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The concept of an exact auxiliary function such that the problem of minimizing it has
the same set of solutions as the original optimization problem. Su�cient conditions are
given for the auxiliary functions to be exact and examples of such functions are described.
The introduction of exact auxiliary functions makes it possible to reduce the solution of
the original problem to single minimization of an auxiliary function. The constrained
optimization problem often reduces to unconstrained optimization.

1. Basic de�nitions

Consider the following nonlinear programming problem: �nd

f∗ = min
x∈X

f(x), X = {x ∈ En | g(x) ≤ 0}. (1.1)

Here En is n-dimensional Euclidean space, f(x) and g(x) are continuous functions f : En → E1,
g : En → Em. A solution of problem (1.1) is any point x∗ from the set

X∗ = {x∗ ∈ X|f(x)− f(x∗) ≥ 0 ∀x ∈ X},

which in what follows is assumed to be nonempty. All the results of this paper were obtained
without assuming the convexity and di�erentiability of the functions f and g with respect
to x.

We introduce the function R(x, y) that depends on the original variables x ∈ En and on
some vector y from the set Y . The length of y and the form of the set Y are not speci�ed at
this stage. Consider the auxiliary minimization problem

min
x∈P

R(x, y), (1.2)

where P is a closed set in En containing X∗. In particular, P may be the entire space En, the
feasible set X, or a part of the feasible set.

Assuming that a solution of problem (1.2) exists, we de�ne the set-valued mapping

X(y) = Arg min
x∈P

R(x, y).

De�nition 1. The function R(x, y) is an exact auxiliary function (e.a.f.) for problem (1.1)
on P × Y if X(y) 6= ∅ and X(y) = X∗ for any y ∈ Y .

The study e.a.f.'s is highly important for constructing numerical methods, because a know-
ledge of such functions produces a solution of the original problem (1.1) via a single minimization
(1.2) of the auxiliary function. It is desirable to have the set Y as �large� as possible, to avoid
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additional di�culties with the determination of points from Y . Functions for which Y consists
of a single point are very inconvenient in this respect.

The �rst e.a.f.'s were constructed in [1, 2], where so-called exact penalty functions were dis-
covered (these are a variety of e.a.f.'s). Subsequently, these functions were studied by numerous
mathematicians, but, as far as we know, no fundamentally new e.a.f.'s have been proposed,
with the exception of [3, 4, 5]. In this paper, we develop an approach proposed by the present
authors in [6, 7, 8]. Su�cient conditions of e.a.f. are given and examples of such functions are
described.

E.a.f.'s are conveniently constructed as a lower bounded function. Let R(x, y) be an e.a.f.
for problem (1.1) on the set P × Y . Consider the function

M(x, y) = R(x, y)−R(x∗, y), x∗ ∈ X∗ ⊆ P. (1.3)

For any x ∈ P , y ∈ Y , x∗ ∈ X∗ the function M is nonnegative. The set of points x on which
the function M(x, y) reaches a minimum over x on P is identical with the set X(y) and if y ∈ Y
then also with the set X∗. It is also the set of solutions of the equation M(x, y) = 0 that belong
to P for each �xed vector y from Y . The choice of a speci�c vector x∗ from X∗ does not a�ect
the values of the function M(x, y) for y ∈ Y , because R(x, y) takes the same value for all x
from X. Therefore,

M(x, y) ≡ 0 ∀x ∈ X(y) = X∗, ∀y ∈ Y.

If R(x, y) is an e.a.f., then the function M(x, y) is an e.a.f. The converse is also true: if the
function M(x, y) constructed in the form (1.3) is an e.a.f., then R(x, y) is an e.a.f. Therefore,
instead of proving that R(x, y) is an e.a.f., it su�ces to show that the corresponding M(x, y)
is an e.a.f.

For the function M(x, y) (1.3) to be an e.a.f. on the set P ×Y , it is necessary and su�cient
to have the following two conditions:

M(x, y) ≥ 0 ∀x ∈ P, ∀y ∈ Y, (1.4)
∀y ∈ Y and M(x, y) = 0 it follows that x ∈ X(y) = X∗. (1.5)

If the function M(x, y) is di�erentiable with respect to y and the set Y is open, then it is
necessary that

My(x, y) = 0 ∀x ∈ X(y) = X∗, ∀y ∈ Y.

This condition may be added to (1.5), and simultaneously using these conditions we can often
show that X(y) = X∗.

Multiplication of an e.a.f. by any positive number leaves the auxiliary function exact. The
sum of exact auxiliary functions on the same set P × Y is an e.a.f. on the same set. If the sets
P × Y are di�erent, then we should take their intersection.

Let the function Q(z) be de�ned on the set Z ⊆ Es; its polar function Q0(z0|Z) on the set
Z0 ⊆ Es is de�ned as

Q0(z0|Z) = inf
µ∈M(z0)

µ, M(z0) = {µ ∈ E1|〈z, z0〉 ≤ µQ(z) ∀z ∈ Z}, (1.6)

where z0 ∈ Z0, E1 is the extended real line E1, i.e. the line E1 with the elements {+∞} and
{−∞}. From this de�nition we obtain the Minkowski�Mahler inequality

〈z, z0〉 ≤ Q(z)Q0(z0|Z) ∀z ∈ Z, ∀z0 ∈ Z0. (1.7)
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If the function Q(z) takes only positive values on Z, then alongside (1.6) we may use the
following de�nition:

Q0(z0|Z) = sup
z∈Z

〈z, z0〉
Q(z)

. (1.8)

If Q(z) is nonpositive on Z, then

Q0(z0|Z) = inf
z∈Z

〈z, z0〉
Q(z)

. (1.9)

Denote by Em
+ and Em

− the nonnegative and nonpositive orthants in Em, i.e. the collection
of all vectors from Em whose coordinates are, respectively, nonnegative and nonpositive.

For each scalar function ϕ(z) of a vector argument z, de�ne

ϕ+(z) = max[0, ϕ(z)], ϕ−(z) = min[0, ϕ(z)].

Similarly, for the vectors z ∈ Es

z+ = [z1
+, . . . , zs

+], zi
+ = max[0, zi],

z− = [z1
−, . . . , zs

−], zi
− = min[0, zi].

De�ne the p-th H�older norm of the vector z:

‖z‖p =

(
s∑

i=1

|zi|p
)1/p

, p ≥ 1. (1.10)

The conjugate norm is ‖z‖p∗ , where p−1 + p−1
∗ = 1.

The function (1.10) will be considered for nonzero p < 1 and also for p = 0 and p = ±∞,
where it is de�ned as follows:

‖z‖0 = s1/2

(
s∏

i=1

|zi|
)1/s

, ‖z‖+∞ = max
1≤i≤s

|zi|, ‖z‖−∞ = min
1≤i≤s

|zi|.

For p < 0 we assume that the function (1.10) equals zero if at least one of the coordinates of
the vector z is zero.

Consider some examples for Z0 = Es
+:

p > 1, p∗ > 1, Q(z) = ‖z+‖p, Q0(z0|Es) = ‖z0‖p∗ ,
p < 1, p∗ < 1, Q(z) = −‖z−‖p, Q0(z0|Es

−) = ‖z0‖p∗ .

Here p and p∗ are related by the same dependence as before, p−1 + p−1
∗ = 1. Some special cases

are the following:

p = 0, p∗ = 0, Q(z) = −‖z−‖0, Q0(z0|Es
−) = ‖z0‖0,

p = +∞, p∗ = 1, Q(z) = ‖z+‖+∞, Q0(z0|Es) = ‖z0‖1,
p = −∞, p∗ = 1, Q(z) = −‖z−‖−∞, Q0(z0|Es

−) = ‖z0‖1.

Introduce the vector w ∈ Em
+ and form the Lagrange function

L(x,w) = f(x) + 〈w, g(x)〉.
We say that the Lagrange function has a saddle point [x∗, w∗] ∈ P × Em

+ if

L(x∗, w) ≤ L(x∗, w∗) ≤ L(x,w∗) ∀x ∈ P, ∀w ∈ Em
+ . (1.11)
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If a vector w∗ ∈ Em
+ exists such that x∗ and w∗ form a saddle point of the Lagrange function,

then x∗ ∈ X∗ [9].
De�ne the composite function B(g(x)). We denote by g(P ) by the image of the set P under

the mapping g. Then, using inequality (1.7), we obtain from the right-hand side of (1.11)

f∗ ≤ L(x,w∗) ≤ f(x) + B(g(x))B0(w∗|g(P )) ∀x ∈ P. (1.12)

If B(g(x)) ≥ 0 for all x ∈ En, then this bound can be relaxed by introducing the polar functions
B0(w∗|g(En)) and B0(w∗|Em), that are easier to compute, because by (1.8)

B0(w∗|g(P )) ≤ B0(w∗|g(En)) ≤ B0(w∗|Em).

Therefore, in what follows inequality (1.12) is written in the form

f∗ ≤ L(x,w∗) ≤ f(x) + B(g(x))B0(w∗|Em) ∀x ∈ P. (1.13)

Similarly, if B(g(x)) ≤ 0 on En, then from (1.9) we obtain

B0(w∗|g(P )) ≥ B0(w∗|g(En)) ≥ B0(w∗|Em)

and inequality (1.13) remains valid as before.

2. Additive exact auxiliary functions

We will construct e.a.f.'s in the form

R(x, y) = A(f(x), y) + B(g(x)), (2.1)

where A(f, y) is an arbitrary continuous function of two arguments, and B(g(x)) is a strictly
exterior penalty function, i.e. B(g(x)) is continuous and takes nonnegative values everywhere
on En; moreover, B(g(x)) = 0 if and only if x ∈ X. A well-known example of a strictly exterior
penalty function is

B(g(x)) = ‖g+(x)‖p, p ≥ 1, B0(w∗|Em) = ‖w∗‖p∗ .

We will impose two further conditions on these functions.
Condition A. The functions A and B are such that

A(f, y)− A(f∗, y) ≥ [(f − f∗)/B0(w∗|Em)]− ∀y ∈ Y, ∀f ∈ E1. (2.2)

Condition B. For every point y from the set Y , the set of solutions of the system

A(f(x), y) + B(g(x)) = A(f∗, y), x ∈ P, (2.3)

is identical with X∗.
If A is di�erentiable with respect to y and Y is an open set, then from (2.3) we obtain the

system
Ay(f(x), y) = Ay(f∗, y), x ∈ P,

which is often easier to solve than the original system (2.3).
Theorem 1. Assume that the Lagrange function of problem (1.1) has a saddle point

[x∗, w∗] ∈ P × Em
+ . Also assume that B(g(x)) is a strictly exterior penalty function, 0 <

4



< B0(w∗|Em) < +∞, and the functions A and B satisfy conditions A and B. Then the
function R(x, y) de�ned by (2.1) is an e.a.f. for problem (1.1) on the set P × Y .

Proof. Seeing that B(g(x)) vanishes on X∗, we obtain

M(x, y) = A(f(x), y)− A(f∗, y) + B(g(x)). (2.4)

Condition (1.4) may be written in this case in the form

A(f(x)) + B(g(x)) ≥ A(f∗, y) ∀x ∈ P, ∀y ∈ Y. (2.5)

By the conditions of the theorem, B0(w∗|Em) > 0, and, therefore, from (1.13) we obtain

B(g(x)) ≥ [f∗ − f(x)]/B0(w∗|Em) ∀x ∈ P.

Seeing that the function B takes only nonnegative values, we can re�ne its lower bound:

B(g(x)) ≥ [[f∗ − f(x)]/B0(w∗|Em)]+ ∀x ∈ P. (2.6)

We rewrite this inequality in the form

B(g(x)) ≥ −[[f(x)− f∗]/B0(w∗|Em)]− ∀x ∈ P.

Applying it together with (2.2) to the right-hand side of (2.4), we obtain (1.4). Condition Â
ensures that condition (1.5) is satis�ed. Thus, the function (2.4) is an e.a.f. on the set P × Y
and, therefore, the function (2.1) is also an e.a.f. on the same set P × Y . The theorem is
proved.

A wide class of functions satis�es the conditions of the theorem. We do not assume an exact
knowledge of f∗, and, therefore, the function A should be constructed so that conditions A
and Â are satis�ed for any f∗. From (2.2) it follows that to this end A(f, y) should at least
be an increasing function of f . Moreover, its graph should not lie below the convex cone with
origin at the point N = [f∗, A(f∗, y)] and with two boundary rays, the �rst of which originates
from the point N and points in the positive f -direction and the second originates from N and
points along the hal�ine

D = (f − f∗)/B0(w∗|Em), f ≤ f∗.

Also note that the assertion of the theorem remains unchanged if condition A is satis�ed
not for all f ∈ E1 but only for f from the image f(P ) of the set P under the mapping f(x).

Let A(f, y) be convex in f for each y ∈ Y . Then

A(f, y)− A(f∗, y) ≥ ξ(f − f∗) ∀y ∈ Y, ∀f ∈ E1, ∀ξ ∈ ∂fA(f∗, y). (2.7)

Here ∂fA(f∗, y) is the subdi�erential of the function A(f, y) with respect to f at the point f∗.
Condition (2.2) is satis�ed if

ξ(f − f∗) ≥ [(f − f∗)/B0(w∗|Em)]− ∀y ∈ Y, ∀f ∈ E1, ∀ξ ∈ ∂fA(f∗, y).

Together with the assumption that A(f, y) is nondecreasing in f , this condition is equivalent
to the following:

0 ≤ inf
ξ∈∂Af (f∗,y)

ξ ≤ sup
ξ∈∂Af (f∗,y)

ξ ≤ 1/B0(w∗|Em). (2.8)

These inequalities may be used to determine the set Y , additionally considering the boundary
points of Y . Note that if, in addition to (2.8), the function B(g) is convex and nondecreasing
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in g and the functions f(x) and g(x) are convex in x, then the auxiliary function R(x, y) is also
convex in x.

As an example of e.a.f.'s that satisfy the conditions of Theorem 1 and conditions (2.8) with
P = En, Y ⊂ E1, we give the following functions and the corresponding sets Y :

R1(x, y) = y−1f(x) + B(g(x)), Y1 = {y : y > B0(w∗|Em)},
R2(x, y) = y−1ef(x) + B(g(x)), Y2 = {y : y > B0(w∗|Em)ef∗},
R3(x, y) = [y − f(x)]α + B(g(x)), Y3 = {y : y > f∗ + [−αB0(w∗|Em)]1/(1−α)},
R4(x, y) = [f(x)− y]β+ + B(g(x)), Y4 = {y : f∗ ≥ y > f∗ − [βB0(w∗|Em)]1/(1−β)},

where α < 0, β > 1. For R3 we should take R3(x, y) = +∞ when f(x) ≥ y. If we know that
f(x) > 0 for any x ∈ En, then we may use the functions

R5(x, y) = y−1shf(x) + B(g(x)), Y5 = {y : y > B0(w∗|Em)chf∗},
R6(x, y) = y−1[f(x)]γ + B(g(x)), Y6 = {y : y > γfγ−1

∗ B0(w∗|Em)}.

If f(x) is nonpositive on En, we may take the function

R7(x, y) = y−1arctgf(x) + B(g(x)), Y7 = {y : y > B0(w∗|Em)/(1 + f 2
∗ )}.

The function R7 is an e.a.f. also when f(x) takes arbitrary values, but then the set Y7 should
be replaced with Y7 = {y : y > B0(w∗|Em)}. Also note that the parameters α, β and γ entering
R3, R4, and R6 may be considered as second components of the vector y.

The �rst of these functions is the well-known exact penalty function [1, 2, 9, 10]. The
function R4 has been used by many mathematicians for successive unconstrained minimization,
constructing a sequence of vectors yk that converge to f∗ (see [9, 11]). If we take the closure of
the sets Y1 � Y7, then the functions R1 � R7 are no longer e.a.f.'s because instead of (1.5) they
satisfy a weaker condition: M(x, y) = 0 implies that X∗ ⊆ X(y).

Put X0 = {x ∈ En|g(x) < 0} and consider the case when B(g(x)) is an interior penalty
function, i.e. B(g(x)) is continuous and nonpositive on Em and B(g(x)) < 0 for x ∈ X0. If
we additionally assume that B(g(x)) < 0 if and only if g(x) < 0, then such a function will be
called a strictly interior penalty function. As an example of interior penalty functions, consider

B(g(x)) = −‖g−(x)‖p, −∞ ≤ p < 1. (2.9)

For p ≤ 0 this function is a strictly interior penalty function.
Below for all interior penalty functions we assume that the constraints are regular, i.e. the

set X0 is nonempty and its closure coincides with X.
We construct an e.a.f. in the form (2.1), taking P as the feasible set X. Condition (2.2) is

replaced by

A(f, y)− A(f∗, y) ≥ (f − f∗)/B0(w∗|Em
− ) ∀y ∈ Y, ∀f ≥ f∗. (2.10)

Theorem 1 in this case can be restated as follows.
Theorem 2. Assume that the Lagrange function in problem (1.1) has a saddle point

[x∗, w∗]. Also assume that the function B(g(x)) in (2.1) is an interior penalty function and
0 < B0(w∗|Em

− ) < +∞. For R(x, y) to be an e.a.f. on X × Y it is su�cient that it satis�es
condition (2.10) and that any feasible solution x of system (2.3) is such that x ∈ X∗.

Proof. Since the Lagrange function has a saddle point, B0(w∗|Em
− ) > 0 and B(g(x)) ≤ 0

on X, we have
f∗ ≤ f(x) + B(g(x))B0(w∗|Em

− ) ≤ f(x) ∀x ∈ X.
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Hence, like (2.6),
[f∗ − f(x)]/B0(w∗|Em

− ) ≤ B(g(x)) ≤ 0 ∀x ∈ X. (2.11)
Taking an arbitrary point x ∈ X∗, on the left-hand side, we obtain B(g(x)) = 0. Thus, B(g(x))
equals zero everywhere on X∗. Therefore, to have (1.4) it is su�cient that inequality (2.5) holds
for all x ∈ X. But by (2.11), (2.5) implies (2.10).

The validity of (1.5) follows from the assumption that any feasible solution x∗ ∈ X of system
(2.3) is such that x∗ ∈ X∗, because, as we have established, B(g(x∗)) = 0 when x∗ ∈ X∗. The
theorem is proved.

We see from the proof of Theorem 2 that the condition B0(w∗|Em
− ) > 0 leads to the equality

B(g(x∗)) = 0 at the point x∗ ∈ X∗. Thus, by the regularity of the constraints, the point x∗ is
necessarily a boundary point of the set X in this case. If B(g(x)) is the function (2.9) with
0 < p < 1, then B(g(x)) is an interior (but not strictly interior) penalty function and the
inequality B0(w∗|Em

− ) = ‖w∗‖p∗ > 0 holds if and only if all the components of the vector w∗
are strictly positive. This means that all the constraints simultaneously vanish at the point x∗,
or in other words are active. If (2.9) is a strictly interior penalty function (which is so when
p ≤ 0), then to have the inequality ‖w∗‖p∗ > 0 it is su�cient that at least one constraint is
active.

Note that if A is a convex function of f for each y ∈ Y , then to have inequality (2.10) it is
su�cient that

ξ ≥ 1/B0(w∗|Em
− ) ∀ξ ∈ ∂fA(f∗, y), ∀y ∈ Y.

The functions R1 � R4, satisfy the conditions of Theorem 2, but instead of a strictly exterior
penalty function B(g(x)) we should use an interior penalty function (e.g. (2.9)) and replace Yi

with the following sets:

Y1 = {y : 0 < y < B0(w∗|Em
− )},

Y2 = {y : 0 < y < ef∗B0(w∗|Em
− )},

Y3 = {y : f∗ < y < f∗ + [−αB0(w∗|Em
− )]1/(1−α)}, α < 0,

Y4 = {y : y < f∗ − [βB0(w∗|Em
− )]1/(1−β)}, β > 1.

Also note that since under the assumptions of Theorem 2 the function B(g(x)) is nonpositive
and vanishes on X∗, then the auxiliary function R(x, y) = f(x)− yB(g(x)) is also an e.a.f. on
X × E1

+.
We will introduce a new class of penalty functions which have the properties of both strictly

exterior and strictly interior penalty functions. A continuous function B(g(x)) is called a strictly
mixed penalty function if B(g(x)) > 0 when x /∈ X, and B(g(x)) < 0 when x ∈ X0.

As an example of strictly mixed penalty functions, consider the following two functions:

B(g(x)) = ‖g+(x)‖p − ‖g−(x)‖−p, 1 < p < +∞, (2.12)
B(g(x)) = max

1≤i≤m
gi(x). (2.13)

We alter the conditions (2.2) and (2.10) taking for any y ∈ Y

A(f, y)− A(f∗, y) ≥
{

(f − f∗)/B0(w∗|Em
− ), if f ≥ f∗,

(f − f∗)/B0(w∗|Em), if f < f∗.
(2.14)

We have the following theorem.
Theorem 3. Assume that the Lagrange function in problem (1.1) has a saddle point

[x∗, w∗]. Also assume that B(g(x)) is a strictly mixed penalty function and 0 < B0(w∗|Em) <
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< B0(w∗|Em
− ) < +∞. For R(x, y) to be an e.a.f. on P × Y , it is su�cient that conditions

(2.14) and B hold.
Proof. Since B0(w∗|Em

− ) > 0, then like the proof of Theorem 2 we show that B(g(x∗)) = 0.
Therefore, (1.4) holds by (2.14). Condition (1.5) follows from (2.3). The theorem is proved.

Condition (2.14) for a smooth function holds if and only if B0(w∗|Em) ≤ B0(w∗|Em
− ). Thus,

for instance, the function R1(x, y) with a strictly mixed penalty function B(g(x)) is an e.a.f.
The corresponding set Y1 for this function is

Y1 = {y : B0(w∗|Em) < y < B0(w∗|Em
− )}.

In particular, if B(g(x)) has the form (2.12), we obtain

Y1 = {y : ‖w∗‖p∗ < y < ‖w∗‖r∗},
where p−1 + p−1

∗ = 1, −p−1 + r−1
∗ = 1. Since p∗ > 1, 1 > r∗ > 1/2, then ‖w∗‖r∗ > ‖w∗‖p∗ . For

the function (2.13) the set Y1 is empty.

3. Nonlinear exact auxiliary functions

Now assume that the auxiliary function R(x, y) is constructed in the form

R(x, y) = H(A(f(x), y), B(g(x))), (3.1)

where B(g(x)) is a strictly exterior penalty function, and H(t, τ) is a continuous nondecreasing
function of two arguments, i.e. H(t1, τ1) ≥ H(t, τ) for any t1 ≥ t, τ1 ≥ τ . Regarding the
function A(f, y) we will assume that it is a monotone increasing and convex function of the
�rst argument. We will also assume that there exists a constant D such that

0 < sup
y∈Y

sup
ξ∈∂Af (f∗,y)

ξ ≤ D < +∞. (3.2)

We will give su�cient conditions for the function (3.1) to be an e.a.f. for problem (1.1). We
put N1 = DB0(w∗|Em).

Theorem 4. Assume that the Lagrange function of problem (1.1) has a saddle point [x∗, w∗]
and A(f, y) is a convex and monotone increasing function of the �rst argument which satis�es
(3.2). Also assume that B(g(x)) is a strictly exterior penalty function and 0 < N1 < +∞. If
there exists a set T ⊆ E1, such that A(f∗, y) ∈ T for any y ∈ Y and

H(t, (t∗ − t)+/N1) > H(t∗, 0) ∀t∗ ∈ T, ∀t 6= t∗, (3.3)

then (3.1) is an e.a.f. for problem (1.1) on the set P × Y .
Proof. Take an arbitrary point x ∈ P . Since H(t, τ) is nondecreasing in the second

argument, we obtain from (2.6)

R(x, y) = H(A(f(x), y), B(g(x))) ≥ H(A(f(x), y), [f∗ − f(x)]+/B0(w∗ | Em)). (3.4)

By the convexity of A(f, y) in f , we have the inequality (2.7), which, combined with (3.2), gives

A(f∗, y)− A(f, y) ≤ D(f∗ − f) ∀f ≤ f∗. (3.5)

But A(f, y) is monotone increasing in f , and, therefore, alongside (3.5) we have the inequality

(A(f∗, y)− A(f, y))+ ≤ D(f∗ − f)+ ∀f ∈ E1.
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Substituting it into (3.4) and using condition (3.3), we obtain for the case when A(f(x), y) 6=
6= A(f∗, y)

R(x, y) ≥ H(A(f(x), y), [A(f∗, y)− A(f(x), y)]+/N1) > H(A(f∗, y), 0) = R(x∗, y).

Now assume that A(f(x), y) = A(f∗, y). In this case, if x /∈ X∗, then necessarily x /∈ X,
and B(g(x)) > 0. Therefore, by the monotonicity of H(t, τ) in t and (3.3),

R(x, y) = H(A(f∗, y), B(g(x))) ≥ H(A(f∗, y)−N1B(g(x)), B(g(x))) >

> H(A(f∗, y), 0) = R(x∗, y).

Thus, in any case R(x, y) > R(x∗, y) if x /∈ X∗, and, therefore, (3.1) is an e.a.f. on the set
P × Y . The theorem is proved.

Let us consider two important special cases of the function (3.1). First assume A(f, y) has
the form

A(f, y) = f − y. (3.6)
For this function, condition (3.2) is satis�ed for any Y ⊆ E1 and D = 1. Therefore, by
Theorem 4, if there exists a set T ⊆ E1, such that (3.3) is satis�ed, then the function (3.1) with
A(f, y) representable in the form (3.6) is an e.a.f. for problem (1.1) on the set P × Y , where
Y = f∗ − T .

Consider another function;
A(f, y) = y−1f. (3.7)

In this case, if (3.3) is satis�ed for some 0 < D < +∞, the function (3.1) with A(f, y) of the
form (3.7) is also an e.a.f. on P × Y , but here Y = {y ≥ D−1 : y−1f∗ ∈ T}.

Note that if the function H(t, τ) is linear and has the form H(t, τ) = ct + τ , then condition
(3.3) is satis�ed if and only if c < 1/B0(w∗|Em). The set T in this case coincides with the
entire real line E1. Therefore, if we change from y to ȳ = y/c, we obtain that the function
R(x, ȳ) = H(y−1f(x), B(g(x))) = ȳ−1f(x) + B(g(x)) is an e.a.f. if and only if ȳ > B0(w∗|Em),
which is fully consistent with the formula for Y1 obtained above.

Denote by K1(t∗) the cone

K1(t∗) = {[t, τ ] ∈ E2|τ ≥ (t∗ − t)+/N1}.

In geometrical terms, condition (3.3) implies that for any t∗ ∈ T the level line of the function
H(t, τ) corresponding to the value H(t∗, 0) should not intersect the cone K1(t∗), with the
exception of the point [t∗, 0].

Condition (3.3) is relatively easily checked when H(t, τ) is a quasi-convex function. Indeed,
assume that H(t, τ) is a continuously di�erentiable quasiconvex function on E2 and there exists
a set T1 ⊆ E1, such that

Ht(t∗, 0) > 0, Hτ (t∗, 0)/Ht(t∗, 0) > N1 ∀t∗ ∈ T1. (3.8)

Then the function of one variable ϕ(t) = H(t, (t∗ − t)+/N1) is also quasi-convex to the right
and to the left of the point t∗ and both one-sided derivatives exist at this point; by (3.8),
ϕ+

t (t∗) = Ht(t∗, 0) > 0, ϕ−t (t∗) = Ht(t∗, 0) − Hτ (t∗, 0)/N1 < 0. Therefore, the function ϕ(t)
attains at the point t∗ its strict minimum over t and inequality (3.3) holds. The set T1, can be
augmented with the points of the set

T2 = {t∗ /∈ T1|t∗ = lim
tk→+t

tk, tk ∈ T1}.
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If (3.8) holds, then (3.3) holds for any t∗ ∈ T = T1 ∪ T2. Also note that conditions (3.8) are
preserved when the function H(t, τ) is di�erentiable only at the points of some set that contains
the interval {z ∈ E2 | z(1) ∈ T1, z(2) = 0}.

Let us give examples of e.a.f.'s for which the set Y can be found from Theorem 4 and
condition (3.8). Let

H(t, τ) =

{
t−/(1− t−τ), if 1− t−τ > 0,
−∞ otherwise.

This function is quasiconvex on E2. For t < 0 we have Ht(t, 0) = 1, Hτ (t, 0) = t2−. Conditions
(3.8) are satis�ed if t < −[B0(w∗|Em)]1/2. Thus T = (−∞,−[B0(w∗|Em)]1/2) and the auxiliary
function

R8(x, y) = [f(x)− y]−/{1− [f(x)− y]−B(g(x))}
is thus an e.a.f. on the set En × Y8, where Y8 = {y ∈ E1|y > f∗ + [B0(w∗|Em)]1/2}.

If f∗ > 0, then using the function H(t, τ) = τ + (τ 2 + 4t3+)1/2, we obtain the e.a.f.

R9(x, y) = B(g(x)) + {[B(g(x))]2 + 4y−3[f+(x)]3}1/2

for problem (1.1) on the set En × Y9, where

Y9 = {y : y > max{1.9f∗[B0(w∗|Em)]2}}.
Consider the su�cient conditions for the case when B(g(x)) in (3.1) is an interior penalty

function, assuming as before that H(t, τ) is nondecreasing on E2, and A(f, y) is a convex
monotone increasing function of the �rst argument. Instead of (3.2) we assume for A(f, y) the
existence of a constant C such that

0 < C ≤ inf
y∈Y

inf
ξ∈∂Af (f∗,y)

ξ < +∞. (3.9)

Put N2 = CB0(w∗|Em
− ).

Theorem 5. Assume that the Lagrange function of problem (1.1) has a saddle point [x∗, w∗]
and A(f, y) is a convex monotone increasing function of the �rst argument that satis�es (3.9).
Also assume that B(g(x)) is an interior penalty function, 0 < N2 < +∞. If there exists a set
T ⊆ E1, such that A(f∗, y) ∈ T for any y ∈ Y and

H(t, (t∗ − t)/N2) > H(t∗, 0) ∀t∗ ∈ T, ∀t > t∗, (3.10)

then (3.1) is an e.a.f. for problem (1.1) on the set X × Y .
Proof. Take an arbitrary point x ∈ X. If x /∈ X∗, using inequalities (2.7), (3.9) and (3.10)

we obtain

R(x, y) = H(A(f(x), y), B(g(x))) ≥
≥ H(A(f(x), y), [f∗ − f(x)]/B0(w∗|Em

− )) ≥
≥ H(A(f(x), y), [A(f∗, y)− A(f(x), y)]/N2) >

> H(A(f∗, y), 0) = R(x∗, y).

If x ∈ X∗, then from (2.11) B(g(x)) = 0. Therefore, R(x, y) = H(A(f(x), y), 0) = R(x∗, y).
Thus R(x, y) is an e.a.f. on X × Y . The theorem is proved.

If A(f, y) is representable in the form (3.6) or (3.7), then given T in condition (3.10), we
can specify the set Y . Thus, for the �rst function we obtain that Y = f∗ − T , and for the
second Y = {y ≤ C−1 : y−1f∗ ∈ T}.
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In geometrical terms, condition (3.10) indicates that for any t∗ ∈ T the level line of the
function H(t, τ) corresponding to the value H(t∗, 0) does not have, for t > t∗, common points
with the cone

K2(t∗) = {[t, τ ] ∈ E2|τ ≥ (t∗ − t)/N2, t ≥ t∗}.
Conditions similar to (3.8) simplify the checking of the inequality (3.10) and relatively

easily establish the form of the set T . Assume that H(t, τ) is a continuously di�erentiable
quasiconvex function on E2 and there exists a set T1 ⊆ E1 such that for any t∗ ∈ T1 we have
the �rst inequality in (3.8) and

Hτ (t∗, 0)/Ht(t∗, 0) < N2.

Then for all t∗ ∈ T = T1 ∪ T2 inequality (3.10) is satis�ed, where

T2 = {t∗ /∈ T1|t∗ = lim
tk→−t

tk, tk ∈ T1}.

As an example of the application of Theorem 5, consider the previous functions R8(x, y)
and R9(x, y), in which B(g(x)) is an interior penalty function. Both these functions are e.a.f.'s
on the sets X × Y8, and X × Y9, respectively, but the sets Y8 and Y9 in this case have the form

Y8 = {y ∈ E1|f∗ ≤ y < f∗ + [B0(w∗|Em
− )]1/2},

Y9 = {y ∈ E1|0 < y < min[1.9f∗[B0(w∗|Em
− )]2]}.

Note that Theorems 4 and 5 do not change if conditions (3.3) and (3.10) hold not for all
t ∈ E1, but only for those from some subset of E1 that contains the image of the set P × Y
under the mapping A(f(x), y). This property was used in [8] to show that the function

R10(x, y) = (f(x)− y)+/{1 + [f(x)− y]+B(g(x))},
where B(g(x)) is an interior penalty function, is also an e.a.f. for problem (1.1) on the set
X × Y10. Here

Y10 = {y : f∗ − ([(f ∗ − f∗)2 + 4B0(w∗|Em
− )]1/2 − (f ∗ − f∗))/2 < y ≤ f∗}, f ∗ = sup

x∈X
f(x).

Consider e.a.f.'s of the form (3.1) with strictly mixed penalty functions B(g(x)). The
conditions on H(t, τ) in this case are obtained by combining the corresponding conditions
for strictly exterior and strictly interior penalty functions.

Theorem 6. Assume that the Lagrange function of problem (1.1) has a saddle point [x∗, w∗]
and A(f, y) is a convex monotone increasing function of the �rst argument that satis�es con-
ditions (3.2) and (3.9). Also assume that B(g(x)) is a strictly mixed penalty function and
0 < N1 < +∞, 0 < N2 < +∞. If there exists a set T ⊆ E1 such that A(f∗, y) ∈ T for any
y ∈ Y and

H(t∗, 0) <

{
H(t, (t∗ − t)/N1), t < t∗,
H(t, (t∗ − t)/N2), t > t∗,

∀t∗ ∈ T,

then (3.1) is an e.a.f. for problem (1.1) on the set P × Y .
The proof is omitted, because it is easily obtained by combining the corresponding argu-

ments in the proof of Theorems 4 and 5.
The function R8(x, y) with a strictly mixed penalty function B(g(x)) remains an e.a.f. for

problem (1.1) on the set P × Y if B(g) is such that B0(w∗|Em) < B0(w∗|Em
− ). The set Y8 in

this case is
Y8 = {y : f∗ + [B0(w∗|Em)]1/2 < y < f∗ + [B0(w∗|Em

− )]1/2}.

11



4. Exact modi�ed Lagrange functions

We will rewrite the right-hand side of inequality (1.11) in the form

L(x∗, w∗) ≤ L(x,w) + 〈g(x), w∗ − w〉.

If B0(w∗ − w|g(P )) > 0, then applying the Minkowski�Mahler inequality (1.7) we obtain

B(g(x)) ≥ [L(x∗, w∗)− L(x,w)]/B0(w∗ − w|g(P )). (4.1)

Inequality (4.1) makes it possible to construct a whole class of e.a.f.'s based on the Lagrange
function L(x, w). Let

R(x, y) = A(L(x,w), v) + B(g(x)). (4.2)
Here y = [w, v] ∈ Y ⊆ Em

+ × E1.
Put

WY = {w ∈ Em
+ |∃v ∈ E1, [w, v] ∈ Y }, Vw = {v ∈ E1|[w, v] ∈ Y }.

The set WY is the projection of Y on Em
+ , and the set Vw is the section of Y for a �xed w ∈ WY .

Assume that the functions A, B and the sets P , Y are such that the following conditions
hold.

Condition C.

A(L, v)− A(L∗, v) ≥ (L− L∗)/B0(w∗ − w|g(P )) ∀L ∈ E1, ∀w ∈ WY , ∀v ∈ Vw,

where L∗ = L(x∗, w∗) = f∗.
Condition D. For each point y ∈ Y the solution set of the system

A(L(x, w), v) + B(g(x)) = A(L(x∗, w∗), v), x ∈ P,

is identical with X∗.
We augment these two conditions with the following:

L(x∗, w) = L(x∗, w∗) ∀w ∈ WY . (4.3)

Note that if w∗ 6= 0, condition (4.3) is satis�ed for the set

WY = W∗ = {0 ≤ w ≤ w∗|wi < wi
∗, if wi

∗ > 0} (4.4)

Theorem 7. Assume that the Lagrange function of problem (1.1) has a saddle point [x∗, w∗]
and that conditions C, D, and (4.3) are satis�ed. Also assume that B(g(x)) is a strictly
exterior or interior penalty function (in the latter case, P ⊆ X) and 0 < B0(w∗−w|g(P )) < +∞
for any w ∈ WY . Then the function (4.2) is an e.a.f. for problem (1.1) on the set P × Y .

The proof of this theorem is almost a verbatim repetition of the proof of Theorems 1 and 2.
Also note that for an exterior penalty function B(g(x)) condition C can be relaxed: we only
need the inequality

A(L, v)− A(L∗, v) ≥ [(L− L∗)/B0(w∗ − w|g(P ))]− ∀L ∈ E1, ∀w ∈ WY , ∀v ∈ Vw.

As examples of the function (4.2) which are e.a.f.'s on the set En×Y , where Y = {[w, v]|w ∈
∈ W∗, v ∈ Vw}, we can take the functions R1 � R4, replacing f(x) with L(x,w). The sets
Vw for these functions are constructed in the same way as the corresponding sets Y for the
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functions R1 � R4. We, therefore, give these e.a.f.'s with their sets Vw only for the case when
B(g(x)) is a strictly exterior penalty function:

R11(x, y) = v−1L(x,w) + B(g(x)), Vw = {v : v > B0(w∗ − w|Em)},
R12(x, y) = v−1eL(x,w) + B(g(x)), Vw = {v : v > B0(w∗ − w|Em)ef∗},
R13(x, y) = [v − L(x,w)]α+ + B(g(x)), Vw = {v : v > f∗ + [−αB0(w∗ − w|Em)]1/(1−α)},
R14(x, y) = [L(x,w)− v]β+ + B(g(x)), Vw = {v : f∗ ≥ v > f∗ − [βB0(w∗ − w|Em)]1/(1−β)}.
We see that as w approaches w∗, the corresponding sets Vw become larger. For e.a.f.'s with
interior penalty functions they, conversely, contract. The function R11 was proposed in [3].

Now consider nonlinear e.a.f.'s constructed using a Lagrange function;

R(x, y) = H(A(L(x,w), v), B(g(x))), (4.5)

where, as before, H(t, τ) is a continuous nondecreasing function of two variables, A(L, v) is a
monotone increasing convex function of the �rst argument. We also assume that the function
A and the set Y are such that for any w ∈ WY constants C(w) and D(w) exist for which

0 < sup
y∈Y

sup
ξ∈∂AL(L∗,v)

ξ ≤ D(w) < +∞, (4.6)

0 < C(w) < sup
y∈Y

sup
ξ∈∂AL(L∗,v)

ξ < +∞. (4.7)

We also assume that

L(x,w) > L(x∗, w∗) = L∗ ∀w ∈ WY , ∀x ∈ X\X∗, (4.8)

and instead of (3.3) and (3.10) the function H(t, τ) satis�es the following conditions: for each
w ∈ WY there exists a set T (w) ⊆ E1 such that A(L∗, v) ∈ T (w) for all v ∈ Vw and for any
t∗ ∈ T (w) we have

H(t, (t∗ − t)+/D(w)B0(w∗ − w|Em)) > H(t∗, 0) ∀t 6= t∗, (4.9)
H(t, (t∗ − t)/C(w)B0(w∗ − w|Em

− )) > H(t∗, 0) ∀t > t∗. (4.10)

Note that if the set Y is such that the corresponding set WY is of the form (4.4), then
(4.3) implies (4.8). Indeed, if x ∈ X and f(x) > f∗, then for the case when 〈g(x), w〉 = 0, we
obtain L(x, w) = f(x) > f∗ = L∗. If 〈g(x), w〉 < 0, then 〈g(x), w〉 > 〈g(x), w∗〉 and, therefore,
L(x,w) > L(x,w∗) ≥ L∗.

Theorem 8. Assume that the Lagrange function in problem (1.1) has a saddle point [x∗, w∗],
A(L, v) is a convex monotone increasing function of the �rst argument, and (4.3) and (4.4)
hold. If B(g(x)) is a strictly exterior penalty function, 0 < B0(w∗ − w|Em) < +∞ for any
w ∈ WY and (4.6) and (4.9) hold, then (4.5) is an e.a.f. for problem (1.1) on the set P × Y .
If B(g(x)) is an interior penalty function, 0 < B0(w∗ − w|Em

− ) < +∞ for any w ∈ WY and
(4.7) and (4.10) hold, then (4.5) is an e.a.f. for problem (1.1) on the set X × Y .

The proof is similar to the proof of Theorems 4 and 5.
Assume that the function A(L, v) has the form A(L, v) = L − v. Then Theorem 8 implies

that Vw = f∗ − T (w) for any w ∈ WY . This property leads to the following e.a.f.:

R15(x, y) = [L(x,w)− v]−/{1− [L(x,w)− v]−B(g(x))}.
If B(g(x)) is a strictly exterior penalty function, then R15 is an e.a.f. on the set P ×Y15, where

Y15 = {[w, v] : w ∈ W∗, v > f∗ + [B0(w∗ − w|Em)]1/2}. (4.11)
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If B(g(x)) is an interior penalty function, R15 is an e.a.f. on the set X ×Y15, but the set (4.11)
has the form

Y15 = {[w, v] : w ∈ W∗, f∗ ≤ v < f∗ + [B0(w∗ − w|Em
− )]1/2}.

We can also consider e.a.f.'s of the form (4.5) with strictly mixed penalty functions B(g(x)).
The su�cient conditions remain as before, with the exception of condition (4.9), which is now
only required to hold for t < t∗.

In conclusion note that the functions (2.1) and (3.1) are special cases of the functions (4.2)
and (4.5). In order to obtain these functions, it su�ces to set w = 0 in (4.2) and (4.5).

Also note that if problem (1.1) has more than one saddle point [x∗, w∗], then the sets Y
should be bounded for augmentation using upper or lower bounds over all possible values of
the Lagrange multipliers w∗.
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