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1. INTRODUCTION

In the overwhelming majority of optimization problems, the global optimum must be found. However,
due to the great difficulty of this problem, only local solutions are usually determined. Modern multiproces-
sor computers considerably extend the capability of solving global optimization problems by using parallel
algorithms. A survey of the extensive literature on global optimization can be found in [1]. Parallelization
of computations is thoroughly studied in [2].

In [3], the method of nonuniform coverings for the global optimization of Lipschitzian functions was
proposed and implemented in Algol-60. This method was further elaborated in [4, 5]. If the Lipschitz con-
stant is known, the method of nonuniform coverings yields a guaranteed solution; however, only problems
of low dimension can be solved in practice. Numerical results show that the efficiency of this method con-
siderably depends on the Lipschitz constant, which is usually not known a priori; therefore, too high upper
bounds are used, which considerably complicates the computations. At the same time, there are domains in
many problems in which the Lipschitz constant is not large and the use of the maximal constant is not rea-
sonable. Below, we consider the minimization of functions of three types:

1. functions satisfying the Lipschitz condition,

2. functions whose gradient satisfies the Lipschitz condition,

3. functions whose Hessian satisfies the Lipschitz condition.

For these types of functions, the general scheme of the nonuniform covering method is elaborated with
the use of local optimization.

A parallel implementation of the nonuniform covering method and some numerical results for the func-
tions satisfying the Lipschitz condition were described in [6]. In distinction from [6], here we focus on the
global minimization of the functions whose gradient or Hessian satisfies the Lipschitz condition. Using C
and MPI (Message Passing Interface), a program is developed that finds the global extremum of functions
whose gradient satisfies the Lipschitz condition.

2. STATEMENT OF THE PROBLEM AND THE GENERAL IDEA OF THE COVERING METHOD
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Rs � Rk, and we obtain, taking into account (3), that

According to (2), this implies the inclusion xr ∈ .
This theorem conveys the main idea of the method of nonuniform coverings: instead of finding the global

minimum on X, one finds the global minima on subsets whose union contains X. Condition (4) can easily
be verified by constructing a minorant of f(x) on the sets Pi or Xi. Minorants of functions satisfying the Lip-
schitz condition are presented in the next section.

In the implementations of this method, the collections Sk and Nk are constructed one after another, and
the incumbent value is improved after each calculation of f; therefore, Ri � f(xi) for all i. Assume that f was
last calculated at the point cm, the incumbent minimizer was cr (r � m), and the incumbent minimum was
Rm. Define the Lebesgue set

(6)

Assume that xl  is a global minimizer of f (x) at the set �m. Then, Rm – f (xl ) = f (cr) – f(xl) � ε. Therefore,
the global minimization on �m can improve the incumbent minimum Rm not greater than by ε. This implies
that �m is of no interest, and it can be excluded from the search domain X.

If the condition X ⊂ Vm is not fulfilled after the computations described above, the minimization proce-
dure is continued on the set Wm = X \Vm. Assume that cm + 1 ∈ Xm + 1 ⊆ Wm is determined and f (cm + 1) and
Rm + 1 are computed. If f (x) � Rm + 1 – ε on Xm + 1, then the set Xm + 1 can be excluded from the search, and
the minimization procedure is continued on Wm\ Xm + 1. Otherwise, Xm + 1 is decomposed into several subsets;
in each of them, the values of f are computed, the incumbent minimum is recalculated, some subsets are
excluded, others are decomposed, and so on. The procedure terminates when the set X is completely cov-
ered. The set of incumbent values is a nonincreasing one. On the contrary, the sequence of the Lebesgue sets
�m is an expanding one; that is, �m ⊆ �m + i for i � 0.

X*
ε

x X  : f x( ) � f * ε+∈{ }.=

X*
ε

X*
ε

Ri f x j( )
1 � j  � i
min f xα( ), 1 � α � i.= =

Xi x : xi Pi f x( ) � Ri ε–,∈{ }, 1 � i � k, Vk Xi.
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X Vk.⊂

X*
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The Lebesgue set �m is the largest if Rm = f∗ in (6). However, f∗ is not known a priori. For that reason,
in order to make the incumbent value as small as possible, it is reasonable to use local minimization methods
for f on X. At the points ci ∈ X at which it is found that f (ci) < Rm, the incumbent value is improved; thus
one may hope that, solving the local minimization problem

while starting from the point ci, another point  ∈ X will be found at which f( ) < f(ci). Such a trick often
considerably speeds up the computations, improves the incumbent value, and enables one to expand the
domain that can be excluded from the search in the process of covering the set X.

3. MINIMIZATION OF LIPSCHITZIAN FUNCTIONS

The most difficult part in the implementation of the nonuniform covering method is the determination of
at least a certain part of the set �m. To this end, one has to impose additional constraints on the function f.
Assume that a majorant G(x, y) and a minorant g(x, y) for f(x) exist such that

(7)

for all x, y ∈ X.
Define the sets

(8)

It follows from (6) and (7) that Ki ⊆ �m; therefore, Ki can be excluded from the search domain X. Comparing
definitions (4) and (8), we see that Ki ⊂ Xi and Uk ⊂ Vk. Theorem 1 can be reformulated as follows. If the
collection of feasible points Nk and the corresponding sets K1, …, Kk are such that X ⊂ Uk, then the incum-

bent minimizer xr found from the conditions Rk = f(xr) (xr ∈ Nk) belongs to .
To construct a covering of X, one must know how to construct minorants. They can be easily found for

Lipschitzian functions. We consider three classes of such functions.
1. Assume that the function f satisfies the Lipschitz condition with a constant l; that is, we assume that,

for any x and y in X, it holds that

(9)

Hence, we obtain the majorant G(x, y) and the minorant g(x, y):

(10)

Using this minorant, definition (8) can be written in the form

(11)

where

(12)

If ||· || is the Euclidean norm, then Hi is the ball of the radius ρir centered at ci. If ||· || is the Chebyshev
norm, then Hi is the cube centered at ci with the principal diagonal 2ρir.

The vectors ci belong to ï for all 1 � i � k. According to (3), f(ci) � f(cr) = Rr for 1 � r � i. Therefore,
the ball of radius ρir given by formula (12) is always greater than or equal to ε/l. Define

(13)

The quantity ξ is called the minimal diameter of the covering ball. Such a diameter is realized when f(ci) =
Rr. For x ∈ Hi, we have

Therefore, the ball Hi can be excluded from the search domain. If the union of the balls Hi (1 � i � k) sat-

isfying (11) covers X, then cr ∈ . The radius of Hi is large if f(ci) � f(cr), and it is small in the domains

loc f x( ),
x X∈
min

c c

G x y,( ) � f x( ) � g x y,( ), G y y,( ) g y y,( ) f y( )= =

Ki x Pi : g x ci,( ) � Ri ε–∈{ }, Uk Ki.
i 1=

k

∪= =

X*
ε

f x( ) f y( )–  � l x y– .

G x y,( ) f y( ) l x y–  � f x( ) � f y( ) l x y––+ g x y,( ).= =
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 : x ci–  � ρir∈{ },= =

ρir ε f ci( ) Rr–+[ ]/l, 1 � r � i � k.=
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where f(ci) ≈ f(cr). Due to this fact, X can be covered by balls of different radii. This idea was first published
and implemented in [3].

2. Let the function f(x) be differentiable and its gradient satisfy the Lipschitz condition, that is, there is
a constant L such that

(14)

for any x and y in X. It is easy to show that, if f(x) is twice differentiable, then (14) holds if and only if || fxx(x)|| �
L for any x ∈ X. It follows from (14) that the concave support minorant g(x, y) and the convex support majo-
rant G(x, y) are determined by

(15)

(16)

This implies the inequality

(17)

This inequality can be used to check the correctness of the Lipschitz constant L. If (17) is not fulfilled, then
either L must be increased or assumption (14) is not true for the function under examination, or conditions
(15) and (16) can be used only locally for certain subsets Hi ⊂ X.

We use formulas (15) and (16) to find the global minimum of f on X. We will seek the minimum of the
minorant and majorant with respect to x. For y ∈ X, we find  and  such that

(18)

(19)

The second problem is much easier because G1(x, y) is convex. It is clear that

(20)

If  is an interior point of X, then

In the numerical implementation of the method, the minimum of f(x) was sought on the segments con-
necting the point y with  and the point y with . In many cases, this procedure improved the incumbent
minimum.
It follows from (10) and (15) that, for all x and y in X, it holds that

(21)

The condition f(x) � Rr – ε is fulfilled if x satisfies the condition

(22)

This set can be excluded from X in the numerical global minimization.
When X is a parallelepiped, the minimization problem for the minorant has an analytical solution that is

presented in the next section.
3. Let f be a twice differentiable function whose Hessian satisfies the Lipschitz condition with the con-

stant M:

(23)

f x x( ) f x y( )–  � L x y–

g1 x y,( ) f y( ) f x y( ) x y–,〈 〉 L
2
--- x y–

2
,–+=

G1 x y,( ) f y( ) f x y( ) x y–,〈 〉 L
2
--- x y–

2
.+ +=

L x y–
2
 � 2 f x( ) f y( )– f x y( ) x y–,〈 〉– .

x̂1 x̂2

x̂1 f x y( ) x y–,〈 〉 L
2
--- x y–

2
–

x X∈
min ,arg∈

x̂2 G1 x y,( ).
x X∈
minarg∈

f x̂1( ) � f x( ) � f x̂2( ).
x X∈
min

x̂2

x̂2 y
f x y( )

L
-------------, f x̂2( )– f y( )

f x y( ) 2

2L
--------------------.–= =

x̂1 x̂2

f x( ) � f y( ) f x y( ) x y–,〈 〉 L
2
--- x y–

2
.–+

L x y–
2

2
---------------------- f x y( ) x y–,〈 〉  � ε f y( ) Rr.–+ +

f xx x( ) f xx y( )–  � M x y– .
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According to (14), the support minorant and majorant of f(x) in this case have the form

In distinction from (15) and (16), these formulas provide approximations of the second order of accuracy
for f(x). In the general case, both functions are nonconvex here. The minimization of the majorant G2(x, y)
is studied in [7].

Let γ(y) be the minimal eigenvalue of the matrix fxx(y). Define ∆ = ||x – y ||. Then,

The condition f(x) � Rr – ε is fulfilled inside the ball centered at y with the radius ∆ satisfying the condi-
tion

(24)

where f(y) � Rr.

We represent the symmetric matrix fxx(y) as the difference of two matrices:

Here, (y) and (y) are positive definite matrices. The minorant g2(x, y) is reduced to the d.c. form, that
is, to the difference of two convex functions:

Here,

An extensive list of references concerning d.c. functions (difference of two convex functions) and methods
of their optimization can be found in [8].

The approach discussed here can be extended to the case when the jth derivative of f satisfies the Lips-
chitz condition. As j increases, the approximation of the majorant and minorant of f becomes more accurate,
which improves the efficiency of the nonuniform covering method; however, the complexity of the calcula-
tions increases because high-order derivatives of f(x) must be found.

The techniques presented above guarantee that the global minimum will be found provided that the Lip-
schitz constants are known. The main disadvantage of this approach is that certain upper bounds have to be
used as Lipschitz constants, which considerably complicates the calculations, especially in the domains
where the gradient of f(x) is small. The simplest solution is to assume that a particular Lipschitz constant
exists in each ball Hi. To this end, (9) and (14) are replaced with the conditions

Finding exact constants using these formulas can be more difficult than the global minimization of f(x)
on Hi. For this reason, one may use approximate estimates. In particular, if the diameter of Hi is sufficiently
small, one may assume that li � || fx(ci)|| and Li � || fxx(ci)||, where ci is the center of Hi.

g2 x y,( ) f y( ) f x y( ) x y–,〈 〉 1
2
--- x y–( )Ú

f xx y( ) x y–( ) M
6
----- x y–

3
,–+ +=
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2
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6
----- x y–

3
.+ + +=

g2 x y,( ) � f y( ) – f x y( ) 1
2
---γ y( )∆ M

6
-----∆2

–+ ∆.+

∆3 3∆
M
------- γ y( )∆ 2 f x y( )–[ ] � 

6
M
----- ε f y( ) Rr–+[ ],+

f xx y( ) f xx
1

y( ) f xx
2

y( ).–=

f xx
1

f xx
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g2 x y,( ) g21 x y,( ) g22 x y,( ).–=
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2
--- x y–( ) f xx

1
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g22 x y,( ) 1
2
--- x y–( )Ú

f xx
2

y( ) x y–( ) M
6
----- x y–

3
+⎝ ⎠

⎛ ⎞ .=

li f x( ) f y( )– /∆,
x Hi∈
max

y Hi∈
max=

Li f x x( ) f x y( )– /∆.
x Hi∈
max
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4. THE SEQUENTIAL COVERING ALGORITHM

When the method is implemented in software, an additional simplifying assumption is made. Namely,
we assume that the feasible set X is an n-dimensional parallelepiped with the faces parallel to the coordinate
planes:

Here and in what follows, the inequality a � x means that aj � xj for all 1 � j � n.

In the calculations, we use the additional vectors ai, bi ∈ �
n
 and the rectangular parallelepipeds with the

faces parallel to the coordinate planes generated by them: Pi = {x ∈ �
n
 : ai � x � bi}.

We assume that a � ai < bi � b. Thus, all the parallelepipeds Pi ⊆ X. The center ci = (ai + bi)/2 of Pi is
used as the vector y. Then, the radius of the ith parallelepiped is

The Chebyshev norm of the vector di = bi – ai determines the length of the longest edge of Pi:

Denote by qi the minimum of the minorant of f(x) on Pi. If f(x) satisfies Lipschitz condition (9) every-
where in Pi with the constant li, then, according to (10), we have

(25)

If the gradient of f(x) satisfies condition (14) everywhere in Pi with the constant Li, then qi is found by
minimizing minorant (15) on Pi; that is,

For all x ∈ Pi, we have

The minimum of the minorant with respect to  on Pi is attained on the boundary at  =  if  < 0

and at  =  otherwise. In both cases, |  – | =  –  for 1 � j � n and

Here, | fx(ci)| denotes the n-dimensional vector in which the jth component is . This yields the fol-

lowing lower bound on the minimum of the minorant on the parallelepiped Pi:

, where (26)

If f(x∗) < Rr, we set Rr = f(x∗). According to (26), the inequalities

(27)

hold true if

X x �
n

a � x � b,∈{ }.=

∆i ci ai– ci bi–
1
2
--- ai bi– .= = =

wi di ∞ di
j

1 � j  � n
max 2∆i.= = =

qi g ci x,( )
x Pi∈
min f ci( ) li∆i.–= =

qi f ci( ) f x ci( ) x ci–,〈 〉
Li

2
---- x ci–

2
–+

x Pi∈
min .=

ai � xi � bi,
ai bi–( )

2
------------------- � xi ci � 

bi ai–( )
2

-------------------.–

xi
j

x*
j

bi
j ∂f ci( )

∂x
j

--------------

x*
j

ai
j

x*
j

ci
j

bi
j

ci
j

qi f ci( ) f x ci( ) bi ci–,〈 〉–
Li

2
---- bi ci–

2
.–=

∂f ci( )

∂x
j

--------------

qi � f ci( ) Qi bi ci––
Li

2
---- bi ci–

2
– Qi f x ci( ) .=

f x( ) � qi � Rr ε–

bi ci–
2 2

Li

----Qi bi ci–  � ϕir, where ϕir+
2
Li

---- ε f ci( ) Rr–+[ ] � 
2ε
Li

-----.=
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Consider the ball Si

with the radius ζir, where

For Qi = 0, we have ζir = ; in this case, the diameter of the ball is minimal:

(28)

For Li = 0, we have ζir = ε + f(ci) – Rr � ε.
If conditions (9) or (14) are fulfilled, the minimal diameter of the covering ball is determined by (13) and

(28), respectively. If condition (23) is fulfilled, ξ is given by (24).
If

(29)

then Pi ⊂ Si, the parallelepiped Pi can be excluded from P, and the search for the minimum can be continued
on the set P\ Si. If inequality (29) is not fulfilled, the parallelepiped is sequentially subdivided by cutting it
perpendicularly to some edge.

Cutting Pi perpendicular to the longest edge seems to be the most simple and natural. However, if the
range of the values of the gradient components is large, an analog of scaling can be used. If f(x) is differen-
tiable, the edge with the index α for which

(30)

can be cut. Such a variant of subdividing the parallelepiped was proposed in [9]. In the particular case when
all the components of the gradient are identical, α is the index of the longest edge.

If the differentiability is not used, condition (30) can be replaced by the following one:

(31)

Here, the vectors  and  have the same components as the vector ci except for the jth components,

which are  and  for  and , respectively.

The software implementation of the method of nonuniform coverings is performed almost identically for
different Lipschitzian functions. Only the bounds on the minimum qi and the minimal diameters of the cov-
ering balls are found differently. The algorithm of covering the set X by the parallelepipeds Pi is the same.

If qi � Ri – ε, then Pi can be excluded because the global minimum on it cannot improve the incumbent
minimum Rm more than by ε; the search is continued on the set X \ Pi. Otherwise, if qi < Rm – ε, Pi is cut in
two, for example, perpendicularly to the longest edge, and the search is continued in these two parts. If the
principal diagonals of one or both parts are less than ξ, then f(x) � qi = f(ci) – ε on them and these parts are
excluded from the search domain. At the centers of the remaining parts, the values of f(x) are computed. If
possible, the incumbent minimum is improved, and the coverage condition of both parts is checked. The
covered parts are excluded from the search domain. If both parts are excluded, Pi is also excluded. Other-
wise, the subdivision is continued until Pi is covered. Various techniques for covering the parallelepiped X
can be used. For example, the layer-by-layer covering using Algol-60 recursive procedures was imple-
mented in [3]. This variant was used to solve global optimization problems of low dimension. Below, we
use the branch-and-bound method (as in [4]) for covering X.

With each parallelepiped Pi, we associate the set Si = (ci, di, qi). The collection of Si for the set of uncov-
ered parallelepipeds Bm will be called the list of sets, and we denote it by S = {S1, …, Sm}. The notation S = ∅
means that the list S is empty.

From the list S, we select a parallelepiped to start the covering process; it is called the working parallel-
epiped. We used the following three selection rules.

Si x : x ci–  � ζir{ },=

ζir θi
2 ϕir+ θi, θi–

Qi

Li

-----.= =

ϕir

ξ 2 2ε
Li

-----.=

∆i � ζir,

α bi
j

ci
j

–( ) ∂f ci( )

∂x
j

--------------
1 � j  � n
maxarg=

α f ci2
j( ) f ci1

j( )– .
1 � j  � n
maxarg=

ci2
j

ci1
j

ci2
j

ci1
j

ai
j

bi
j
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MINQ rule. The parallelepiped Ps is selected for which qs = .

FIFO rule. The first parallelepiped is selected; i.e., s = 1.
LIFO rule. The last parallelepiped is selected; i.e., s = m.
In the description of the algorithm below, the symbol k denotes the number of the iteration of the main

loop.
Initial operations. Set k = 1, m = 1, and P1 = P. Set ε > 0, the Lipschitz constant (l, L, or M), and a point

x0 ∈ P. Calculate c1, w1, f(c1), f(x0), q1, and determine  = min{ f(c1), f(x0)}. Set  = {c1},  = {P1},

S1 = {c1, w1, q1), and S (1) = {S1. If  = f(c1), then use c1 as the incumbent minimizer; otherwise, use x0. If

q1 �  – ε, then terminate the calculation.

Main loop. Repeat the following steps 1–5 while S(k) ≠ ∅, that is, until the set X is completely covered.
Step 1. Using one of the selection rules, choose the working parallelepiped Ps.

Step 2. Find the longest edge index t in Ps: ws = .

Step 3. Divide Ps into two parts with respect to the component t thus creating two new parallelepipeds
P' and P''. Their centers, the lengths of the longest edges, and the minimal values of the minorants are

denoted by c', w', q' and c'', w'', g'', respectively. Then, eliminate Ps from the set , remove Ss from the list
S (k), and set m = m – 1.

Step 4. Calculate

(32)

If  � R(k), then set R(k + 1) = R(k). If q' < R(k + 1) – ε and w' � ξ, then add S ' = (c', w', q') to the list of collections
and set m = m + 1. If q'' < R(k + 1) – ε and w'' � ξ, then add S'' = (c'', w'', q'') to the list of collections and set

m = m + 1. If  < R(k), then set R(k + 1) = . The incumbent minimizer xr is set either to the point c' or to c''
depending on where the minimum in (32) is attained. Every set Si in {Si}1 � i � m satisfying the condition qi �
R(k + 1) – ε is removed from this list. Renumber the new list {Si1, …, Sim} and set S(k + 1) = {Sj}1 � j � m.

Step 5. Set k =: k + 1.
Note that the principal diagonal of the parallelepiped obtained using the subdivision procedure described

above cannot shorter than d. Taking this fact into account, its is easy to prove the following result.
Proposition 1. Let the function f in problem (1) or its first- or second-order derivatives satisfy the Lips-

chitz condition on the n-dimensional rectangular parallelepiped P. Then, the algorithm described above

yields the incumbent minimizer xr ∈  using a finite number of computations of f. 

After the computations are completed, the set P is completely covered by the parallelepipeds Pi, and the
incumbent minimizer xr is an ε-solution of problem (1).

This algorithm can be considerably accelerated by using local minimization procedures. To obtain the
results presented below, the conjugate gradient method with projecting on the parallelepiped P was used for
the local minimization. The software implementation of the algorithm was performed by N.I. Grachev.

The presented algorithm can be interpreted as the branch-and-bound method (see [10]): at step 1 the set
for branching is selected; at step 2 the branching procedure is chosen; at step 3 the branching is performed;
and, at step 4 the bounds q' and q'' corresponding to the new sets that are candidates for branching are cal-
culated, the incumbent minimum R is updated, and certain sets are excluded from the search domain (if the
incumbent minimum was improved).

At each step of the method, a parallelepiped belonging to the current collection is divided into two par-
allelepipeds by a plane that is parallel to a coordinate plane. The process of bisection can be interpreted as
the growth of a binary tree. The vertices of this tree are associated with the parallelepipeds obtained in the
initial partitioning. The edges connect the given parallelepiped with the parallelepipeds obtained by its sub-
division. The parallelepipeds corresponding to the leaf vertices of the tree form the current set of parallel-
epipeds. Some leaf vertices can be removed from this set using the pruning rule (see step 4).

For brevity, we will call the current collection of parallelepipeds a pool and Steps 1–5 of the main loop
will be called an iteration. 

qi
1 � i � m

min

R̃ N1
1( )

B1
1( )

R̃

R̃

ds
t

Bm
k( )

R̃ min f c'( ) f c''( ),{ }.=

R̃

R̃ R̃

X*
ε
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The efficiency of a particular covering of the feasible set becomes considerably higher if the initial point
is chosen properly. Such a choice yields an incumbent minimum that is close to the global minimum to be
found. To find the initial value, calculations with deliberately low Lipschitz constants are first performed. In
this case, the majorants and minorants can considerably differ from f(x). Inequalities (20) can be violated
in this case.

5. DESCRIPTION OF A PARALLEL ALGORITHM

The main idea behind the proposed parallel algorithm is to perform iterations concurrently on several
processors that periodically exchange the incumbent minima; the search domains are periodically redistrib-
uted between the processors in the course of the computations.

To concurrently perform the iterations, one needs a method for distributing the parallelepipeds between
the processors. Assume that there are p processors and there is an initial sequence Bm = {P1, …, Pm} of the
parallelepipeds Pi belonging to P; for example, this sequence could be preliminary constructed by the same
algorithm. This sequence can consist of a single parallelepiped (m = 1) or of a collection of s subse-
quences of parallelepipeds (trees). Let the incumbent minimum Rm and the incumbent minimizer xr be
found using (3).

The distribution of the work between the processors depends on the unit of work of the algorithm. As
such a unit, we use the computational work needed to perform an iteration of the sequential algorithm Q
times (Q � 1).

Assume that, in addition to the p processors mentioned above, which will be called slaves, there is an
additional processor called the master. Let us distribute the parallelepipeds in the initial collection Bmamong
the slave processors (p � s).

When performing the iterations, each slave processor maintains its own pool of parallelepipeds to be
examined. We say that a processor finished its portion of the work if it performed Q iterations of the sequen-
tial algorithm (performed Q bisections) or if its individual pool is empty. The processor that finished its work
sends to the master the following data: the number of parallelepipeds in its pool, the minimal bound y for
each of them, and the incumbent minimum of f obtained in the course of the calculations. This processor is
placed in the waiting queue maintained by the master. A waiting processor is said to be free if its individual
pool is empty.

Consider the communication between the processors. The exchange of information would be ideal if
each processor could send to all the other processors the incumbent minimum found by it, the number of
parallelepipeds in its pool, and the minimal bound for each of them. However, too frequent data exchange
between the processors can significantly increase the communication overheads and reduce the efficiency
of the parallel algorithm as a whole.

In the proposed variant of the algorithm, each slave processor sends to the master the data indicated
above in the asynchronous mode, i.e., independently of the other processors. Using these data, the master
processor improves the incumbent minimum R and communicates it to the waiting processors, which will
use this minimum to remove parallelepipeds from their collections. The master processor finds among the
waiting processors the ones that contain only a single parallelepiped in their individual collection and
instructs them to perform the main loop Q times using R as the incumbent minimum. The same instructions
are given to the other waiting processors if there are no free processors at the moment.

If there are still undistributed parallelepipeds from the initial collection, their subsequences are sent to
the detected free processors.

If all the parallelepipeds from the initial collection are already distributed, the master processor detects
a free slave processor and chooses a processor among the waiting ones; then the master instructs the waiting
processor to pass the parallelepiped with the minimum lower bound to the free processor and instructs the
free processor to get this parallelepiped.

The master completes the execution of the algorithm when all the slave processors are free.
In the proposed algorithm, the frequency of the communications between the slave processors and the

master depends on the parameter Q. As soon as a free processor is detected, the work is redistributed
between the processors by passing parallelepipeds. In such a scheme, the processors execute the algorithm
asynchronously exchanging information only with the master. As a result, the execution of the algorithm
becomes nondeterministic; that is, the sequence of parallelepipeds and the solution may be different for dif-
ferent runs of the same program for the same problem (even on the same set of processors).

Let us describe the parallel algorithm for the interaction scheme between the processors presented above.
To exchange data between the processors, we use the explicit message passing. A message sent from a slave



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 49     No. 2      2009

PARALLEL GLOBAL OPTIMIZATION OF FUNCTIONS OF SEVERAL VARIABLES 255

processor to the master contains the following information: the number of parallelepipeds in the current
pool, the minimal bound q for the parallelepipeds in the current pool, and the individual incumbent mini-
mum R = f(c).

The master processor sends to the slaves the following instruction messages:
—work(Q, R) to execute the main loop Q times using R as the incumbent minimum,
—read(T) to receive the initial subsequence of parallelepipeds T,
—take(i) to receive a parallelepiped from processor i,
—give(j) to pass a parallelepiped to processor j,
—finish to finish the operation.

Algorithm for the master processor 

Step 1. Make all the slave processors free. If the initial sequence contains a single parallelepiped (m =
1), then make the processor p1 a waiting one and add to its individual pool the single initial parallelepiped;
set the incumbent minimum to R = f(x0), where x0 ∈ P is the given initial point; set the bound y to the bound
assigned to the initial parallelepiped; and set the parameter Q � 1.

Step 2. If the given operation time specified for the processors is not expired, repeat the following steps
3–7 until all the processors become free.

Step 3. If there are no free processors, send the message work to all the waiting processors and clear the
list of the waiting processors.

Step 4. Send the message work to each processor that has a single parallelepiped in its pool and remove
this processor from the list of the waiting processors.

Step 5. While there are free processors and unassigned parallelepipeds in the initial sequence, execute
the following loop: send the message read to every free processor and remove it from the list of free proces-
sors.

Step 6. (Loop for selecting pairs of processors to pass parallelepipeds.) While the lists of the waiting and
free processors are not empty, find among the waiting processors the one with the minimal bound, take a
processor j from the list of the free ones, remove the selected processors from the corresponding lists, send
the message give(j) to the former and the message take(i) to the latter.

Step 7. Receive the messages sent by the slave processors, add the sending processor to the list of the
waiting or free processors depending on the number of parallelepipeds in its pool. Then, update the incum-
bent minimum taking into account the data obtained from the processors.

Step 8. Send the message finish to each slave processor.

Algorithm for the slave processors 

Step 1. Until the finish instruction is received, execute the following steps 2–4.
Step 2. Receive the next instruction from the master processor.
Step 3. If the instruction give or take is received, execute it and then send a message to the master con-

taining the number of parallelepipeds in the pool and the minimal bound y.
Step 4. If the instruction work is received, execute the iterations while the individual pool is not empty

and less than Q iterations are executed; next, send a message to the master containing the results.
Step 5. If the instruction read is received, execute it and send a message to the master containing the

number parallelepipeds in the pool and the minimal bound y.
Step 6. If the instruction finish is received, complete the work.

6. NUMERICAL RESULTS

For the numerical calculations, we used the Morse function for the energy of atomic clusters consisting
of n atoms:

f x1 … xn ρ, , ,( ) e
ρ 1 xi x j––( )

1–( )
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Here, ρ is a scalar parameter and xi ∈ �
3
 and xj ∈ �

3
 are the vectors of coordinates of the atom’s i and j

centers, respectively.
We want to find the Cartesian coordinates of n atoms that globally minimize f. The parameter ρ was set

to 3, 6, 8, 10, and 14; and the number of atoms was as much as 85 (in this case, the number of scalar variables
to be found is 255). Figure 6 shows the structure of a cluster with 85 atoms and ρ = 6; the potential energy
in this case is –405.246158.

The computations were performed under two assumptions: the function f satisfies the Lipschitz condition
with a constant l (strategy I) and its gradient satisfies the Lipschitz condition with a constant L (strategy II).
Since l and L are not known a priori, a series of computations was performed: first, with small values of l
and L; after determining an incumbent minimum, l and L were gradually increased so as to keep the com-
putation time reasonable.

The computations were performed on the multiprocessing system MVS 100k installed at the Joint Super-
computer Center (JSCC) of the Russian Academy of Sciences [11]. The computations were also performed
in the distributed GRID environment at the Dorodnicyn Computing Center of the Russian Academy of Sci-
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ences and the Institute for System Programming of the Russian Academy of Sciences using the Globus 4.0.4
technology. The results for the atomic clusters with less than 80 atoms were in very good agreement with
the data presented in the Cambridge Cluster Database [12].

To compare the efficiency of the two strategies, we considered the Morse function depending on 75 vari-
ables and fixed all the components of the global minimizer except for two of them. Figure 1 shows the plot
of the Morse function f depending on x55 and x56; it also shows the partitioning scheme. Figure 2 shows the
covering parallelepipeds for two partitioning schemes (a corresponds to the partitioning with respect to the

Table 1

Strategy The method for choosing
an edge Number of parallelepipeds Percentage of unreliable

estimates

f(x10, x13)

I a 16947 14.22%

II a 7895 0.00%

II b 2097 0.05%

f(x4, x12)

I a 17327 1.63%

II a 7419 0.05%

II b 3781 0.08%

f(x0, x3)

I a 33761 10.06%

II a 5965 1.15%

II b 4823 2.26%

Table 2

Characteristics
Rule for choosing the working parallelepiped

MINQ FIFO LIFO

Solution time (s.) 145 49 67

Number of parallelepipeds 200285 78697 113967

Index of the parallelepiped at which the minimum was found 135850 30924 89606

The maximum size of the list (number of parallelepipeds) 12821 12865 22
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longest edge and b with respect to the scalable edge) with respect to the coordinates x10 and x13. (The asterisk
in Figs. 1 and 2 indicates the global minimizer, and, in Fig. 3, it indicates the global minimum).

The results in Table 1 show that strategy II reduces the number of cuts required to find the minimum by
several fold. Moreover, the reliability of the estimates provided by strategy II is higher by an order of mag-
nitude because it does not prune the parallelepipeds that can contain the minimizer, which improves the
probability to find it.

Figure 3 shows the comparative plot of finding the minimum of the Morse function with 75 free variables
and ρ = 3 for two strategies. It is seen from this plot that strategy II yields the minimum much faster.

Table 2 presents the results of the comparison of three methods for selecting the next working parallel-
epiped—MINQ (according to the minimal estimate), FIFO (first in first out), and LIFO (last in first out).

Figures 4 a 5, respectively, illustrate the dependence of the minimum and of the number of cuts on the
number of processors for a fixed value of the computation time. The numerical results show that the mini-
mum is considerably improved as the number of processors increases and the number of cuts is proportional
to the number of processors. Figure 6 shows the structure of a cluster with n = 85 and ρ = 6.

7. CONCLUSIONS

The variants of the method of nonuniform coverings proposed in this paper make it possible to globally
optimize Lipschitzian functions. The requirements that the Lipschitz constant is known and invariable in the
entire search domain are removed. The differentiability condition of the function is introduced. Due to this
condition, the lower bounds of the function values in the current search domains are considerably improved,
which reduces the computation time by accelerating the pruning of “unpromising” parallelepipeds. The pro-
posed parallel global optimization method can be used to solve multicriteria optimization problems. The
simplest approach is to use the results obtained in [13]. The proposed method can also be used to find the
global minimax as in [14]. In addition, it can be used to minimize the Lipschitzian functions under the addi-
tional requirement that some of the components of the vector x are integer.
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