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Abstract. The present paper is devoted to the application of the space transformation techniques
for solving linear programming problems. By using a surjective mapping the original constrained
optimization problem is transformed to a problem in a new space with only equality constraints.
For the numerical solution of the latter problem the stable version of the gradient-projection and
Newton's methods are used. After an inverse transformation to the original space a family of numerical
methods for solving optimization problems with equality and inequality constraints is obtained. The
proposed algorithms are based on the numerical integration of the systems of ordinary di�erential
equations. These algorithms do not require feasibility of the starting and current points, but they
preserve feasibility. As a result of a space transformation the vector �elds of di�erential equations are
changed and additional terms are introduced which serve as a barrier preventing the trajectories from
leaving the feasible set. A proof of a convergence is given.
Keywords: Linear programming, space transformation, gradient-projection method, Newton's method,
interior point technique, barrier function, Karmarkar's method.

1. Introduction

Starting from 1973, we developed a family of numerical methods for solving a nonlinear pro-
gramming (NLP) problem [5] � [12]. On the basis of a space transformation the original NLP
problem with inequality constraints was reduced to a problem with equality constraints. The
stable version of the gradient-projection method and Newton's method were used for solving
this reduced problem. The numerical methods were found after performing an inverse trans-
formation. These methods were described by systems of ordinary di�erential equations. As a
result of the space transformation we obtained di�erential equations which prevented the tra-
jectories from crossing the boundary of the feasible set. Therefore, we termed these methods
�barrier-projection� and �barrier-Newton� methods. The space transformation was carried out
without using conventional barriers or penalty functions and this feature provided a high rate
of convergence. The analysis of the method was made on the basis of the stability theory of
the solutions of ordinary di�erential equations. Numerical algorithms were obtained as dis-
cretization of dynamical systems. We proved that the barrier-projection method had linear
convergence and did not require feasibility of initial vectors. We showed that under standard
assumptions the barrier-Newton method converged quadratically.

The purpose of this paper is to apply our results to linear programming (LP) problem.
After some simpli�cations and after choosing a particular exponential space-transformation
function we obtain Dikin's algorithm [4] from the barrier-projection method sometimes called
the �variation of Karmarkar's algorithm�. However, there are some di�erences between our
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approach:

1. We use mainly quadratic space transformation and owing to it we get faster local conver-
gence.

2. We developed a stable version of the projection method. Therefore, we did not restrict
ourselves to the interior point techniques. In our methods the current points are often
infeasible, but if the starting points or the current points are feasible, then the subsequent
trajectory remains in the feasible set, i.e. the feasibility is preserved.

3. We use multiplicative barrier functions and do not resort to a penalty-type algorithms.

4. In [11] we considered the steepest descent variants of our methods where the trajectory
could move along the boundary of the feasible set.

Here we brie�y describe our approach. Computational aspects, steepest descent are beyond
the scope of the present paper. More detailed analysis is given in [10] and [11].

2. Basic approach and outline of the methods

Consider the following nonlinear programming problem:

minimize f(x) subject to x ∈ X = {x ∈ Rn : g(x) = 0m, x ∈ P}. (1)

Here Rn denotes the vector space formed by n-dimensional column vectors with real entries.
The set P is assumed to have a nonempty interior. The functions f(x) and g(x) are continuously
di�erentiable, f(x) maps Rn onto R1 and g(x) maps Rn onto Rm, 0m is the m-dimensional null
vector, 0nm is the n ×m rectangular null matrix. The feasible set X and the set of solutions
X∗ are supposed to be nonempty. We assume di�erentiability whenever it is helpful to do
so. Subscripts will be used to distinguish values of quantities at a particular iteration and
superscripts will indicate components of vectors.

We introduce a new n-dimensional space with the coordinates [y1, . . . , yn] and make a dif-
ferentiable transformation from this space to the original one: x = ξ(y). This surjective trans-
formation maps Rn onto P or intP , i.e. P = ξ(Rn), where B̄ is the closure of B. With this
transformation the original NLP problem is transformed into the following problem in y-space:

minimize f̃(y) = f(ξ(y)) subject to y ∈ Y, (2)

where Y = {y ∈ Rn : g̃(y) = g(ξ(y)) = 0m}.
The Lagrangians associated with Problem (1) and (2) are de�ned by L(x, u) = f(x)+u>g(x),

L̃(y, u) = f̃(y) + u>g̃(y), respectively. To obtain the numerical solution of Problem (2) we seek
the limit points of the solutions of the system described by the following vector di�erential
equation:

dy

dt
= −L̃y(y, u(y)), (3)

where L̃y(y, u) = f̃y(y) + g̃>y (y)u, f̃y = J̃>fx, g̃y = gxJ̃ , gx(x) is the m× n Jacobian matrix of
g(x) with respect to x, J̃ = dx/dy is the Jacobian matrix of the transformation x = ξ(y) with
respect to y.

The function u(y) is chosen to satisfy the following condition:

dg̃

dt
= −g̃y(y)L̃y(y, u(y)) = −τ g̃(y), τ > 0. (4)
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If J̃(y) is a nonsingular matrix, then there exists an inverse transformation y = δ(õ), so it is
possible to return from the y-space to the x-space and we obtain in this way a matrix J(x) =
= J̃(δ(x)) which is now a function of x. By di�erentiating x(t) with respect to t, we obtain
from (3) and (4)

dx

dt
=

dξ

dy

dy

dt
= J(x)

dy

dt
= −G(x)Lx(x, u(x)), x0 ∈ P, (5)

Γ(õ)u(õ) + gx(x)G(x)fx(x) = τg(x), (6)
where we have introduced the two Gram matrices:

Γ(õ) = gx(x)G(x)g>x (x), G(x) = J(x)J>(x).

Let W be a m × n rectangular matrix whose rank is m. We introduce the pseudoinverse
matrix W+ = W>(WW>)−1 and the orthogonal projector π(W ) = In−W+W , where In is the
n×n identity matrix. The operator π(W ) projects any n-dimensional vector onto the nullspace
kerW = {z ∈ Rn : Wz = 0m}.

If at a point x the matrix gx(x) has full rank, then we can �nd from (6) the function u(x),
substitute it into the right-hand side of (5) and write (5) in the following projective form:

dx

dt
= −J(x)

{
π[gx(x)J(x)]J>(x)fx(x) + τ [gx(x)J(x)]+g(x)

}
. (7)

Let x(t, x0) denote the solution of the Cauchy problem (7) with initial condition x(0, x0) = x0,
x0 ∈ P .

If the condition x ∈ P is absent in Problem (1), if x0 ∈ X and/or τ = 0, then method (7)
coincides with the gradient-projection method which has been used by many authors (see, for
example, [16, 17]). In [10] we proved under standard assumptions that the solution of Prob-
lem (1) could be found as limit points of the trajectories x(t, x0) as t →∞.

The right-hand side of system (5) is well-de�ned for all x ∈ P . Sometimes G(x) can be
extended to an open set containing P so that system (5) is de�ned also for x such that they do
not belong to P .

We denote by D(z) the diagonal matrix containing the components of a vector z. The
dimensionality of this matrix is determined by the dimensionality of z.

For the sake of simplicity we consider now the particular case of Problem (1), where the set
P is the positive orthant, i.e. P = Rn

+. It is convenient for this set P to use a component-wise
di�erentiable space transformation ξ(y)

xi = ξi(yi), 1 ≤ i ≤ n. (8)

For such transformation the corresponding Jacobian matrix is diagonal and

J̃(y) = D(ξ̇(y)), ξ̇(y) = [ξ̇1(y1), ξ̇2(y2), . . . , ξ̇n(yn)]>.

Let δ(y) be the inverse transformation. Denote

J(x) = D(ξ̇(y))|y=δ(x), G(x) = J2(x) = D(θ(x))

with the vector θ(x) = [(ξ̇1(y1)2, (ξ̇2(y2))2, . . . , (ξ̇n(yn))2]|y=δ(x).
We impose on a space transformation ξ(y) the following conditions:

C1. The matrix G(x) is de�ned, continuous at each point x ∈ P and it is singular only on the
boundary of P .
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C2. θi(xi) = 0 if and only if xi = 0, where 1 ≤ i ≤ n.

C3. The space transformation ξ(y) satis�es condition C2, the map θ(x) is de�ned and di�e-
rentiable in a neighborhood of Rn

+, θ̇i(0) > 0, 1 ≤ i ≤ n.

C4. There exists α > 0 such that

θi(xi) = (xi)α + O((xi)α+1), 1 ≤ i ≤ n. (9)
Di�erent numerical methods are obtained by di�erent choices of the space transformations.

As a rule we perform the following quadratic and exponential transformations:

xi = ξi(yi) =
1

4
(yi)2, J(x) = D1/2(x), G(x) = D(x), (10)

xi = ξi(yi) = eyi

, J(x) = D(x), G(x) = D2(x). (11)
In these two cases the Jacobian matrix is singular on the boundary of the set P . These

transformations satisfy C1 and C2. Condition C3 holds only for transformation (10).
Applying the Euler method for solving system (5), we obtain

xk+1 = xk − hkG(xk)Lx(xk, u(xk)), x0 ∈ P, (12)

where hk > 0 is a stepsize.
In [10] we proved the local linear convergence of algorithm (12) if stepsize hk is �xed and

su�ciently small and transformation (10) is used.
We say that x is a regular point for Problem (1) if the vectors gi

x(x), 1 ≤ i ≤ m, are linearly
independent. The equation (6) can be rewritten as

gx(x)G(x)Lx(x, u(x)) = τg(x). (13)

Therefore, if the space transformation satis�es C2 and a regular point x is such that

G(x)Lx(x, u(x)) = 0n, (14)

then [x, u(x)] is a Kuhn�Tucker point of Problem (1). We say that x is an equilibrium point of
system (5) if the right-hand side evaluated at x is a null vector. The right-hand side of system
(5) de�nes a vector �eld which vanishes at equilibrium points. At every regular point this �eld
is nonvanishing except points x such that [x, u(x)] forms a Kuhn�Tucker pair.

Now we apply Newton's method for �nding a solution x of nonlinear equation (14). The
continuous version of Newton's method leads to the initial value problem for the following
system of ordinary di�erential equations:

Λ(x)
dx

dt
= −γG(x)Lx(x, u(x)), x(t, x0) = x0, (15)

where γ ∈ R1 is a scalar, Λ(x) is the Jacobian matrix of the mapping G(x)Lx(x, u(x)) with
respect to x:

Λ(x) = ĠD(Lx) + GLxx + Gg>x
du

dx
. (16)

Here all matrices and vectors are evaluated at a point x and the function u(x) is de�ned from
(13); we took into account that the transformation ξ(y) satis�es (8), therefore G is a diagonal
matrix and Ġ = D(θ̇). By di�erentiating equality (13) with respect to x, we obtain

gx

[
ĠD(Lx) + GLxx + Gg>x

du

dx

]
= τgx. (17)
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Here for the sake of simplicity we assume that g(x) is a linear function of x.
We �nd du/dx from (17) and after substituting it into (16), we obtain

Λ = [In −H][ĠD(Lx) + GLxx] + τH,

where H = Gg>x (gxGg>x )−1gx.

3. Barrier-projection method for linear programming

In this section we apply barrier-projection method (7) to a linear programming problem. In
(1) we set f(x) = c>x, g(x) = b − Ax, P = Rn

+, where ñ ∈ Rn, b ∈ Rm, and A is an m × n
real matrix with rank m, m < n. Now Problem (1) is stated in the standard LP form:

minimize c>x subject to X = {x ∈ Rn, b− Ax = 0m, x ≥ 0n}. (18)

We introduce the dual LP problem

maximize b>u subject to u ∈ U = {u ∈ Rm : v = c− A>u ≥ 0m}, (19)

where v = Lx(x, u) is a vector of dual slack variables.
We de�ne a relative interior set of X and an interior set of U :

X0 = {x ∈ Rn : Ax = b, x > 0n}, U0 = {u ∈ Rm : v = ñ− A>u > 0m}.
We assume that the set X0 and U0 are nonempty, the primal and dual nondegeneracies hold.
In this case both problems have unique solutions x∗ and u∗, respectively.

Applying methods (5) and (12) for solving Problem (18), we obtain the following continuous
and discrete versions

dx

dt
= −G(x)[c− A>u(x)], x(0, x0) = x0 > 0n, (20)

xk+1 = xk − hkG(xk)[c− A>u(xk)], x0 > 0n, (21)

where the function u(x) is found from linear equation (6) which can be rewritten as follows:

AG(x)A>u(x)− AG(x)c = τ(b− Ax). (22)

By di�erentiating the objective function with respect to t, we obtain

c>
dx

dt
= −‖J(x)(c− A>u(x))‖2 + τu>(x)(b− Ax).

Hence c>x(t, x0) is a monotonically decreasing function of t > 0, if x(t, x0) ∈ X or the
trajectory is close to X, i.e. ‖Ax(t, x0)− b‖ is su�ciently small.

If the space transformation ξ(y) satis�es (8), and conditions C1 and C2 hold, then system
(22) has a unique solution for all x ≥ 0n and the trajectories of (20) do not leave the positive
orthant Rn

+. Suppose not: let xi(T, x0) < 0 for some T > 0. Then there exists a time T∗ < T
such that xi(T∗, x0) = 0 and dxi(T∗, x0)/dt < 0. This contradicts (20) since, according to C2,
θi(xi(T∗, x0)) = 0. Thus a transformation function plays the role of a �barrier�, preventing the
trajectory x(t, x0) from passing through the boundary of P . Therefore, we call (7) and (20) a
�barrier-projection method�.

The system of ordinary di�erential equations (20) has the �rst integral

Ax(t, x0) = b + (Ax0 − b)e−τt. (23)
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This means that if τ > 0, then method (20) has a remarkable property: all its trajectories
approach the feasible set as t tends to in�nity and the polyhedra X is an asymptotically stable
attractor for the system (see [6, 11, 18]). Therefore, we call method (20) �the stable version of
the barrier-projection method�. On the contrary the well-known gradient-projection method
is neutrally stable with respect to the equality constraints. It means that, if Ax0 − b = β,
‖β‖ 6= 0, then Ax(t, x0)− b ≡ β for all t ≥ 0 and we have to introduce an additional correction
procedure in order to satisfy feasibility. This procedure increases the computation time.

From (23) it follows that, if Aõ0 = b, then Ax(t, x0) ≡ b for all t ≥ 0 and the trajectory
x(t, x0) of (20) remains in the feasible set X, the objective function monotonically decreases
along the trajectories. The gradient-projection method and the method described above can be
considered as particular cases of the interior point techniques. But we do not restrict ourselves
to only interior point techniques. Methods (7) and (20) belong to the more general family of
algorithms. In our methods the current points are often infeasible with respect to equality
constraint, but if the starting points or the current points are feasible, then the subsequent
trajectory remains in the feasible set, i.e. the feasibility is preserved.

Theorem 3.1. Let x∗, u∗ be unique solutions of Problems (18) and (19), respectively. Let
the space transformation ξ(y) satisfy conditions C2 and Ñ3. Then the system (20) with τ > 0
is asymptotically stable at the isolated solution point x∗. There exists h∗ > 0 such that for any
�xed 0 < hk < h∗ the sequence {xk}, generated by (21), converges locally with a linear rate to
x∗ while the corresponding sequence uk converges to u∗.

Proof. Denote δx(t) = x(t, x0)− x∗ and linearize system in the neighborhood of the point
x∗. Then we obtain the equation of the �rst approximation of (20) about the equilibrium point
x∗:

δẋ = −Qδx, (24)
where Q = MD(θ̇)D(v) + τP , M = In − P , P = GA>(AGA>)−1A. Here all functions are
evaluated at the points x = x∗, u = u∗ = u(x∗), v = v∗ = c− A>u∗.

The stability of system (20) is determined by the properties of the roots of the characteristic
equation

det(Q− λIn) = 0. (25)
For proof we split the vectors x∗ and v∗ in two vectors

x∗ =

[
xB
∗

xN
∗

]
, v∗ =

[
vB
∗

vN
∗

]
, (26)

where xB
∗ , vB

∗ ∈ Rm; xN
∗ , vN

∗ ∈ Rd; d = n −m. All components of the vectors xN
∗ and vB

∗ are
equal to zero and all components of xB

∗ and vN
∗ are interior, i.e. xB

∗ > 0, vN
∗ > 0. In a similar

way we represent vector θ(x∗) and matrices:

θ(x∗) =

[
θB
∗

θN
∗

]
, A = [B |N ], P =

[
PB PBN

PNB PN

]
,

J =

[
JB 0md

0dm JN

]
, (27)

GB = D(θB
∗ ) = JBJB.

From C2 it follows that θN
∗ = 0d, and PBN , PNB, PN are null matrices. Hence the matrix

Q can be decomposed into the following blocks

Q =

[
τIm Q3

0dm D(θ̇∗
N

)D(vN
∗ )

]
, Q2 = D(θ̇∗

N
)D(vN

∗ ),
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where the matrix Q3 is not essential.
The characteristic equation (25) is equivalent to two equations:

|(τ − λ)Im| = 0, |Q2 − λId| = 0.

The solutions of these equations are found explicitly: λj = τ , λi = θ̇i(xi
∗)v

i
∗, 1 ≤ j ≤ m,

m+1 ≤ i ≤ n. From Ñ3 and the strict complementary condition we obtain: λ̃ = min
s+1≤i≤n

λi > 0.
These results imply that all roots of the characteristic equation for the matrix Q are real

and the smallest root λ∗ = min[τ, λ̃] is positive. Hence, according to Lyapunov's linearization
principle, the equilibrium point x∗ is asymptotically stable and the following estimation holds:

lim
t→∞ sup

ln ‖x(t, x0)− x∗‖
t

≤ −λ∗.

Denote h∗ = 2/λ∗, where λ∗ = max
m+1≤i≤n

[τ, λi]. If the stepsize hk < h∗, then by Theorem
2.3.7 from [6], the linear convergence of the discrete version (21) follows from the proof given
above.

By introducing condition Ñ3, we assume that the matrix G(x) is di�erentiable at least in
the neighborhood of the solution point x∗. In this case we proved a local convergence. If G(x)
is de�ned only on the set X, then the local convergence takes place, if x0 ∈ X0 and x0 is
su�ciently close to x∗. In the last case we say that the trajectories x(t, x0) converge locally on
X0. If we use the exponential space transformation (11) and set τ = 0, then from (20), (22) we
obtain

dx

dt
= D2(x)(A>u(x)− c), AD2(x)A>u(x) = AD2(x)c. (28)

The discrete and continuous versions of this method were investigated in various papers
(see, for example, [1, 3, 4, 13, 14, 19, 20]). In [1] the discrete version was called �a variation
on Karmarkar's algorithm�. We should remark that method (28) does not possess the local
convergence property. Here the convergence takes place only if x0 belongs to the relative
interior of X. Theorem 3.1 cannot be used for the exponential space transformation (11)
because this transformation does not satisfy condition Ñ3. If we try to use the same approach,
then we obtain that among the roots of the characteristic equation (25) there are zero roots
and, therefore, Lyapunov's linearization principle can not be used. In this case the convergence
was proved by G. Smirnov on the basis of the vector Lyapunov function. He investigated the
transformation (9) and proved that, if α > 1, then ‖xN(t, x0)‖ ≈ O(t−1/(α−1)) as t → ∞.
If we use the quadratic space transformation (10), then ‖xN(t, x0)‖ ≈ O(e−λ∗t). Hence the
trajectories of system (20) with the quadratic transformation converge locally faster than the
trajectories of system (20) with the exponential transformation. Therefore, in our papers and
codes we used mainly the quadratic space transformation.

There is another interesting case, where P is a n-dimensional box, i.e. P = {x ∈ Rn : a ≤
≤ x ≤ b}. Here we use the following transformation:

xi = [ai + bi + (bi − ai) sin yi]/2, G(x) = D(x− a)D(b− x).

The statement of Theorem 3.1 is generalized for this case.
For the sake of simplicity in this section we consider the case where the quadratic space

transformation (10) is used, the starting point x0 ∈ X0 and there is a condition
n∑

i=1

xi = 1 (29)

7



among the equality constraints. Under the given assumptions methods (20), (21) and condition
(22) can be rewritten as follows:

dx

dt
= −D(x)[c− A>u(x)], x(0, x0) = x0 ∈ X0, (30)

xk+1 = xk − hkD(xk)[c− A>u(xk)], x0 ∈ X0, (31)
AD(x)[c− A>u(x)] = 0m. (32)

From (29) and (32) we have

c>x = x>A>u(x) = b>u(x), Ax = b,

c>
dx

dt
= b>

du

dt
= −‖D1/2(x)(c− A>u(x))‖2 ≤ 0.

(33)

We observe that the objective functions of the primal and dual problems monotonically decrease
along the trajectories of system (30). The duality gap is equal to zero along entire trajectories.

Introduce the Lyapunov function

V (x) =
∑

i∈JB(x∗)
xi
∗[ln(xi

∗)− ln(xi)],

where x∗ is a solution of (18) and JB(x∗) = {i ∈ [1 : n] : xi
∗ > 0}. The function V (x) is

well-de�ned everywhere on the set

X1 = {x ∈ X : xi > 0 for i ∈ JB(x∗)}.

Moreover, V (x∗) = 0 and V (x) > 0 for all x ∈ X1 such that x 6= x∗. It follows from the
following inequalities:

V (x) = − ∑

i∈JB(x∗)
xi
∗ ln

xi

xi∗
= − ln

∏

i∈JB(x∗)

(
xi

xi∗

)xi∗

> − ln


 ∑

i∈JB(x∗)
xi


 ≥ 0.

Using (33) we obtain that the derivative of Lyapunov's function along the solution of (30)
is

dV (x)

dt
= V >

x (x)ẋ = c>x∗ − x>∗ A>u(x) = c>(x∗ − x) < 0. (34)

This inequality holds for all x such that x ∈ X1, x 6= x∗.
For arbitrary x1 ∈ X0 de�ne a Lebesque level set Q(x0) = {x ∈ X1 : V (x) ≤ V (x0)}. This

set is compact and does not contain any vertex from X1 except x∗. By our choice x0 ∈ X1 and
(34) implies that V (x(t, x0)) ≤ V (x0) for all t ≥ 0. Hence x(t, x0) ∈ Q(x0).

Let us de�ne

K0 = min
x∈Q(x0)

〈c, x− x∗〉
V (x)

, K0 = sup
x∈Q(x0)

〈c, x− x∗〉
V (x)

. (35)

From these de�nitions we obtain directly

K0V (x) ≤ c>(x− x∗) ≤ K0V (x) (36)

for all x ∈ Q(x0).
Let ‖a‖∞ = max

1≤i≤n
|ai| be the Chebyshev norm of a vector a.
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Theorem 3.2. Suppose the assumptions of Theorem 3.1 hold and x0 ∈ X1, x0 6= x∗. Then
0 < Ê0 < K0 = ‖v∗‖∞ < +∞ and for all t ≥ 0 the following estimates hold:

V (x0)e
−K0t ≤ V (x(t, x0)) ≤ V (x0)e

−K0t. (37)

Proof. Inequalities (37) follow from (34) and (36). Now we show that Ê0 > 0 and K0 =
= ‖v∗‖∞ < +∞.

Let JB(x∗) = {1, 2, . . . , m}. Then partitions (26) and (27) take place. The same partition
we will use for arbitrary point x ∈ Q(x0).

Introducing new variables z = [z1, . . . , zd] such that z = xN , we obtain

xB = B−1b−B−1NxN = xB
∗ −B−1Nz. (38)

The function V (x) and the set Q(x0) can be rewritten, respectively, in the following forms:

Ṽ (z) = −
m∑

i=1

xi
∗ ln

1− (B−1Nz)i

xi∗
,

Q̃(x0) = {z ∈ Rm
+ : B−1Nz < xB

∗ , Ṽ (z) ≤ V (x0)}.

Since transformation (38) is linear, the function Ṽ (z) and the set Q̃(x0) are convex. Also we
have

〈c, x− x∗〉 = 〈cN , xN〉 − 〈cB, B−1NxN〉 = 〈vN
∗ , z〉, (39)

K0 = min
z∈Q̃(x0)

〈vN
∗ , z〉

Ṽ (z)
, K0 = sup

z∈Q̃(x0)

〈vN
∗ , z〉

Ṽ (z)
. (40)

The dual nondegeneracy implies that vN
∗ > 0d.

Denote S̃(x0) = {z ∈ Q̃(x0) : Ṽ (z) = V (x0)}. Since for any z̄ ∈ S̃(x0) the function Ṽ (z) is
convex on the closed interval connecting the origin and z̄, we have Ṽ (αz̄) ≤ αṼ (z̄), 0 ≤ α ≤ 1.
Therefore,

K0 = min
z∈S̃(x0)

〈vN
∗ , z〉

Ṽ (z)
=

1

V (x0)
min

z∈S̃(x0)
〈vN
∗ , z〉, K0 = lim

z→+0
sup

〈vN
∗ , z〉

Ṽ (z)
. (41)

Note that K0 does not depend on the starting point x0.
Let Z = {z ∈ Rd

+ :
d∑

i=1
zi = 1}, then using (41) we obtain

K0 = sup
z∈Z

lim
α→+0

sup
α〈vN

∗ , z〉
Ṽ (αz)

= sup
z∈Z

〈vN
∗ , z〉

〈B−1Nz, e〉 , (42)

where e is a vector of ones.
From (29) and (38) we have 1−〈xN , e〉 = 〈xB, e〉 = 〈xB

∗ , e〉−〈B−1NxN , e〉 = 1−〈B−1NxN , e〉.
Therefore, 〈B−1NxN , e〉 = 〈xN , e〉 and

K0 = sup
z∈Z

〈vN
∗ , z〉 = max

1≤i≤d
(vN
∗ )i = ‖v∗‖∞. (43)

The solution of the dual problem is bounded; therefore, we conclude that K0 < +∞.
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Now we will estimate Ê0. The function 〈vN
∗ , z〉 attains its minimal value on the set S̃(x0)

at a point z̄i = [0, . . . , 0, βi, 0, . . . , 0]>, where βi > 0, 1 ≤ i ≤ d. Taking into account that
z̄i ∈ S̃(x0) we obtain the following equation for determining the value βi:

m∑

j=1

xj
∗ ln

[
1− βi(B

−1am+i)
j

xj
∗

]
+ V (x0) = 0, (44)

where as is the s-th column of A. Thus

K0 =
1

V (x0)
min
1≤i≤d

(vN
∗ )iβi > 0 (45)

because all βi are strictly positive.
Obviously, that the solution βi of equation (44) is greater than the solution β̄i of the equation

ln

(
1− β̄i

(B−1am+i)
ji

xji∗

)
+ V (x0) = 0, (46)

where

(B−1am+i)
ji

xji∗
= max

j∈J+
i

(B−1am+i)
j

xj
∗

, J+
i = {1 ≤ j ≤ m : (B−1am+i)

j > 0}.

Hence
βi ≥ β̄i =

(
1− e−V (x0)

) xji∗
(B−1am+i)ji

.

Substituting this inequality in (45) and denoting JN(x∗) = {i ∈ [1 : n] : xi
∗ = 0}, we obtain in

general case
K0 ≥ 1− e−V (x0)

V (x0)
min

i∈JN (x∗)

[
vi
∗

(B−1b)ji

(B−1ai)ji

]
.

Now we consider the discrete version (31) of the method.
Theorem 3.3. Let the stepsize hk in (31) be chosen as

hk = σ/µ(xk), (47)

where 0 < σ < 1, µ(x) = max
1≤i≤n

vi(x). Then for any x0 ∈ X0 there exists 0 < σ(x0) < 1 such
that the following inequality

V (xk+1) ≤ V (xk)

(
1− hkK0

2

)
(48)

holds for any 0 < σ < σ(x0). Here Ê0 is de�ned by (35).
The proof is given in [11].
Denote

B(x0) = max
x∈Q(x0)

max
1≤i≤n

vi(x).

If hk is chosen in accordance with (47), then hk ≥ σ(x0)/B(x0) for any k ≥ 0. Thus, using
(48), we obtain

V (xk+1) ≤ V (x0)

[
1− σ(x0)K0

2B(x0)

]k

.
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The total number of iterations performed by algorithm (31) is no greater than k̄(x0) =

⌈
2B(x0)

K0σ(x0)

ln

(
V (x0)

ε

)⌉
, where ε > 0 denotes the tolerance for the Lyapunov function.

The total number of arithmetic operations at each iteration of algorithm (31) is essentially
due to computation of the matrix AD(x)A> and solution of the linear system (32). These
computations requires ≈ m2n/2 + m3/6 elementary operations. Since m < n, we can conclude
that the computational cost of one step is roughly 2n3/3 arithmetic operations.

4. Barrier-Newton method for linear programming

In this section we apply barrier-Newton method (15) for solving linear programming Prob-
lem (18). In this case we have

Λ(x) = [In −H(x)]Ġ(x)D(c− A>u(x)) + τH(x), (49)
H(x) = G(x)A>(AG(x)A>)−1A. (50)

As in the previous section the vector-function u(x) is found from linear equation (22).
Introduce a Lebesque level set in Rn

Ω = {x ∈ Rn : x ≥ 0n, ‖Ax− b‖ ≤ ‖Ax0 − b‖,
0n ≤ G(x)(c− A>u(x)) ≤ G(x0)v0},

where x0 is an initial point in (15), v0 = c− A>u0, u0 = u(x0).
Theorem 4.1. Suppose that the set Ω is compact and contains a unique stationary point

x∗. Assume that the space transformation ξ(y) satis�es Ñ2 and is such that the matrix Λ(x) is
nonsingular everywhere on Ω. If starting point x0 is such that x0 > 0n, v0 > 0n, then

lim
t→∞x(t, x0) = x∗, lim

t→∞u(x(t, x0)) = u∗, (51)

where x∗, u∗ are the solutions of Problem (18) and (19), respectively.
Proof. If the matrix Λ(x) is nonsingular, then from (49) and (50) we �nd that

AΛ(x) = τA, A = τAΛ−1(õ). (52)

The pair [x∗, u∗] forms the Kuhn�Tucker pair in Problem (18); therefore, x∗ ∈ Ω. The solution
of (15) exists at least for t ≥ 0 such that x(t, x0) ∈ Ω, where the matrix Λ(x) is nonsingular.
Let us show that x(t, x0) does not leave the set Ω for any t ≥ 0.

By di�erentiating g(x) along the solutions of (15) and taking into account (13) we obtain

dg

dt
= γAΛ−1(x)G(x)Lx(x, u(x)) =

γAG(x)Lx(x, u(x))

τ
= −γg(x).

Hence system (15) has two �rst integrals:

Ax(t, x0) = b + (Ax0 − b)å−γt, (53)
G(x(t, x0))v(t) = G(x0)v0e

−γt, (54)

where v(t) = c− A>u(x(t, x0)).
The solution x(t, x0) of system (15) belongs to the compact set Ω for all t ≥ 0. Hence

this solution can be prolonged as t →∞. Since condition C2 holds, all components of vectors
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x(t, x0), v(t) can not change their sign. Therefore, the trajectory x(t, x0) do not cross the
boundary of the set Ω. The function θ(õ) this way play the role of the multiplicative barriers
preserving nonnegativity. All trajectory remains in the set Ω. According to La Salle's Invariance
Principle [2] the limit set of the solution is a compact connected set contained in Ω and coincides
with the equilibrium point x∗, which is unique on Ω. Taking the limit as t → ∞, we obtain
from (53) and (54) that Ax∗ = b, G(x∗)v∗ = 0n, v∗ ≥ 0n, x∗ ≥ 0n.

Due to condition C2 we have the complimentarity condition xi
∗v

i
∗ = 0, 1 ≤ i ≤ n. Hence

we conclude that the pair x∗, u∗ de�ned by (51) forms Kuhn�Tucker point in Problem (18).
Integrating (15) using the Euler method, we obtain the following iterative process:

xk+1 = xk − hΛ−1(xk)G(xk)(c− A>u(xk)), (55)

where h > 0 is a stepsize and function u(x) is de�ned by (22).
Each equilibrium point x∗ of system (15) is a �xed point of iterations (55), i.e. xk = x∗

implies xk+1 = x∗, and if iterates (55) converge to a regular point x∗, then the pair [x∗, u(x∗)]
satis�es the Kuhn�Tucker conditions.

If the conditions of Theorem 3.1 hold, then the matrix Λ(x∗) is nonsingular. Therefore,
if the stepsize h is �xed and 0 < h < 2, then the discrete versions (55) locally converges to
the point x∗, with at least linear rate. If matrix Λ(x) satis�es the Lipschitz condition in a
neighborhood of x∗ and h = 1, then the sequence {xk} converges quadratically to x∗.
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