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Abstract
A surjective space transformation technique is used to convert an original dual linear

programming problem with equality and inequality constraints into a problem involving
only equality constraints. Continuous and discrete versions of the stable gradient projec-
tion method are applied to the reduced problem. The numerical methods involve perfor-
ming inverse transformations. The convergence rate analysis for dual linear programming
methods is presented. By choosing a particular exponential space-transformation function
we obtain the dual a�ne scaling algorithm. Variants of methods which have linear local
convergence are given.

1 INTRODUCTION

Since 1973, we have developed a family of numerical methods based on space transformation
techniques. Using a space transformation, we convert the original problem with equality and
inequality constraints to a problem with equality constraints only. This is an old notion com-
monly used in the optimization literature. Numerous variants of this basic idea exist. In
[4] � [12] we used a surjective space transformation and then applied the gradient projection
method and Newton's method to solve the reduced nonlinear programming problem. After an
inverse transformation to the original space a family of numerical methods for solving optimiza-
tion problems with equality and inequality constraints was obtained. The proposed algorithms
are based on the numerical integration of systems of ordinary di�erential equations. As a
result of a space transformation the vector �elds of di�erential equations are changed and ad-
ditional terms are introduced which serve as a barrier preventing the trajectories from leaving
the feasible set. In our algorithms the barrier functions are continuous and equal zero on a
boundary. The space transformations are carried out without using conventional barrier or
penalty functions and this feature provides a high rate of convergence.

Di�erent numerical methods are obtained by di�erent choices of the space transformations.
For example, if we choose an exponential space transformation in the linear programming case,
we obtain the Dikin's algorithm [3] from the family of primal barrier-projection methods. This
algorithm, however, does not posses local convergence properties and it converges only for
starting points inside the feasible set. Furthermore, the discrete version has a less than linear
rate of convergence. In [8]-[10] it was shown that if we apply stable versions of the gradient
projection algorithm and use the quadratic space transformation, then we obtain local linear
convergence. A survey of our results in this �eld is given in [11] and applications to linear
programming are presented in [12].

1Research supported by the grant N 94-01-01379 from Russian Scienti�c fund.
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The content of this paper is similar to that of [12], but in contrast to [12], we focus our
attention on the solution of the dual linear programming problem, though the methods which
we propose permit us to obtain the solution of the primal problem simultaneously with the
solution of the dual problem.

For the local convergence analysis we use the Lyapunov linearization principle of determining
the stability from the equation of the �rst approximation about an equilibrium state [2]. Non-
local convergence is investigated by using the second (direct) method of Lyapunov.

In Section 2, we describe a family of dual barrier-projection methods. These methods are
described by systems of ordinary di�erential equations. Numerical algorithms are obtained
as discretizations of dynamical systems. Su�cient conditions for local convergence of conti-
nuous and discrete versions of numerical methods are given. We show that, if the quadratic
space transformation is used then we obtain an exponential rate of convergence for continuous
methods and a linear rate of convergence for discrete versions.

In Section 3, we use a non-conventional representation of the dual linear programming
problem and we propose a di�erent set of algorithms. After some simpli�cation and after
choosing a particular exponential space transformation function we obtain the dual a�ne scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga [1]. In Section 4, we
investigate non-local convergence properties.

2 BASIC APPROACH AND OUTLINE OF THE METHODS

Consider a linear programming problem in standard form:

minimize c>x subject to x ∈ X = {x ∈ Rn : b− Ax = 0m, x ≥ 0n} (2.1)

and its dual problem

maximize b>u subject to u ∈ U = {u ∈ Rm : v = c− A>u ≥ 0n}, (2.2)

where A ∈ Rm×n, (m < n); c, x, v ∈ Rn; b, u ∈ Rm and rank(A) = m; 0s is the s−dimensional
null vector.

We de�ne the interior set of U as:

U0 = {u ∈ Rm : v = c− A>u > 0n},

and assume that this set is nonempty.
Throughout the paper we assume that the problems have nonempty solution sets X∗ and

U∗, respectively. We also introduce the following sets:

V = {v ∈ Rn : there exists u ∈ Rm such that v = c− A>u},
VU = {v ∈ Rn : there exists u ∈ U such that v = c− A>u}.

Here v is the n−vector of slack variables. The set VU is the image of U under the mapping
v(u) = c− A>u. Therefore, VU = V

⋂Rn
+, where Rn

+ is the nonnegative orthant of Rn.
We denote the components of a vector by using superscripts and the iterate numbers by

using subscripts; D(z) denotes the diagonal matrix whose entries are the components of z.
The dimensionality of this matrix is determined by the dimensionality of z.

We now introduce a new n-dimensional space with the coordinates [w1, . . . , wn] and de�ne
a di�erentiable transformation from this space to the original one: v = ϕ(w). This surjective
transformation maps Rn onto Rn

+ or intRn
+, i.e. Rn

+ = ϕ(Rn), where B̄ denotes the closure
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of B. In this case every vector in Rn
+ is the image of at least one vector in Rn or it is the image

of a limit point of a sequence in Rn. In other words for each v ∈ Rn
+ there exists a w ∈ Rn such

that v = ϕ(w) or v = lim
i→∞

ϕ(wi), where wi ∈ Rn.
For the sake of simplicity we use a componentwise space transformation where

ϕ(w) = [ϕ1(w1), ϕ2(w2), . . . , ϕn(wn)].

Let wi = ψi(vi) denote the inverse transformation of ϕi(wi). This transformation exists at least
in a neighborhood of a point vi

0 = ϕi(wi
0), as long as ϕ̇i(wi

0) 6= 0.
We introduce a n-vector θ(v) and a n× n matrix G(v):

θ(v) = [θ1(v1), θ2(v2), . . . , θn(vn)], G(v) = D(θ(v)),

where θi(vi) = (γi(vi))2, γi(vi) = ϕ̇i(ψi(vi)), 1 ≤ i ≤ n.
We impose the following conditions on the space transformation ϕ(v):

C1. The functions θi(vi) are de�ned and continuous in some neighborhood of R1
+ and θi(vi) = 0

if and only if vi = 0, where 1 ≤ i ≤ n.

C2. The functions θi(vi) are continuously di�erentiable in some neighborhood of R1
+ and

θ̇i(0) > 0, 1 ≤ i ≤ n.

Di�erent numerical methods with various convergence properties can be obtained from
di�erent choices of the space transformation functions. Here we consider only two simple
surjective transformations

v =
1

4
D(w)(w), v = e−w, (2.3)

where the ith component of the n−vector e−w is e−wi . We shall refer to these transformations
as to quadratic and exponential space transformations, respectively.

For the transformations (2.3) we obtain, respectively,

θ(v) = v, G(v) = D(v); θ(v) = D(v)v, G(v) = D2(v).

In both cases the Jacobian matrix is singular on the boundary of the set Rn
+. These trans-

formations satisfy C1. Condition C2 holds only for the �rst quadratic transforma-
tion (2.3).

By extension of the space and by converting the inequality constraints to equalities, we
transform the original dual problem (2.2) into the following equivalent problem

maximize b>u with respect to u and w subject to ϕ(w) + A>u− c = 0n. (2.4)

The Lagrangian associated with this problem is de�ned by

L̃(u,w, x) = b>u + x>[ϕ(w) + A>u− c].

For solving problem (2.4) we use the stable version of the gradient projection method which
is described in [16]. The method is stated as an initial-value problem involving the following
system of ordinary di�erential equations

du

dt
= L̃u(u,w, x(u,w)),

dw

dt
= L̃w(u, w, x(u,w)). (2.5)
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The function x(u,w) is chosen to satisfy the following condition:

L̃xu(u,w, x)u̇ + L̃xw(u,w, x)ẇ = −τL̃x(u,w, x). (2.6)

Since v̇ = ϕwẇ, (2.5) can be rewritten in terms of u and v as follows:

du

dt
= b− Ax(u, v),

dv

dt
= −G(v)x(u, v), (2.7)

where Φ(v)x(u, v) = A>b + τ(v + A>u− c) and Φ(v) = G(v) + A>A.
We say that an extreme point u of the feasible set U is nondegenerate if the vector v(u) has

only m zero components.
Lemma 1. Let the space transformation ϕ(w) satisfy C1. Then the matrix Φ(v(u)) is

positive de�nite for all u ∈ U0.
Lemma 2. Let the space transformation ϕ(w) satisfy C1. Assume that a point u ∈ U can

be represented as
u =

s∑

j=1

αjuj, αj > 0,
s∑

j=1

αj = 1,

where uj, 1 ≤ j ≤ s, are extreme points of U , and at least one point uj is nondegenerate. Then
the matrix Φ(v(u)) is positive de�nite.

Proof. To show the nonsingularity of Φ(v), where v = v(u) it su�ces to show that the
nullspace of Φ(v) contains only the point 0n. Consider the linear system of equations

Φ(v)x̄ = G(v)x̄ + A>Ax̄ = 0n. (2.8)

By multiplying (2.8) on the left by x̄>, we obtain

x̄>G(v)x̄ + x̄>A>Ax̄ = 0.

Both expressions are nonnegative and, therefore,

x̄>G(v)x̄ = 0, x̄>A>Ax̄ = 0. (2.9)

Let Sj = {1 ≤ i ≤ n : a>i uj = ci}, S =
s⋂

j=1
Sj, where ai is the ith column of the matrix A.

Without loss of generality we assume that S = {1, 2, . . . , k}. We select the �rst k columns and
denote them by B. We partition A, x̄ and v as

A = [B | N ], x̄ =

[
x̄B

x̄N

]
, v =

[
vB

vN

]
.

Since at least one extreme point is nondegenerate, it follows that k ≤ m and B has full rank.
Since vB = 0k and vN > 0n−k, we obtain from (2.9) that x̄N = 0n−k. Hence Bx̄B = 0m and we
conclude that x̄ = 0n.

Corollary 1. If an extreme point u of a polytope U is nondegenerate, then Φ(v(u)) is
positive de�nite.

Corollary 2. If all extreme points of the bounded set U are nondegenerate, then Φ(v(u))
is positive de�nite for all u ∈ U .

According to Corollary 2, if v ∈ VU , then the matrix Φ(v) is invertible. Because of the
continuity it is also invertible in some neighborhood of VU . For all points from this set we get

x(u, v) =
(
G(v) + A>A

)−1 (
A>b + τ(v + A>u− c)

)
.
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Substituting this formula into the right-hand side of (2.7) we �nd that the system takes the
explicit form

du/dt = b− A
(
G(v) + A>A

)−1 (
A>b + τ(v + A>u− c)

)
,

dv/dt = −G(v)
(
G(v) + A>A

)−1 (
A>b + τ(v + A>u− c)

)
.

(2.10)

Let [u(t, z0), v(t, z0)] denote the solution of the Cauchy problem (2.10) with initial conditions
u(0, z0) = u0, v(0, z0) = v0, z>0 = [u>0 , v>0 ]. Let y(u, v) = c− A>u− v. The condition (2.6) can
be written as

dy(u, v)

dt
= y>u (u, v)u̇ + y>v (u, v)v̇ = −τy.

Hence, the system of ordinary di�erential equations (2.10) has the �rst integral

c− A>u(t, z0)− v(t, z0) =
(
c− A>u0 − v0

)
e−τt.

This implies that c − A>u(t, z0) − v(t, z0) → 0n as t → +∞. Moreover, along the trajectories
of the system (2.10) we get

b>
du

dt
= b> (b− Ax(u, v)) = ‖b− Ax(u, v)‖2 + x>(u, v)A> (b− Ax(u, v)) =

= ‖b− Ax(u, v)‖2 + x>(u, v)G(v)x(u, v) + τx>(u, v)
(
c− A>u− v

)
.

From the second equation of (2.10) it follows that if the transformation ϕ(v) satis�es condi-
tion C1, then each component of the vector v(t, z0) does not change its sign. Hence, if v0 ≥ 0,
then v(t, z0) ≥ 0 on the entire trajectory. We obtain this important property because of the
matrix G(v) in the right-hand side of (2.10), which plays the role of a �barrier�, preventing
the trajectory v(t, z0) from passing through the boundary of Rn

+. Hence, we call (2.10) a �dual
barrier-projection method�.

Note that y(u(t, z0), v(t, z0)) ≡ 0n if y(u0, v0) = 0n. We conclude that if u0 ∈ U , then we
can get rid of the equation for v and this way simplify systems (2.7) and (2.10). In this case,
(2.7) can be expressed as

du

dt
= b− Ax(u),

(
G(v(u)) + A>A

)
x(u) = A>b, (2.11)

where u(0, u0) = u0 ∈ U .
For this system we obtain the following inequality

b>
du

dt
= ‖b− Ax(u)‖2 + x>(u)G(v(u))x(u) ≥ 0.

Hence the objective function of the dual problem monotonically increases on a feasible set.
By applying the Euler numerical integration method we obtain the following iterative algo-

rithm
uk+1 = uk + αk(b− Axk), vk+1 = vk + αkG(vk)xk, (2.12)

(
G(vk) + A>A

)
xk = A>b + τ

(
vk + A>uk − c

)
.

Similarly for the system (2.11) we have

uk+1 = uk + αk (b− Axk) ,
(
G(vk), +A>A

)
xk = A>b, (2.13)

where vk = v(uk). Both variants solve the primal and dual problems simultaneously.
Theorem 1. Let x∗ and u∗ be unique nondegenerate solutions of Problems (2.1) and (2.2),

respectively, and let v∗ = c − A>u∗. Assume that the space transformation ϕ(w) satis�es
conditions C1, C2 and τ > 0. Then the following statements are true:
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1. The pair [u∗, v∗] is an asymptotically stable equilibrium state of system (2.10).

2. The solutions u(t, z0), v(t, z0) of system (2.10) converge locally to the pair [u∗, v∗]. The
corresponding function x(u(t, z0), v(t, z0)) converges to the optimal solution x∗ of the pri-
mal problem (2.1).

3. The point u∗ is an asymptotically stable equilibrium state of system (2.11).

4. The solutions u(t, u0) of system (2.11) converge locally to the optimal solution u∗ of the
dual problem (2.2). The corresponding function x(u(t, u0)) converges to the optimal solu-
tion x∗ of the primal problem (2.1).

5. There exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the sequence {uk, vk} generated
by (2.12) converges locally with a linear rate to [u∗, v∗] while the corresponding sequence
{xk} converges to x∗.

6. There exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the sequence {uk} generated
by (2.13) converges locally with a linear rate to u∗ while the corresponding sequence {xk}
converges to x∗.

Proof. Let δz> = [δu>, δv>], δu = u(t, z0)− u∗ and δv = v(t, z0)− v∗. We linearize system
(2.10) in the neighborhood of the point z>∗ = [u>∗ , v>∗ ]. Then we obtain the �rst approximation
of (2.10) about point z∗:

δż = −Qδz,

where
Q =


 τAΦ−1A> AΦ−1

(
τIn −D(θ̇(v∗))D(x∗)

)

τG(v∗)Φ−1A> (In −G(v∗)Φ−1) D(θ̇(v∗))D(x∗) + τG(v∗)Φ−1


 ,

Φ = G(v∗) + A>A and In is the n× n identity matrix.
Suppose that the �rst m columns of A are linearly independent and denote the m × m

matrix determined by these columns as B. Assume that B is the optimal basis. With respect
to this partition we can write

x∗ =

[
xB
∗

xN
∗

]
, v∗ =

[
vB
∗

vN
∗

]
, A = [B | N ], (2.14)

G(v∗) =

[
0mn 0md

0dm GN

]
, Φ =

[
B>B B>N
N>B GN + N>N

]
,

where xB
∗ > 0m, vB

∗ = 0m, vN
∗ > 0d, d = n−m and GN = D(θ(vN

∗ )) is the d× d matrix. Using
the Frobenious formula we can �nd Φ−1 and obtain

Φ−1A> =

[
B−1

0dm

]
, Q =

[
τIm Q2

0nm Q1

]
, Q1 =

[
D(θ̇(vB

∗ ))D(xB
∗ ) 0md

Q3 τId

]
,

where the matrices Q2 and Q3 are not essential.
It is obvious that the characteristic equation

det (Q− λIn+m) = 0

has following roots: λi = θ̇i(0)xi
∗, λj = τ , 1 ≤ i ≤ m, m + 1 ≤ j ≤ n + n. Since the

transformation ϕ(w) satis�es C2, and since x∗ is a nondegenerate optimal solution of the
problem (2.1), all these roots are positive and the smallest root is

λ∗ = min
[
τ, min

1≤i≤m
θ̇i(0)xi

∗

]
> 0.
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Hence, according to Lyapunov's linearization principle, the equilibrium point z∗ is asymptoti-
cally stable and the following estimate holds

lim
t→∞ sup

ln ‖z(t, z0)− z∗‖
t

< −λ∗.

Denote
α∗ = 2/λ∗, λ∗ = max

[
τ, max

1≤i≤m
θ̇i(0)xi

∗

]
.

If the stepsize αk < α∗, then by Theorem 2.3.7 from [5] the linear convergence of the discrete
versions (2.12) follows from the proof given above.

If u0 ∈ U , then the solutions of (2.11) coincide with corresponding solutions of (2.10), if
in (2.10) we take v0 = v(u0). Therefore, the local exponential convergence of (2.10) implies
the local exponential convergence of (2.11). In the similar way the linear convergence of (2.12)
implies the linear convergence of (2.13).

We proposed the dual method (2.11) in 1977. It was described in [7] where we also gave
the following primal method

dx

dt
= G(x)

[
c− A>u(x)

]
, (2.15)

where AG(x)A>u(x) = AG(x)c, G(x) = D(x). Both methods are similar and both solve primal
and dual problems simultaneously. The method (2.15) is very popular now. It was reinvented
recently in [13], [15] and analyzed in the book [14].

3 OTHER VARIANTS OF DUAL METHODS

As before we assume that A has full rank, therefore, the nullspace of A has dimension d = n−m.
Let P be a full rank d × n matrix such that AP> = 0md. Therefore, the columns of P> are
linearly independent and form a basis for the nullspace of A. We partition A as A = [B,N ],
where the square matrix B is nonsingular. We can now write the matrix P as

P =
[
−N(B>)−1 | Id

]
.

The de�nitions of the sets V and VU can be rewritten as follows:

V = {v ∈ Rn : P (v − c) = 0d} , VU =
{
v ∈ Rn

+ : P (v − c) = 0d

}
.

Let x̄ ∈ Rn be an arbitrary vector which satis�es the constraint Ax̄ = b. Then

max
u∈U

b>u = max
u∈U

x̄>A>u = max
v∈VU

x̄>(c− v) = x̄>c− min
v∈VU

x̄>v.

Hence the solution of the dual problem (2.2) can be substituted by the following equivalent
minimization problem:

min
v∈VU

x̄>v.

Applying the stable barrier-projection method [12] to this problem, we obtain

dv

dt
= −G(v)

(
x̄− P>x(v)

)
, (3.1)

PG(v)P>x(v) = PG(v)x̄ + τP (c− v). (3.2)
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If a point v is such that the matrix PG(v)P> is invertible, then we can solve the linear equation
(3.2) and obtain

x(v) =
(
PG(v)P>)−1

(PG(v)x̄ + τP (c− v)) .

Let H(v) = G1/2(v) and introduce the pseudoinverse matrix (PH)+ = (PH)>(PGP>)−1

and the projection matrix (PH)] = (PH)+PH. The system (3.1), (3.2) can be rewritten in
the following projective form:

dv

dt
= H

[
τ(PH)+P (c− v)−

(
In − (PH)]

)
Hx̄

]
. (3.3)

The �rst vector in the square brackets belongs to the null space of AH−1 and the second
vector belongs to the row space of this matrix. Furthermore,

P
dv

dt
= τP (c− v), P (c− v(t, v0)) = P (c− v0)e

−τt.

Hence, the trajectories v(t, v0) approach the set V as t →∞.
If v0 ∈ VU and v0 > 0, then the entire trajectory does not leave the feasible set VU ,

the objective function x̄>v(t, v0) is a monotonically decreasing function of t and (3.3) can be
rewritten as follows:

dv

dt
= −G(v)

(
In − P> (

PG(v)P>)−1
PG(v)

)
x̄, v0 ∈ riVU . (3.4)

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then:

1. The point v∗ is an asymptotically stable equilibrium point of system (3.1).

2. The solutions v(t, v0) of (3.3) converge locally to v∗ with an exponential rate of conver-
gence.

3. There exists an α∗ > 0 such that for any �xed 0 < αk < α∗ the discrete version

vk+1 = vk − αkG(vk)
(
x̄− P>xk

)
, xk = x(vk) (3.5)

converges locally with a linear rate to v∗ while the corresponding sequence {xk} converges
to x∗.

The proof is very similar to that of Theorem 1.
Since for system (3.4) P v̇ = 0d, it follows that the vector v̇ belongs to null-space of P which

coincides with the row space of A. Therefore, there exists a vector λ ∈ Rm such that

v̇ = A>λ. (3.6)

If v > 0n, then after left multiplying both sides of (3.6) with AG−1(v) and in view of (3.4)
we obtain

λ = −
(
AG−1(v)A>)−1

Ax̄ = −
(
AG−1(v)A>)−1

b.

Hence, on the set riVU the method (3.4) takes the form

dv

dt
= −A> (

AG−1(v)A>)−1
b, v0 ∈ riVU .
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In u-space this method can be written as
du

dt
=

(
AG−1(v(u))A>)−1

b, u0 ∈ U0.

If we use the quadratic and exponential space transformations (2.3), we obtain

du

dt
=

(
AD−1(v(u))A>)−1

b, u0 ∈ U0, (3.7)

and
du

dt
=

(
AD−2(v(u))A>)−1

b, u0 ∈ U0, (3.8)

respectively. The system (3.8) coincides with the continuous version of the dual a�ne scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga in 1989 (see [1]).

According to Theorem 2, the solution of (3.1) converges locally with an exponential rate to
equilibrium point v∗ = v(u∗). Therefore, the solutions of (3.7) also converge to the point u∗ in
the set U0.

The discrete version of (3.7) consists of the iteration

uk+1 = uk + αk

(
AD−1(vk)A

>)−1
b, u0 ∈ U0, (3.9)

where vk = v(uk). Taking into account Theorem 2.3.7 from [5] we conclude that the exponential
rate of convergence of (3.7) insures local linear convergence of the discrete variant (3.9) if the
step length αk is su�cient small.

4 NON-LOCAL CONVERGENCE ANALYSIS

In this section we consider the global convergence of the dual barrier-projection method (3.9)
on the set U . Suppose that the problem (2.2) is such that

Aβ = 0m, (4.1)

where β is a vector of ones in Rn.
We assume that the dual problem (2.2) has a unique solution u∗. Let v∗ = v(u∗) and

JN
∗ = {1 ≤ i ≤ n : vi

∗ > 0}. Then
0 <

∑

i∈JN∗

vi
∗ = β>v∗ = β>c = C.

Here we denoted C =
n∑
i

ci and showed that C > 0.
Condition (4.1) implies that along all trajectories of the system (3.7) the following property

holds:
n∑

j=1

vj(u(t, u0)) = const. (4.2)

Introduce the Lyapunov function

F (u) =
∑

i∈JN∗

vi
∗

(
ln vi

∗ − ln vi(u)
)
. (4.3)

This function is well-de�ned and continuously di�erentiable everywhere on the set

U1 =
{
u ∈ U : vi(u) > 0n, i ∈ JN

∗
}

.
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Moreover F (u∗) = 0 and F (u) > 0 for all u ∈ U1 such that u 6= u∗. This follows from the
well-known inequality

F (u) = −C
∑

i∈JN∗

vi
∗

C
ln

vi(u)

vi∗
= −C ln

∏

i∈JN∗

(
vi(u)

vi∗

)vi∗/C

> −C ln
∑

i∈JN∗

vi(u)

C
= 0.

The derivative of the Lyapunov function (4.3) along the solutions of (3.7) is

dF (u)

dt
= F>

u u̇ = v>∗ D−1(v(u))A> (
AD−1(v(u))A>)−1

b.

Let
p(u) =

(
AD−1(v(u))A>)−1

b, x(u) = D−1(v(u))A>p(u).

These functions satisfy the following conditions:

Ax(u) = b, x>(u)v(u) = β>A>p(u) = 0.

Hence
dF (u)

dt
= v>∗ x(u) = x>(u)

(
c− A>u∗

)
= b>u− b>u∗ ≤ 0, (4.4)

where equality holds only if u = u∗.
For an arbitrary u0 ∈ U0 de�ne a Lebesgue level set Q = {u ∈ U1 : F (u) ≤ F (u0)}. In view

of (4.2) the set VU is compact. Hence, U and Q are also compact. The set Q does not contain
any vertex from U other than u∗. The inequality (4.4) implies that u(t, u0) ∈ Q for all t ≥ 0.

Let
K = inf

u∈Q

〈b, u∗ − u〉
F (u)

. (4.5)

Here, 〈·, ·〉 stands for the standard scalar product in Rn. Using (4.4) and (4.5), we obtain

F (u(t, u0)) ≤ F (u0)e
−Kt

for all t ≥ 0.
Lemma 3. Suppose that the dual problem (2.2) has a unique nondegenerate solution u∗.

Then the following estimate holds:

K ≥ K̄(u0) =
1− e−F (u0)/C

F (u0)
min

1≤j≤m
sj > 0, (4.6)

where sj = b>(u∗ − uj) and uj is a vertex of U adjacent to u∗.
Proof. We introduce the variable z = u− u∗ and write F (u) and K as

F (u∗ + z) = F̃ (z) = − ∑

i∈JN∗

vi
∗ ln

(
1− 〈ai, z〉

vi∗

)
, K = − sup

z∈Q1

〈b, z〉
F̃ (z)

,

where Q1 = {z ∈ Z : F̃ (z) ≤ F (uo)}, Z = {z ∈ Rm : A>z ≤ v∗} and ai is the ith column of A.
The function F̃ (z) is convex on the set Q1. Furthermore, F̃ (0) = 0, F̃ (z) > 0 and b>z < 0

for all z ∈ Z, z 6= 0m. Thus, for any point z̄ ∈ S = {z ∈ Q1 : F̃ (z) = F (u0)} and any 0 ≤ α ≤ 1
the inequality F̃ (αz̄) ≤ αF̃ (z̄) holds. Hence,

〈b, αz̄〉
F̃ (αz̄)

≤ 〈b, z̄〉
F̃ (z̄)

, K = − 1

F (u0)
max
z∈S

〈b, z〉. (4.7)
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The point z = 0 is a vertex of the polytope Z. Let zj be another adjacent vertex of this
polytope and let βj be a solution of the following equality:

∑

i∈JN∗

vi
∗ ln (1− βjqij) + F (u0) = 0, (4.8)

where qij = a>i zj/v
i
∗. Since F̃ (zj) = +∞, we obtain that 0 < βj < 1 and

max
z∈S

〈b, z〉 = max
1≤j≤m

βj〈b, zj〉 = max
1≤j≤m

−βjsj < 0. (4.9)

The inequality A>z ≤ v∗ implies that qij ≤ 1 for all i ∈ JN
∗ . Moreover, for at least one i we

have qij = 1. Therefore,
ln(1− βjqij) ≥ ln(1− βj).

Hence any βj which satis�es (4.8) is such that βj ≥ β̄, where β̄ is a solution of the following
equation:

ln(1− β̄)
∑

i∈JN∗

vi
∗ + F (u0) = 0.

We conclude that β̄ = 1 − e−F (u0)/C . Taking into account (4.7) and (4.9) we obtain the esti-
mate (4.6).

Let µ(u) = max
1≤i≤n

xi(u). We note that for any u ∈ U0 the inequality µ(u) > 0 holds. By
contradiction, assume that µ(u) ≤ 0. Then x(u) ≤ 0, and also xi(u) < 0 at least for one i.
For any α > 0 we have αx(u) ≤ 0n < β. Multiplying this inequality by D(v(u)) we obtain
αA>(AD−1(v)A>)−1b ≤ v(u) or, equivalently,

A> (
u + α(AD−1(v)A>)−1b

)
≤ c. (4.10)

Thus we must have that u + α(AD−1(v)A>)−1b ∈ U for any α > 0. This contradicts the
compactness of the set U . From (4.10) it follows that the value 1/µ(u) is the upper bound for
α such that u + αx(u) ∈ U .

Theorem 3. Let a stepsize αk in (3.9) be chosen such that

0 < αk = γ/µ(uk), 0 < γ < 1. (4.11)

Then for any u0 ∈ U0 there exists γ(u0) such that 0 < γ(u0) < 1 and for all 0 < γ ≤ γ(u0),
k ≥ 0 the following estimate holds:

F (uk+1) ≤ F (uk)
(
1− αkK

2

)
, (4.12)

where K is de�ned from (4.5).
Proof. Denote

W (u, α) = α−1
∑

i∈JN∗

vi
∗ ln (1− αx(u)) .

It follows from (3.9) that
F (uk+1) = F (uk)− αkW (uk, αk). (4.13)

Using the Taylor series expansion, we obtain

W (u, α) = −v>∗ x(u)− α

2

∑

i∈JN∗

vi
∗(x

i(u))2

(1− αζ i(u)xi(u))2 ,
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where 0 ≤ ζ i(u) ≤ 1, i ∈ JN
∗ . The last equation and (4.4) imply that for any α ≤ γ/µ(u)

we have
W (u, α) ≥ b>(u∗ − u)− γ

2(1− γ)2µ(u)

∑

i∈JN∗

vi
∗(x

i(u))2. (4.14)

We introduce the function

r(u) = µ(u)
〈b, u∗ − u〉∑

i∈JN∗
vi∗(xi(u))2

and prove that
r̄ = inf

u∈Q
r(u) > 0. (4.15)

Consider a minimizing sequence {us} such that all us ∈ Q, lim
s→∞us = ū and r̄ = lim

s→∞ r(us).
If ū 6= u∗, then r̄ > 0. We prove that if ū = u∗, then r̄ > 0. Suppose that the partition
(2.14) holds, where vB

∗ = 0m, vN
∗ > 0d. The same partition will be used for vector v(u) and for

matrix A. Denote ΓB(u) = BD−1(vB(u))B>, ΓN(u) = ND−1(vN(u))N>. Since the matrix B
is nonsingular we have

Γ(u) = AD−1(v(u))A> = ΓB(u) + ΓN(u) = ΓB(u)
[
I + (ΓB(u))−1ΓN(u)

]
,

Γ−1(u) = (ΓB(u))−1 + Φ(u),

where ‖Φ(u)‖ = o(‖u− u∗‖). Hence we obtain

xB(u) = D−1(vB)B>(ΓB(u))−1b + D−1(vB)B>Φ(u)b = xB
∗ + φ1(u),

xN(u) = D−1(vN)N>Γ−1(u)b = φ2(u),

µ(u) = max
1≤i≤n

xi(u) = max
1≤i≤m

xi
∗(u) + φ3(u),

where ‖φi(u)‖ = O(‖u− u∗‖), i = 1, 2, 3.
Assume the contrary, i.e. r̄ = 0, then r(us) < 1 for all s su�ciently large. It follows from

xN(u) = O(‖u− u∗‖) that ∑

i∈JN∗

vi
∗(x

i(u))2 = o(‖u− u∗‖).

This means that the inequality r(us) < 1 does not hold for all s su�ciently large. Therefore,
r̄ > 0. From (4.15) it follows that there exists su�ciently small 0 < γ(u0) < 1 such that for all
0 < γ < γ(u0) and u ∈ Q we have

γ

(1− γ)2µ(u)

∑

i∈JN∗

vi
∗(x

i(u))2 ≤ b>(u∗ − u).

Hence, for such γ, u and α ≤ γ/µ(u) we obtain from (4.14) that W (u, α) ≥ b>(u∗−u)/2. From
this inequality and in view of the inequality b>(u∗ − u) ≤ KF (u) and (4.13) we conclude that
(4.12) holds for any uk ∈ Q.

Let
S(u0) = max

u∈Q
max
1≤i≤n

xi(u).

If the stepsize αk is such that αk = γ/µ(uk), then αk ≥ ᾱ(u0) = γ/S(u0) for all k ≥ 0. Hence
we have

V (uk+1) ≤ V (uk)
[
1− αK

2

]
, (4.16)
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where 0 < α ≤ ᾱ(u0).
Let ε be the tolerance for the Lyapunov function. Then it follows from (4.6) and (4.16) that

the total number of iterations performed by algorithm (3.9), (4.11) is no greater than

2

ᾱ(u0)K̄(u0)
ln

(
V (u0)

ε

)
.
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