∈P

F j(x), P ⊂ X.

We assume that for Q(P ) it is possible to �nd vector-function G(P ) which is the lower
estimation of Q(P ) on the box P . This function must satisfy two conditions:

G(P ) ≤ Q(P ), (4)
lim

‖di‖∞→0
(G(Pi)−Q(Pi)) = 0. (5)

Here we introduced the sequence of the boxes which satis�es the following conditions:

Pi+1 ∈ Pi, lim
‖di‖∞→0

Pi = P∞ ∈ X, i = 1, 2, . . . ,

where P∞ is accumulating point.
For the given vector-function F (x) the vector-function G(P ) can be found either on the basis

of interval analysis [6] or by introducing some additional hypothesis. For example, supposing
that all the components of F (x) on the X set satisfy the Lipschitz condition with constants
Lj =

n∑

i=1

max
x∈X

∣∣∣∣∣
∂F j(x)

∂xi

∣∣∣∣∣, 1 ≤ j ≤ m, we have:

Gj(Pi) = F j(ci)− 1

2
· Lj · ‖di‖∞. (6)
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If in addition F (x) satis�es Lipschitz condition with constants M j =
n∑

k=1

n∑

i=1

max
x∈X

∣∣∣∣∣
∂2F j(x)

∂xi∂xk

∣∣∣∣∣,

1 ≤ j ≤ m, then:

Gj(Pi) = F j(ci)− 1

2
‖di‖∞ min{Lj, |F j

x(ci)|1 +
1

4
M j‖di‖∞}. (7)

It is obvious that these functions G(P ) satisfy conditions (4), (5).

4. DESCRIPTION OF MCO METHODS

Now we are going to describe two algorithms for the approximate solution of the problem (1).
During the computation process the algorithms will generate the sequence of the boxes

Bk = {P1, P2, . . . , Pk}, all Pi ⊂ X,

and the corresponding sequence of these boxes midpoints

Nk = {c1, c2, . . . , ck}.

Let each box Pi be linked with the structure Si = (ci, di, Gi), where Gi = G(Pi). We call the
set S for the sequence Bk the structure list

S = {S1, S2, . . . , Sk}.

Algorithms di�er in the interpretation of the solution and time consuming. The W ε
∗ set is

obtained by one of them (second algorithm) and a single point xr from the Xε
∗ set � by another

(�rst algorithm). The general scheme of both algorithms is described below.

Algorithm.
Initial actions:

1). Let P1 = X, calculate c1, d1, F (c1), G1 = G(P1) and set B1 = {P1}, S1 = (c1, d1, G1),
S = {S1}.

Main cycle:

2). Choose the box Ps from Bk, for which min
1≤i≤k

max
1≤j≤m

Gj
i is achieved.

3). Choose a coordinate direction t in box Ps, parallel to which Ps has an edge of maximum
length, i.e. dt

s = max
1≤i≤n

di
s. Bisect Ps in the direction t, getting boxes Pα, Pβ with midpoints

cα, cβ, and diagonals dα, dβ, respectively.

4). Calculate F (cα), F (cβ), modify Wk (or xr) and de�ne the vector values Gα = G(Pα),
Gβ = G(Pβ).

5). Remove the box Ps from the sequence Bk, i.e. remove the structure Ss from the list S. Add
into the list S two structures: Sα = (cα, dα, Gα) and Sβ = (cβ, dβ, Gβ), assuming Ss = Sα

and Sk+1 = Sβ.

6). For all Si from the list S check the following condition: if F (xj) ≤ G(Pi) + ε for any xj

from Wk (or for xr), then remove Si from the list S and remove Pi from Bk. Order new
list {Si1 , Si2 , . . . , Sip} and give it the name S = {Si}1≤i≤p.
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7). Let k = p. If k 6= 0, i.e. S is not empty, then go to 2.

Concluding operations:

8). Invoke output procedure. Stop computation.

The construction rule for W ε
∗ .

Let W1 = {c1}.
Let we have Nk, Nk+1, Wk. Then
i) if there exists xi ∈ Wk such that F (xi) ≤ F (xk+1), then Wk+1 = Wk;
ii) otherwise Wk+1 = (Wk\V ) ∪ {xk+1}, where V = {xi ∈ Wk : F (xk+1) ≤ F (xi)}.

The above (second) algorithm de�nes as a result the ε-net of the Pareto set (i.e. Wq = W ε
∗ )

using the �nite number of F evaluations.

The rule for �nding a single point from Xε
∗ .

Let xr = c1.
Let ck was obtained. Then if F (ck) ≤ F (xr), then xr = ck.

The above (�rst) algorithm de�nes the point xr ∈ Xε
∗ using the �nite number of F evalua-

tions.

5. PROBLEM SOLVING IN MCO PACKAGE

The task below was solved in order to investigate the quality of MCO algorithms. Full de�nition
of this task is given in [7]. The solution based on the sequence of minimization subtasks was
found there. This task includes two criteria, �ve parameters and has the following form:

min
x∈X

F (x), (8)

where
F 1(x) = 1−

n∏

i=1

[
1− (1− ri)xi+1

]
, F 2(x) =

n∑

i=1

ci · xi,

X = {xi ∈ N : 0 ≤ xi ≤ 10, 1 ≤ i ≤ n}, n = 5, vectors c and r are given in the Table 1.
Two solutions were obtained using both algorithms with di�erent accuracy vectors ε. Vector

function G was de�ned in accordance to (6). Lipschitz constants vector was chosen to be
L = [0.7, 0.7]. This value is good higher estimation for the given vector function. The results
for the �rst algorithm are given in Table 2 for di�erent accuracies. Table 3 contains the results
for the second algorithm with the accuracy vector ε = [0.1, 0.35].

t 1 2 3 4 5
ci 0.13 0.13 0.15 0.14 0.15
ri 0.90 0.75 0.65 0.80 0.85

Table 1. Coe�cients for task (8).
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accuracy criteria parameters crit.
ε1 ε2 F 1(x) F 2(x) x1 x2 x3 x4 x5 evaluations

0.20 0.50 0.575 0.43 0 0 0 2 1 163
0.15 0.40 0.444 0.44 0 0 1 1 1 335
0.10 0.35 0.336 0.55 1 1 1 1 0 591

Table 2. Single points from the Xε
∗ set for di�erent accuracies.

N◦ F 1(x) F 2(x) x1 x2 x3 x4 x5

1 0.096 1.12 1 2 2 2 1
2 0.125 0.98 1 2 2 1 1
3 0.166 0.85 1 1 2 1 1
4 0.198 0.83 1 2 1 1 1
5 0.236 0.70 1 1 1 1 1
6 0.305 0.57 0 1 1 1 1
7 0.336 0.55 1 1 1 1 0
8 0.396 0.42 0 1 1 1 0
9 0.446 0.41 1 1 1 0 0
10 0.497 0.28 0 1 1 0 0

Table 3. ε-net of the Pareto set W ε
∗ for ε = [0.1, 0.35].

6. MCO PACKAGE DIALOGUE CAPABILITIES

As was already mentioned above, the DISO system provides the user the uni�ed set of dialogue
capabilities to control every step of the solution process from the task de�nition up to the
analysis of the numerical results. Let's overview brie�y these capabilities.

The MCO task de�nition can be done using text processor which is part of the DISO system.
A special language DIFALG is used for task de�nition. This language is very similar to the
ALGOL-60. The inner form of the function representation is created as a result of the task
de�nition compilation process. The calculation of the numerical values of the functions in
a given point is based then on the interpretation of this inner form. The peculiarity of the
DIFALG language is that its semantics includes the notion of the di�erentiation. Function
evaluation may be done in parallel with the �rst and second derivatives of this function in a
given point by the user request. The important point is that it gives the user not the numerical
approximation but the exact value of the derivatives, which corresponds to the analytically
evaluated value. The di�erentiation algorithms are based on a special highly e�ective approach
which qualitatively increases the calculation speed.

Task de�nition includes comment lines. The system automatically de�nes the optimization
class and passes the control to the correspondent dialogue monitor analyzing these comments.
For example, to de�ne MCO problem, the user marks with the special comment those functions
in the DIFALG listing which he wants to be included to the set of the criteria. The other
comments mark the functions to be included to the equality and inequality restriction sets. If
any, the problem will be classi�ed as nonlinear (single or multicriteria) programming model.
Special comments de�ne the mode of optimization: local or global, give initial point value,
parallelepipedal restrictions in the parameter space etc. The user may return to the task
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de�nition step at any moment of the solution, make some modi�cations and continue the
solution process.

The user initiates the dialogue session �nishing the task de�nition. The set of control
windows become available to him at this moment. Each window provides the user with some
resources to control the solution process. The MCO dialogue monitor opens the access to the
three windows.

The �rst one provides the capabilities for manual analysis of the functions local properties
in a given point. It also controls the MCO method choice, initiation and termination. As was
mentioned above, the DISO windows are structured in a sense that they include the di�erent
sets of �elds to access the variables and control their values. The �rst MCO window contains
the �elds for the decision vector, criteria values vector, list of methods available etc. The user
may move the cursor to the parameter vector and give this vector some initial value. The cursor
movement to the criteria �eld automatically yields in the recalculation of the criteria functions
in a given point with immediate output of the numerical results in this �eld. The �eld which is
connected with the list of available methods plays the role of the menu. Each method has its
own list of control parameters. The choice of the method automatically provides the user with
the new list of �elds for control parameters which appear in the window and become accessible
by the ordinary routine of the cursor movement. Another �eld is responsible for the type of
the solution: the user can choose ε-approximation of the Pareto set or single-point solution as
it was mentioned above. Finally, the window has the menu �eld to run the method, stop it and
switch to the task modi�cation mode.

The second window provides the user with the view of the Pareto set in the process of its
creation. With the help of the �elds in this window the user can point out two coordinate axis
to de�ne the two-dimensional plain to create the projection of the Pareto set. The solution
process will show each new Pareto point in the special graphical �eld of this window. Finishing
the solution process the user may enter the mode of Pareto set analysis. The cursor will take
the form of the arrow in the Pareto �eld. The user can move this arrow from one Pareto point
to another, visualizing correspondent numerical values of criteria and parameter vectors. The
user can store the Pareto set in a �le with a given name or retrieve previously de�ned Pareto
set and continue the solution to achieve more accurate Pareto approximation.

The third window gives the possibility to visualize the covering technique in the parameter
space. Each method has its own covering strategy. The user can visually estimate the e�ciency
of the chosen covering scheme for the given task to be solved.

The system provides the possibility of asynchronous control which includes, for example,
switching from one window to another while the optimization process continues it's progress.

7. CONCLUSION

The MCO methods described in this paper were tested using several tasks and proved to be
rather e�ective. There exist several reasons of the methods success. First, unlike the known
methods, these methods are strongly oriented on the e�ective use of the computer memory which
decreases the amount of function evaluation. This is most valuable feature if function evaluation
takes long time. Second, the interval analysis technique makes it possible to eliminate the initial
Lipschitz constant estimation. Third, there exists a simple and natural way to organize parallel
calculations by the feasible domain division between several processors. Fourth, the described
methods permit the inclusion of local search algorithms, which may speed the calculations
enormously. Fifth, the second of the proposed methods creates the Pareto set using nonuni�ed
one-way covering technique, instead of the common approach, which is based on the manifold
solution of the auxiliary tasks on the feasible domain.
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Dialogue MCO package, which is part of the DISO system, is a promising numerical basis
for the implementation of numerous decision support systems.
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