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A RELAXATION METHOD FOR
NON-LINEAR PROGRAMMING PROBLEM1

Yu.G. EVTUSHENKO and V.G. ZHADAN
Moscow

A relaxation method for �nding local solution of the general nonlinear programming
problem is described. The convergence is proved and the rate of convergence is
investigated. The extension to �nding of saddle-points is given. The results of
numerical computations are presented. The paper develops the approach described
in [1, 2]. Other versions of relaxation methods are given in [3, 4].

1 CONTINUOUS VERSION OF THE METHOD

We consider the general nonlinear programming problem

min
x∈X

F (x), X = {x ∈ En : g(x) = 0e1, h(x) ≤ 0c1, 0n1 ≤ x}, (1.1)

where Ei is i-dimensional Euclidean space and 0ij is the i × j null-matrix, whose elements
are all zero. The continuously di�erentiable functions F (x), g(x), h(x) realize the mappings
F : En → E1, g : En → Ee, h : En → Ec. We introduce the set

X0 = {x ∈ En : g(x) = 0e1, h(x) < 0c1, 0n1 < x}.
Here X0 is a relative interior set. Each x ∈ X0 is called the interior point. If x ∈ X\X0, then
we say that x is a boundary point. It will be convenient to combine constraints of the equality
and the inequality types in the single symbol R = [g, h] = [R1, . . . , Rm]. The vector function
R(x) thus realizes the mapping En → Em, where m = e + c. Let Rx(x) be the n ×m matrix
in which the (i, j)-th element is ∂Rj(x)/∂xi. We denote by D(z), D1/2(z) diagonal matrices
in which the i-th diagonal elements are, respectively, zi, (zi)1/2; the dimensionalities of these
matrices are determined by the dimensionality of the vector z. The superscript �>� on a vector
or matrix denotes transposition.

Denote ξ(R) = {ξ(R1), . . . , ξ(Rm)}, ξ(x) = {ξ(x1), . . . , ξ(xn)}, where the function ξ(z) of a
scalar argument is de�ned and continuous for all z ≥ 0, z(0) = 0 and ξ(z) > 0 for z > 0. Hence
ξ(−hi(x)) > 0, ξ(x) > 0n1 for any x ∈ X0. We can put e.g., ξ(z) = z. To obtain the numerical
solution of problem (1.1), we propose to �nd the limit (as t →∞) points of the solution of the
Cauchy problem for the system

ẋ = −D(ξ(x))[Fx(x) + Rx(x)v], x(0) = x0 ∈ X0. (1.2)

Here, the point above a letter denotes di�erentiation with respect to the independent variable
t, while the vector v ∈ Em is found by solving the system of linear equations

G(x)v + R>
x (x)D(ξ(x))Fx(x) = 0m1, (1.3)
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where
G(x) = R>

x (x)D(ξ(x))Rx(x) + D(ξ(−R(x))).

If there are no constraints apart from x ≥ 0n1, the method (1.2) has to be written as

ẋ = −D(ξ(x))Fx(x). (1.4)

We �nd v from (1.3) and substitute into the right-hand side of system (1.2); then (1.2) can
be written as

ẋ = −M(x)Fx(x), (1.5)
where

M(x) = D(ξ(x))
{
In −Rx[R

>
x D(ξ(x))Rx + D(ξ(−R))]−1R>

x D(ξ(x))
}

,

and Ii is the identity i× i matrix. We introduce the index set:

σ(x) = {i : Ri(x) = 0, i = 1, 2, . . . ,m}.

De�nition 1. The constraint R(x) ≤ 0m1 satis�es the constraint quali�cation (CQ) at the
point x if the vector function R(x) is continuously di�erentiable at x, and all vectors Ri

x(x),
where i ∈ σ(x), are linearly independent.

Lemma 1. If at every point x ∈ X\X0 the constraint R(x) ≤ 0m1 satis�es the CQ, then
the matrix Q(x) = R>

x (x)Rx(x) + D(ξ(−R(x))) is non-singular, and positive semi-de�nite for
all x ∈ X.

Proof. We write the matrix Q(x) as a product of a rectangular matrix B(x) of dimension-
ality m × (n + m) and the transposed matrix B>(x), where the matrix B(x) consists of two
block matrices:

B(x) = ‖R>
x (x) D1/2(ξ(−R(x)))‖, Q(x) = B(x)B>(x).

The lemma will be proved if we show that, for any x ∈ X, the rank of B(x) is equal to m,
since, if the rank of B(x) is maximal (equal to m), then it will follow that Q(x) is non-singular
and positive semi-de�nite. If there are no equality type constraints, then at every interior
point x ∈ X0 the rank of the matrix B(x) is equal to m since in this case, as the non-zero
minor of B(x) we can take the diagonal matrix D1/2(ξ(−R(x))). The lemma is also obvious if
R(x) = 0m1. Since the vectors Ri

x(x) are linearly independent, the matrix R>
x (x) will have a

non-zero minor of order m.
Let k components, e < k < m, of the vector function R(x) be zero at x ∈ X. It can

be assumed without loss of generality that these components are R1(x), . . . , Rk(x). Then, the
values of the functions Rk+1(x), . . . , Rm(x) are strictly less than zero. We isolate in the k × n
matrix

V1(x) =

∥∥∥∥∥∥∥

(R1
x(x))>

. . . . . . . . .
(Rk

x(x))>

∥∥∥∥∥∥∥
a k × k matrix C(x) such that its determinant, which is a minor of the matrix V1(x) of order
k, is non-zero. Such a minor exists, by the constraint quali�cation. The determinant of the
m×m matrix

V2(x) =

∥∥∥∥∥∥∥∥∥∥∥

C(x) 0k×(m−k)

0(m−k)×k

ξ1/2(−Rk+1(x)) 0
. . . . . .
0 ξ1/2(−Rm(x))

∥∥∥∥∥∥∥∥∥∥∥
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is non-zero. But the determinant of the matrix V2(x) is at the same time a minor of order m
of the matrix B(x). Hence the rank of the matrix B(x) is maximal, i.e., is equal to m. The
lemma is proved.

Let ei denote the i-th unit vector.
De�nition 2. The constraints R(x) ≤ 0m1 and 0n1 ≤ x satisfy the CQ at the point x if

the vector function R(x) is continuously di�erentiable at x and all the vectors Rj
x(x), where

j ∈ σ(x), and the vectors ei, such that xi = 0, are linearly independent.
By this de�nition, if the constraints satisfy the CQ at the point x, then the number of

components of the vectors R(x) and x, which vanish simultaneously, is not greater than n.
Lemma 2. If at every point x ∈ X\X0 the constraints R(x) ≤ 0m1, 0n1 ≤ x satisfy the

CQ, then G(x) is a non-singular positive semi-de�nite matrix for all x ∈ X.
Proof. Let us show that, for any x ∈ X, the rank of the m× (n + m) matrix

Ψ(x) = ‖R>
x (x)D1/2(ξ(x)) D1/2(ξ(−R(x)))‖

is equal to m. It will then follow, from the representation G(x) = Ψ(x)Ψ>(x), that the matrix
G(x) is non-singular and positive semi-de�nite. The lemma is obvious if x = 0n1 because of
in this case we necessarily have R(x) < 0m1 and G(x) = D(ξ(−R)). Now let x 6= 0n1. The
pair set R(x), −x can be regarded as a single vector function (R(x),−x), and Lemma 1 can be
applied to it. In this case we have an (m + n) × (m + 2n) matrix B1 which is can be written
in the block form:

B1 =

∥∥∥∥∥∥
R>

x D1/2(ξ(−R)) 0mn

−In 0nm D1/2(ξ(x))

∥∥∥∥∥∥
.

Assume that, among the components of the vector x, there are s ones which are equal to
zero, s > 0. Let the vector x can be splitted in two vectors x = {y, z}, where y 6= 0k1, y ∈ Ek,
z = 0s1, k = n − s. In the same way, R>

x = {R>
y , R>

z }, where R>
y , R>

z are m × k and m × s
matrices, respectively. We write the matrix B1 as

B1 =

∥∥∥∥∥∥∥

R>
y R>

z D1/2(ξ(−R)) 0mk 0ms

−Ik 0ks 0km D1/2(ξ(y)) 0ks

0sk −Is 0sm 0sk 0ss

∥∥∥∥∥∥∥
.

By Lemma 1, the rank of the matrix B1 is maximal and equal to m + n. Hence we can extract
from B1 a square matrix B2 of order n + m, the determinant of which is a non-zero minor of
the matrix B1. Since all the matrices in the lower matrix-row of B1 are null-matrices, apart
from −Is, the matrix B2 must necessarily contain a column

T =

∥∥∥∥∥∥∥

R>
z

0ks

−Is

∥∥∥∥∥∥∥
and B2 =

∥∥∥∥∥∥∥∥

B3

T
0sk

∥∥∥∥∥∥∥∥
.

The (m+k)×(m+k) matrix B3 is non-singular. This follows from the Frobenius formula, since
|B2| = |− Is| |B3|. Omitting the column T in the matrix B1, along with the bottom matrix-row
and the right-hand null-matrix-column, we get the matrix

B4 =

∥∥∥∥∥
R>

y D1/2(ξ(−R)) 0mk

−Ik 0km D1/2(ξ(y))

∥∥∥∥∥
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of dimensionality (m + k)× (m + 2k), from the elements of the matrix B4. The matrix B3 can
be formed. The rank of B4 is, therefore, maximum. If we omit in B4 any k rows, then the rank
of the resulting matrix will also be a maximum. Removing from B4 the bottom matrix-row
and the right-hand null-matrix-column, we obtain the matrix of rank m

B5 = ‖R>
y D1/2(ξ(−R))‖.

We multiply B5 on the right by the non-singular diagonal matrix

B6 =

∥∥∥∥∥
D1/2(ξ(y)) 0km

0mk Im

∥∥∥∥∥

and complement the product by the matrix R>
z D1/2(ξ(z)); both these operations do not change

its rank. As a result we obtain the matrix

‖R>
y D1/2(ξ(y)) R>

z D1/2(ξ(z)) D1/2(ξ(−R))‖ = Ψ(x).

If x > 0, i.e., k = n, s = 0, then the second and last matrix-columns and the last matrix-
row disappear from the matrix B1. Then, in order to obtain Ψ(x), we have to omit in B1 the
bottom matrix-row, the right-hand null-matrix-column, and the remaining matrix B5 has to
be multiplied by B6. The rank of the matrix Ψ(x) is equal to m.

We �nd from Lemma 2 that, if the CQ is satis�ed at every boundary point of X, then the
matrix G(x) has an inverse at any point of the set X, and the right-hand sides of the system
(1.2) are de�ned everywhere on X.

We shall say henceforth that the CQ holds everywhere on X, if it holds at each boundary
point of the set X.

Lemma 3. If the conditions of Lemma 2 hold, then the symmetric matrix M(x) is positive
semi-de�nite for all x ∈ X.

Proof. We introduce the matrices

K1 = −[R>
x D(ξ(x))Rx + D(ξ(−R))]−1R>

x D(ξ(x)),

K =

∥∥∥∥∥
D1/2(ξ(x))(In + RxK1)

D1/2(ξ(−R))K1

∥∥∥∥∥

of dimensionalities m× n and (m + n)× n, respectively. The proof of the lemma follows from
the representation M = K>K, which can be shown to hold by direct calculations.

If x∗ is a local solution of problem (1.1) and the constraints R(x) ≤ 0m1, 0n1 ≤ x satisfy the
CQ, then the vector v∗ ∈ Em must exist, such that

D(x∗)(Fx(x∗) + Rx(x∗)v∗) = 0n1, vi
∗ ≥ 0, 1 + e ≤ i ≤ m,

D(R(x∗))v∗ = 0m1, Fx(x∗) + Rx(x∗)v∗ ≥ 0n1.
(1.6)

In the case of convex programming problem (when the constraints g(x) are linear, and the
functions h(x) and F (x) are convex), conditions (1.6) are su�cient for a minimum in problem
(1.1).

We introduce the set Z = {x : F (x) ≤ F (x0), x ∈ X}. Throughout what follows, we shall
assume that system (1.2) de�nes a unique solution x(x0, t) for every x0 ∈ X.

Lemma 4. Assume that the functions F (x) and R(x) are continuously di�erentiable every-
where on the compact set X, the constraints R(x) ≤ 0m1 and 0n1 ≤ x satisfy the CQ. Then the
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solutions x(x0, t) of system (1.2) can be prolonged as t → ∞, and the sets X, Z are positive-
invariant (i.e., x0 ∈ X implies that x(x0, t) ∈ X and x0 ∈ Z implies x(x0, t) ∈ Z for all t ≥ 0).

Proof. Computing the �rst derivatives of the functions R(x) and F (x) along the trajectories
of system (1.2), we obtain

Ṙ = D(v)ξ(−R), Ḟ = −‖D1/2(ξ(x))Hx(x, v)‖2
n − ‖D1/2(ξ(−R))v‖2

m. (1.7)

Here Hx(x, v) = Fx(x) + Rx(x)v, ‖z‖2
i = z>z, and i is the dimensionality of the vector z.

System (1.2) has a solution at least for those t for which x(x0, t) ∈ X. Let us show that
the solution x(x0, t) does not leave the set X for any t ≥ 0. Suppose that Rj(x(x0, t)) > 0
for some t > 0. Then an instant t1 exists, such that Rj(x(x0, t1)) = 0 and Ṙj(x(x0, t1)) > 0,
which contradicts (1.7), since ‖v(t1)‖m < ∞. Similarly, it follows from the system (1.2) that
x(x0, t) ≥ 0n1. The functions ξ(x), ξ(−R) introduced above thus play the role of �barriers�,
preventing the trajectory x(x0, t) from passing through the surface x = 0n1, R(x) = 0m1. The
trajectory x(x0, t) can approach the boundary points only as t → ∞. If the initial point x0

is on the boundary, then the entire trajectory of system (1.2) belongs to the boundary. The
functions gi(x) which de�ning equality-type constraints are integrals of system (1.2). Hence,
since the set X is bounded, the solutions of system (1.2) are extendable as t →∞, and the set
X is positive-invariant with respect to (1.2). From this and (1.7) it follows that the set Z is
also positive-invariant.

Denote by x̄ the points of X at which the right-hand sides of system (1.2) vanish; they will
be referred to as stationary points. The corresponding values v(x̄) will be denoted by v̄. At
the point x̄ the following conditions are satis�ed:

D(ξ(x̄))Hx(x̄, v̄) = 0n1, D(ξ(−R(x̄)))v̄ = 0m1,

R>
x (x̄)D(ξ(x̄))Rx(x̄)v̄ + R>

x (x̄)D(ξ(x̄))Fx(x̄) = 0m1.
(1.8)

Each point x∗ being a local solution of problem (1.1) is a stationary point. For, otherwise,
taking x∗ as an initial point for the system (1.2), we would have that the solution x(x∗, t) ∈ X
and F (x(x∗, t)) < F (x∗) for t > 0, since dF (x∗)/dt < 0. But this contradicts the conditions for
a local minimum of the function F (x).

Theorem 1. Let the conditions of Lemma 4 be satis�ed, and let all the stationary points of
the set X be isolated. Then for any non-stationary initial points x0 ∈ X0 the solution x(x0, t)
of system (1.2) converges to an admissible stationary point, at which the necessary (and also
the su�cient, in the case of a convex programming problem) conditions for a minimum (1.6)
are satis�ed.

Proof. Let x0 be an arbitrary point in X0, and let x(x0, t) be a solution of the Cauchy
problem (1.2). Since the set X is compact, the set of ω-limit points Ω for the solution x(x0, t)
is non-empty. Let us show that ω belongs to the set of admissible stationary points. Since
F (x) is bounded below on X, and F (x(x0, t)) is a monotonically decreasing function, then, by
[5, 6], all the points of ω lie on the same level surface of the function F . Let x̃ ∈ ω. We draw
a trajectory x(x̃, t) through x̃. Any point of it will also belong to ω, so that Ḟ (x(x̃, t)) ≡ 0
and hence Ḟ (x̃) = 0. But it is clear from (1.7) that this is only possible when x̃ is a stationary
point for system (1.2). Hence, since all the stationary points of X are isolated, we �nd that ω
consists of the single admissible stationary point x̃, to which x(x0, t) converges as t →∞.

For every x = x(x0, t) we can de�ne from (1.3) ϕj(t) = vj(x(x0, t)), j = 1, 2, . . . , m, and
evaluate ψi(t) = Hxi(x(x0, t), v(x(x0, t))), i = 1, 2, . . . , n. These functions are continuous, so
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that the existence of the limit
x1 = lim

t→∞x(x0, t)

implies the existence of the limits

ϕ̄j = lim
t→∞ϕj(t), ψ̄i = lim

t→∞ψi(t).

Let us show that, for j = e + 1, . . . , m, i = 1, . . . , n they are non-negative. At the limit point
x1 conditions (1.8) hold, and ψ̄i = 0, if xi

1 > 0. Now consider the case when xi
1 = 0. We �nd

from the system (1.2) that

xi(x0, t) = xi
0 exp(−Φi(t)), Φi(t) =

t∫

0

ξ(xi(x0, τ))

xi(x0, τ)
ψi(τ)dτ.

Assume that ψ̄i < 0; then a t̄ > 0 can be found such that ψi(t) < 0 for all t > t̄, and hence
Φi(t) < Φi(t̄) for the same t. But this contradicts the condition xi

1 = 0. Thus, ψ̄i ≥ 0,
i = 1, 2, . . . , n. We can show in the same way, with the aid of (1.7) and (1.8), that ϕ̄j ≥ 0,
j = e + 1, . . . , m. In view of this and (1.8), it follows that the necessary conditions (1.6) hold
at x1. The theorem is proved.

It can easily be seen that the conditions of this theorem can be relaxed by requiring that
they are all satis�ed on the set Z, rather than on X.

In the case of convex programming problems the requirement that the solution of problem
(1.1) be unique does not seem to be essential. We proved this fact in one particular case. The
following result takes place.

Theorem 2. Let F (x) be a convex, continuously di�erentiable function, let g(x), h(x) be
linear, and let the constraints R(x) ≤ 0m1, 0n1 ≤ x satisfy the CQ everywhere on the compact
set X. Then the solutions of system (1.2) converge to the solutions set of problem (1.1) for any
x0 ∈ X0.

The method (1.2) allows considerable arbitrariness in the choice of the function ξ(z). Each
of the constraints can be taken into account for with the aid of a special function. In cases when
there is no constraint x ≥ 0n1 in problem (1.1), the matrix D(ξ(x)) is replaced in (1.2) � (1.8)
by the identity matrix. If instead of the condition x ≥ 0n1 the constraint x ≥ a is imposed,
then we write D(ξ(x − a)) instead of D(ξ(x)) in the expression mentioned. If the constraints
have the form ai ≤ xi ≤ bi or cj ≤ hj(x) ≤ dj, then we introduce two barrier functions
ξ1(x), ξ2(h(x)), in which the i-th and j-th components are e.g., ξi

1(x) = (xi − ai)(bi − xi),
ξj
2(h(x)) = (hj(x)− cj)(dj − hj(x)). Systems (1.2) and (1.3) have the form

ẋ = −D(ξ1(x))(Fx + Rxv),
[
R>

x D(ξ1(x))Rx + D(ξ2(R(x)))
]
v + R>

x D(ξ1(x))Fx = 0m1.

Hence constraints of this type do not increase the order of the linear system (1.3).
If there are no constraints of inequality type in problem (1.1) (m = e, R(x) = g(x), Rx(x) =

= gx(x), X0 = ∅), then (1.2) is the same as the method described in [7, Chapter 2, Section 3].
In this case the matrix M has the form

M(x) = In − gx(x)(g>x (x)g(x))−1g>x (x).

It is obvious that M(x)gx(x) = 0n1, MM = M , and hence M(x) projects any vector z ∈ En onto
the tangent manifold to the set X at the point x, i.e., onto the orthogonal complement of the
subspace generated by the vectors g1

x(x), . . . , ge
x(x). The stationarity condition M(x)Fx(x) =
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= 0n1 implies that the projection of the vector Fx(x) onto the tangent manifold is equal to zero
(the necessary condition for an extremum). The vector ẋ lies in the tangent manifold, with the
result that the gi(x) are integrals of system (1.2).

In method (1.2), the matrix M(x) projects the vector Fx(x) at the boundary points X onto
the tangent manifold to the set

Y (x) = {z ∈ En : Ri(z) = 0, i ∈ σ(x), zj = 0, if xj = 0},
so that there is no possibility of the trajectory x(x0, t) crossing the boundary of the set X. At
the points x where certain Ri(x) < 0, the projection M(x)Fx(x) onto Ri

x(x) is, by (1.7), equal
to ξ(−Ri(x))vi. For numerical calculations it is usual to take ξ(−Ri(x)) = −Ri(x). Hence the
rate of motion of the trajectories in the direction of the boundary Ri(x) = 0 tends to zero as the
boundary is approached. Di�erent �barrier� functions ξ(−R) lead to di�erent types of this rate.
The introduction of the functions ξ(x), ξ(−R) considerably simpli�es numerical computations
as compared with the gradient projection method [3], by automatically changing the direction
of the vector ẋ(x0, t) near the boundary.

Far away from the hypersurface hi(x) = 0, when hi(x) ¿ 0, one need not fear that the
trajectory x(x0, t) intersects on a small interval (t, t+δ), and the function hi(x) and its derivative
can be omitted in the expression for M(x), while they are introduced and the constraint is made
active only when −ε < hi(x(x0, t)) < 0, where ε > 0 is chosen, depending on the integration
step of the system (1.2). This device enables the order of system (1.3) to be reduced. Moreover,
the introduction of the barrier functions ξ(−R) can lead to the fact that hi(x(x0, t)) ≡ 0 for
hi(x0) = 0, or to the fact that |hi(x(x0, t))| becomes extremely small, in spite of the fact that
ḣi < 0. To avoid this drawback, we omit the functions hi, hi

x in the expressions for M , and
calculate on the basis of the new system the derivative ḣi = (hi

x)
>ẋ. If it turns out that the

derivative is negative, we continue the movement along the trajectory of this system. In other
words, when eliminating the �barrier�, we check whether this can be done without violating the
constraints. This procedure proves especially simple in the case when m = 0 and there is only
the constraint x ≥ 0n1 in system (1.1); system (1.4) is replaced by the following:

ẋi =

{ −Fxi , if xi > ε > 0 or 0 ≤ xi ≤ ε and Fxi ≤ 0,

−xiFxi/ε, if 0 ≤ xi ≤ ε and Fxi > 0.

Here, i = 1, 2, . . . , n. If Fx is continuous, then the right-hand sides of the system are also
continuous, and no sliding modes are present in the system.

In some particular cases, (1.2) transforms into the methods described in [1, 2].
Consider the linear programming problem de�ned in the standard form: to �nd

min
x∈X

c>x, X = {x : Ax = b, x ≥ 0n1}, (1.9)

where x, c ∈ En, b ∈ Em, and A is an m × n matrix. The dual problem to (1.9) consists in
�nding

max
p∈P

b>p, P = {p ∈ Em : A>p ≤ c}.
Setting ξ(z) = z we �nd that the method (1.2) for solving the primal problem leads to the

system
ẋ = D(x)(A>p− c), where AD(x)A>p = AD(x)c, x(0) = x0. (1.10)

In this case, c>ẋ = −‖D1/2(x)(c − A>p‖2
n ≤ 0, if x0 > 0n1, Ax0 = b. Similarly, for the dual

problem
ṗ = b− Ax, where [A>A−D(A>p− c)]x = A>b, p(0) = p0,

b>ṗ = ‖b− Ax‖2
m + x>D(c− A>p) ≥ 0,

(1.11)
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if A>p0 < c. The relaxation method for solving the primal problem (1.9) is e�ective, when
n À m. Similarly, method (1.11) is more suitable if n ¿ m. Methods (1.10) and (1.11) need
to be only slightly modi�ed in the case of quadratic programming problems.

For the algorithm to operate, it is important that the initial point x0 ∈ X0. If this point is
not known, it can be found by using the algorithm in the following way. Let

W 1(x) = {i : hi(x) < 0, 1 ≤ i ≤ c}, W 2(x) = {i : hi(x) ≥ 0, 1 ≤ i ≤ c},
W 3(x) = {i : |gi(x)| ≤ ε, 1 ≤ i ≤ e}, W 4(x) = {i : |gi(x)| ≥ ε, 1 ≤ i ≤ e}.

Here, ε is the admissible accuracy of satisfying the equality type constraints. We solve the
minimization problem for

f(x) =
∑

i∈W 2(x)

hi(x) +
∑

j∈W 4(x)

[gi(x)]2

under the constraints x ∈ W 5, where

W 5 = {x : x ≥ 0n1, hi(x) ≤ 0, i ∈ W 1(x), gj(x) = const, j ∈ W 3(x)}.
If, during the computations, it is found that, for certain values of x, the superscripts i do not
all belong to the set W 2(x), then we regard the functions hi(x) as constraints of the inequality
type, and exclude them from the expressions for f(x). We proceed in a similar way with
constraints of the equation type, including those for which |gj(x)| ≥ ε, in the expression for
f(x), and excluding those for which this condition is infringed. The process is continued until
we obtain àn admissible point.

Newton's method can be used to solve problem (1.1). Then, for the case ξ(z) = z we obtain
the following system of n + m equations:

ẋ = −U−1D(x)(Hx + Rxv̇), U = D(Hx) + D(x)Hxx,

v̇ = −[R>
x U−1D(x)Rx]

−1[R>
x U−1D(x)Hx −D(R)v].

This system is written in such a way that

D(x(t))Hx(x(t), v(t)) = D(x0)Hx(x0, v(x0))e
−t, Ṙ = −D(v)R.

The system is more complicated and we shall not dwell on it here.

2 ESTIMATION OF THE RATE OF CONVERGENCE

Method (1.2) can be used for �nding a saddle-point. In this case, however, we cannot use the
proof of convergence described in Section 1, since it was based on the monotonic property of
the function F (x(x0, t)). This property is absent in saddle-point problems. In short, di�erent
arguments are needed to justify the method. We give below an alternative proof of the conver-
gence of method (1.2), which extends to the case of �nding saddle-points and enables the rate
of convergence to be estimated. We shall con�ne ourselves to a summary and merely sketch
out the underlying ideas of the proofs of the theorems. For simplicity, we assume that the
constraints x À 0n1 are absent in problem (1.1) and that ξ(z) = z. When referring to problem
(1.1) and to the expressions of Section 1, this is the case we shall have in mind. As mentioned
above, we have to put D(ξ(x)) = In, D(ξ(−h)) = −D(h) everywhere in the expressions of
Section 1.

For points x ∈ X, v ∈ Em the following condition S can be stated: given any non-zero
vector z ∈ En+c such that

N(x)z = 0m1, (2.1)
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we have the inequality
z>Hzz(x, v)z > 0.

Here,

N(x) =

∥∥∥∥∥
g>x (x) 0mc

h>x (x) D([−2h(x)]1/2)

∥∥∥∥∥ ,

Hzz(x, v) =

∥∥∥∥∥
Hxx(x, v) 0nc

0cn D(ṽ)

∥∥∥∥∥

are m× (n + c) and (n + c)× (n + c) matrices, respectively, while

Hxx(x, v) = Fxx(x) +
m∑

i=1

viRi
xx(x)

is an n× n matrix, and ṽ = [ve+1, ve+2, . . . , vm].
Let us state the su�cient conditions for a minimum in problem (1.1).
Theorem 3. Let in order for the admissible point x∗ to be a local, isolated minimum of

problem (1.1), where F (x) and R(x) are be twice continuously di�erentiable functions, it is
su�cient that a vector v∗ ∈ Em exist, such that the stationary conditions

Hx(x∗, v∗) = Fx(x∗) + Rx(x∗)v∗ = 0n1, D(x∗)R(x∗) = 0m1

hold at the point x∗, and the condition S holds at the point (x∗, v∗).
Notice that it follows from the assumptions of the theorem that ṽ∗ ≥ 0m−e,1 and that the

strict complementary condition holds at the point x∗.
We introduce the vector y ∈ Ec by the relation

2hi(x) + (yi)2 = 0, i = 1, 2, . . . , c. (2.2)

We replace problem (1.1) by the following: to �nd min F (z) with respect to z = [x, y], x ∈ En,
y ∈ Ec, in the presence of the equality-type constraints g(x) = 0e1 and (2.2). This approach
has been widely used in other papers, see e.g., [8, 9]. The remaining arguments are similar to
those in the proof of Theorem 4 in [10].

De�nition 3. A solution x(t) of system (1.2) is said to be conditionally asymptotically
stable in the neighborhood of the point x∗ if for any given ε > 0 there exists δ > 0 such that
every solution x(x0, t) satisfying the condition ‖x0 − x∗‖n < δ is such that

‖x(x0, t)− x∗‖n < ε, lim
t→∞x(x0, t) = x∗ for all t ≥ 0.

Theorem 4. Let the su�cient conditions for a minimum, given in Theorem 3, hold at the
point x∗, and let the constraints satisfy the CQ on X. Then the solution x(x0, t) of system (1.2)
is conditionally asymptotically stable in the neighborhood of the point x∗. If, in addition,

z>Hzz(x∗, v∗)z ≥ γ‖z‖2
n+c > 0 for all z, N(x∗)z = 0m1, (2.3)

such that N(x∗)z = 0m1, then we have the following exponential estimation:

0 ≤ −Ḟ (x(x0, t)) = ‖Hx(x(x0, t), v(x(t)))‖2
n +

+ ‖D1/2(−R(x(x0, t)))v(x(t))‖2
m ≤ [‖Hx(x0, v(x0))‖2

n + (2.4)
+ ‖D1/2(−R(x0))v(x0)‖2

m]e−γt.
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Proof. We form the non-negative function

ϕ(x, v) =
1

2
H>

z (x, v)Hz(x, v).

Here
H>

z (x, v) = [H>
x (x, v), ṽ>(x(t, x0))D

1/2(−h(x))]

is a 1× (n + c) matrix row.
The function v(x(t)), de�ned by (1.3), is di�erentiable. It can, therefore, be di�erentiated

along the trajectories of system (1.2). Recalling that Ṙ = −R>
x Hx = −D(v)R, we obtain

ϕ̇ ≤ −H>
z HzzHz.

We use the S property, and put z = [Hx(x, v), D1/2(−h(x))ṽ] ∈ En+c, the condition (2.1)
will then hold for any t ≥ 0. The quadratic form in the expression for ϕ̇ is strictly negative, if
the elements of the matrices Hxx and D(ṽ) are evaluated at the point (x∗, v∗). But, in view of
the continuity of Hxx and D(ṽ), this property holds if (x, v) lies in a neighborhood of the point
(x∗, v∗). Hence ϕ̇ < 0 and ϕ̇ = 0 only at a stationary point (x∗, v∗), x∗ being a locally isolated
solution of problem (1.1). On the basis of (2.3) we get ϕ(t) ≤ ϕ(0)e−γt. Then, (2.4) follows
from (1.7). The theorem is proved.

3 DISCRETE VERSION OF THE METHOD

Integrating (1.5) by Euler's scheme, we get

xs+1 = xs − αsM(xs)Fx(xs), (3.1)

where 0 < αs are the integration steps.
If the conditions of Lemma 2 hold then the maximum value of the norm of the matrix M

can be de�ned on X by the relation

λ = max
x ∈ X

max
y∈En

y>M(x)y

||y||2 < ∞.

Put
µ = max

i
max
x∈X

∂H(x, v)

∂xi
, ν = max

j
max
x∈X

vj(x);

here, i = 1, 2, . . . , n, j = 1, 2, . . . , m, vj(x) is given by (1.3). In what follows we shall write
vj

s = vj(xs).
The function Fx(x) satis�es a Lipschitz condition on X with the constant L, if,

‖Fx(x1)− Fx(x2)‖n ≤ L‖x1 − x2‖n. (3.2)

for any x1 ∈ X, x2 ∈ X.
We shall assume for simplicity that ξ(z) = z, and αs are constants.
Theorem 5. If the conditions of Theorem 1 and condition (3.2) are satis�ed and the

function R(x) is linear, then for 0 < αs < min(1/µ, 1/ν, 2/λL) and for any non-stationary
initial points x0 ∈ X0 the sequence {xs} converges to an admissible stationary point, at which
the necessary conditions (and also su�cient conditions in the case of convex programming
problem) for a minimum (1.6) are satis�ed; here, xs ∈ X0, F (xs+1) ≤ F (xs) for s = 0, 1, . . ..
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If, moreover, γ‖z‖2
n+c ≤ z>Hzz(x, v(x))z ≤ Γ‖z‖2

n+c for all x ∈ X, z ∈ En+c, then given any
initial point x0 ∈ X0, we have

‖Hx(xs, vs)‖2
n + ‖D1/2(−R(xs))vs‖2

m ≤
≤ [‖Hx(x0, v0)‖2

n + ‖D1/2(−R(x0))v0‖2
m][1− αsγ + α2

sΓ
2]s,

(3.3)

and the sequence xs → x∗, where x∗ is the unique solution of problem (1.1).
Proof. Since the functions R(x) are linear, we have

Ri(xs+1) = Ri(xs)[1− αsv
i
s], i = 1, 2, . . . , m. (3.4)

Noting that Ri(x0) ≤ 0, |vi
s| < ν, we �nd that Ri(xs+1) ≤ Ri(x0)(1− αsν)s, if αs < 1/ν. Here,

for equation-type constraints Ri(x), i = 1, 2, . . . , e, it follows from Ri(xs) = 0 that Ri(xs+1) = 0
for any αs. It can be shown in the same way that, for αs < 1/µ, the components of the vector
xs have �xed sign for all s ≥ 0. Hence the set X is positive-invariant with respect to (3.1), as
in the continuous case.

From the Newton�Leibniz formula we have

F (xs+1) ≤ F (xs)− αsFx(xs)M(xs)Fx(xs) +
Lα2

s

2
‖M(xs)Fx(xs)‖2

n. (3.5)

The symmetric matrix M(xs) is non-negative de�nite, so that M will have a arithmetic square
root. Denote it by M1/2; then, M = M1/2M1/2. Introducing the vector y = M1/2Fx, we can
transform inequality (3.5) to the form

F (xs+1)− F (xs) ≤ αs‖y‖2
n

[
−1 +

αsL

2

y>M(xs)y

‖y‖2
n

]
≤ αs‖y‖2

n

[
−1 +

αsLλ

2

]
.

Thus for αs < 2/λL the sequence F (xs) monotonically decreases. Since F (x) is bounded from
below on X, it follows that the limit of F (xs) exists. Hence

lim
s→∞[F (xs+1)− F (xs)] = 0, 0 ≤ F>

x (xs)M(xs)Fx(xs) ≤ 2[F (xs)− F (xs+1)]

αs[2− αsλL]
,

lim
s→∞F>

x (xs)M(xs)Fx(xs) = 0.

Using the representation (1.7), we �nd that

lim
s→∞ ‖D(xs)(Fx(xs) + Rx(xs)vs)‖n = lim

s→∞ ‖D
−1/2(R(xs))vs‖m = 0,

i.e., at every limit point of the sequence xs, the stationarity conditions (1.8) must be satis�ed.
Since the stationary points are isolated, the following limits exist:

x̄ = lim
s→∞xs, R̄j = lim

s→∞Rj(x), v̄j = lim
s→∞ vj

s, H̄xi = lim
s→∞Hxi(xs, vs).

In accordance with (3.4), for R̄j = 0 the in�nite product
∞∏

s=0

[1− αsv
j
s]

must be zero. For this it is necessary [11] that
∞∑

s=0

ln[1− αsv
j
s] = −∞,
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but this is possible only if v̄j ≥ 0. If R̄j < 0, then we necessarily have v̄j = 0. It can be shown
in just the same way that H̄xi ≥ 0.

In short, at a limit point of the sequence {xs} the Kuhn�Tucker conditions (1.6) are satis�ed.
The convergence rate estimation (3.3) is obtained in the same way as (2.4). In the present

case, the �rst di�erence of the function ϕ has to be evaluated along the solution of system (3.1).
The theorem is proved.

Method (3.1) is specially e�ective if the equation-type constraints in (1.1) are linear, since
we can then take comparatively large steps αs and construct di�erent modi�cations of the
method. A steeped descent version of the method has been used successfully in this case. The
algorithm is not signi�cantly more complicated if the inequality type constraints are nonlinear.

Method (3.1) can be used for su�ciently small αs, if the functions gi(x) are nonlinear then
a check of the conditions |gi(xs)| < ε has to be provided, and if they are infringed, the current
value of xs has to be re�ned.

On the basis of the methods described, three standard programs for solving problem (1.1)
were developed at the computational Centre of the USSR Academy of Sciences. In the �rst
program, for the case when the g(x) are nonlinear, system (1.2) was integrated by Euler's scheme
with a �xed scheme with a �xed step; in the second, a method with variable step αs is realized;
the step is split up if the condition for the process to be of the relaxation type is infringed, or if
the point xs leaves the set of admissibility. In the third program, unimportant constraints of the
inequality type are omitted remote from the boundary. Let us quote some results of numerical
computations by the �rst program. Let n = 3, e = c = 1, F (x) = [x1 + x2 + x3]2 + 4[x1 − x2]2,
g(x) = x1 + x2 + x3 − 1, h(x) = 3 − 4x3 − 6x2 + [x1]3, x ≥ 0. As x0 we took the vector
(0.1, 0.7, 0.2). The system was integrated until the reduction of the function at each step was
not greater than 10−5. With αs = 0.1, we performed 83 steps, and obtained F = 1.8310951,
x1 = 0.2937327, x2 = 0.1001667, õ3 = 0.6061005. With αs = 0.5, the problem was solved after
13 steps; here, F = 1.831030, x1 = 0.2937386, x2 = 0.1001510, x3 = 0.6061104.

4 FINDING SADDLE POINTS

All the above methods can be extended in an obvious way to the problem of �nding a saddle
point of functions in the case of disconnected sets. Assume that we are seeking

min
x∈X

max
y∈Y

F (x, y), X = {x ∈ En : h(x) ≤ 0p1}, Y = {y ∈ Em : f(y) ≤ 0q1}.

We introduce the vectors v ∈ Ep, w ∈ Eq and put

Φ(x, y, v, w) = F (x, y) +
p∑

i=1

vihi(x) +
q∑

i=1

wif i(y).

In this case, the method (1.2) reduces to the systems ẋ = −Φx, ẏ = Φy, where

[h>x hx + D(−h)]v + h>x Fx = 0, [f>y fy + D(−f)]w + f>y Fy = 0.

The convergence conditions may be stated and proved in the same way as in Theorems 4, 5.
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