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Abstract

A surjective space transformation technique is used to convert an original dual linear
programming problem with equality and inequality constraints into a problem involving
only equality constraints. Continuous and discrete versions of the stable gradient projec-
tion method are applied to the reduced problem. The numerical methods involve perfor-
ming inverse transformations. The convergence rate analysis for dual linear programming
methods is presented. By choosing a particular exponential space-transformation function
we obtain the dual affine scaling algorithm. Variants of methods which have linear local
convergence are given.

1 INTRODUCTION

Since 1973, we have developed a family of numerical methods based on space transformation
techniques. Using a space transformation, we convert the original problem with equality and
inequality constraints to a problem with equality constraints only. This is an old notion com-
monly used in the optimization literature. Numerous variants of this basic idea exist. In
[4] — [12] we used a surjective space transformation and then applied the gradient projection
method and Newton’s method to solve the reduced nonlinear programming problem. After an
inverse transformation to the original space a family of numerical methods for solving optimiza-
tion problems with equality and inequality constraints was obtained. The proposed algorithms
are based on the numerical integration of systems of ordinary differential equations. As a
result of a space transformation the vector fields of differential equations are changed and ad-
ditional terms are introduced which serve as a barrier preventing the trajectories from leaving
the feasible set. In our algorithms the barrier functions are continuous and equal zero on a
boundary. The space transformations are carried out without using conventional barrier or
penalty functions and this feature provides a high rate of convergence.

Different numerical methods are obtained by different choices of the space transformations.
For example, if we choose an exponential space transformation in the linear programming case,
we obtain the Dikin’s algorithm [3] from the family of primal barrier-projection methods. This
algorithm, however, does not posses local convergence properties and it converges only for
starting points inside the feasible set. Furthermore, the discrete version has a less than linear
rate of convergence. In [8]-[10] it was shown that if we apply stable versions of the gradient
projection algorithm and use the quadratic space transformation, then we obtain local linear
convergence. A survey of our results in this field is given in [11| and applications to linear
programming are presented in [12].
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The content of this paper is similar to that of [12], but in contrast to [12], we focus our
attention on the solution of the dual linear programming problem, though the methods which
we propose permit us to obtain the solution of the primal problem simultaneously with the
solution of the dual problem.

For the local convergence analysis we use the Lyapunov linearization principle of determining
the stability from the equation of the first approximation about an equilibrium state [2]. Non-
local convergence is investigated by using the second (direct) method of Lyapunov.

In Section 2, we describe a family of dual barrier-projection methods. These methods are
described by systems of ordinary differential equations. Numerical algorithms are obtained
as discretizations of dynamical systems. Sufficient conditions for local convergence of conti-
nuous and discrete versions of numerical methods are given. We show that, if the quadratic
space transformation is used then we obtain an exponential rate of convergence for continuous
methods and a linear rate of convergence for discrete versions.

In Section 3, we use a non-conventional representation of the dual linear programming
problem and we propose a different set of algorithms. After some simplification and after
choosing a particular exponential space transformation function we obtain the dual affine scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga [1]. In Section 4, we
investigate non-local convergence properties.

2 BASIC APPROACH AND OUTLINE OF THE METHODS
Consider a linear programming problem in standard form:
minimize ¢’z subject toz € X = {x € R": b— Az =0,,, z > 0,} (2.1)
and its dual problem
maximize b’ u subject tou € U = {u € R™: v =c— A'u>0,}, (2.2)

where A € R™" (m < n); ¢,z,v € R"; b,u € R™ and rank(A) = m; 0y is the s—dimensional
null vector.
We define the interior set of U as:

Uy={uecR": v=c—ATu>0,},

and assume that this set is nonempty.
Throughout the paper we assume that the problems have nonempty solution sets X, and
U., respectively. We also introduce the following sets:

V = {ve&R":there exists u € R™ such that v = c — A" u},
Vi = {v € R": there exists u € U such that v =c— A"u}.

Here v is the n—vector of slack variables. The set Vi is the image of U under the mapping
v(u) = ¢ — ATu. Therefore, Vi; = VR, where R, is the nonnegative orthant of R".

We denote the components of a vector by using superscripts and the iterate numbers by
using subscripts; D(z) denotes the diagonal matrix whose entries are the components of z.
The dimensionality of this matrix is determined by the dimensionality of z.

We now introduce a new n-dimensional space with the coordinates [w', ..., w"] and define
a differentiable transformation from this space to the original one: v = ¢(w). This surjective

transformation maps R™ onto R} or intR}, i.e. R} = ¢(R"), where B denotes the closure




of B. In this case every vector in R is the image of at least one vector in R" or it is the image
of a limit point of a sequence in R". In other words for each v € R, there exists a w € R" such
that v = p(w) or v = lim p(w;), where w; € R".

1—00

For the sake of simplicity we use a componentwise space transformation where

p(w) = [0 (wh), @*(W?), ..., " (w")].

Let w® = v'(v') denote the inverse transformation of ¢*(w®). This transformation exists at least
in a neighborhood of a point v} = ¢'(w}), as long as @' (w) # 0.
We introduce a n-vector #(v) and a n X n matrix G(v):

0(v) = [0"(0),0*(v*),....0"(v")],  Gl(v) = D(0(v)),

where 0'(v") = (y'(v"))%, 7'(v") = @' (' (v)), 1 < i < m.
We impose the following conditions on the space transformation ¢(v):

Cy. The functions 0'(v*) are defined and continuous in some neighborhood of R:. and 6" (v') = 0
if and only if v' =0, where 1 < i < n.

Cs,. The functions 0'(v') are continuously differentiable in some neighborhood of R}r and
6'(0) > 0,1 <i<n.

Different numerical methods with various convergence properties can be obtained from
different choices of the space transformation functions. Here we consider only two simple

surjective transformations
1

v = ED(w)(w), v=e", (2.3)
where the ith component of the n—vector e™ is e~ ". 'We shall refer to these transformations
as to quadratic and exponential space transformations, respectively.

For the transformations (2.3) we obtain, respectively,

w

O(v) =v, G(v)= D(v); 0(v) = D(v)v, G(v)= D*v).

In both cases the Jacobian matrix is singular on the boundary of the set R’. These trans-
formations satisfy C;.  Condition Cs holds only for the first quadratic transforma-
tion (2.3).

By extension of the space and by converting the inequality constraints to equalities, we
transform the original dual problem (2.2) into the following equivalent problem

maximize b’ u with respect to u and w subject to p(w) + ATu —c = 0,,. (2.4)
The Lagrangian associated with this problem is defined by
Lu,w,z) =b"u+az"[p(w)+ A u—d.

For solving problem (2.4) we use the stable version of the gradient projection method which
is described in [16]. The method is stated as an initial-value problem involving the following
system of ordinary differential equations

du

du dw
dt

i L(u, w, z(u, w)). (2.5)

= f,u(u, w, x(u, 'LU)),



The function x(u,w) is chosen to satisfy the following condition:

Liga (0, w, 2)0 + Ly (u, 0, 21 = —7 Ly (u, w, ). (2.6)
Since ¥ = @, (2.5) can be rewritten in terms of u and v as follows:

Cj; =b— Azx(u,v), (Z = —-G(v)z(u,v), (2.7)
where ®(v)x(u,v) = ATb+7(v+ ATu — ¢) and ®(v) = G(v) + AT A,

We say that an extreme point u of the feasible set U is nondegenerate if the vector v(u) has
only m zero components.

Lemma 1. Let the space transformation o(w) satisfy Ci. Then the matriz ®(v(u)) is
positive definite for all u € U,.

Lemma 2. Let the space transformation p(w) satisfy Ci. Assume that a point w € U can
be represented as

S S
u:Zoﬂuj, o’ >0, Zoﬂzl,
Jj=1 Jj=1

where u;, 1 < j <'s, are extreme points of U, and at least one point u; is nondegenerate. Then
the matriz ®(v(u)) is positive definite.

Proof. To show the nonsingularity of ®(v), where v = v(u) it suffices to show that the
nullspace of ®(v) contains only the point 0,. Consider the linear system of equations

d(v)T = G(v)T + AT AT = 0,,. (2.8)
By multiplying (2.8) on the left by Z', we obtain
T 'Gv)z+3 AT Az = 0.
Both expressions are nonnegative and, therefore,
T'Gv)z=0, T'ATAZ=0. (2.9)

Let S;={1<i<n:a/uj=c}, 5= ﬂ S;, where a; is the ith column of the matrix A.

Without loss of generality we assume that S {1,2,...,k}. We select the first k columns and
denote them by B. We partition A, ¥ and v as

B vB

N | > v = UN :

Since at least one extreme point is nondegenerate, it follows that £ < m and B has full rank.
Since v® = 05, and vV > 0,,_;, we obtain from (2.9) that #¥ = 0,,_;. Hence Bz? = 0,, and we
conclude that z = 0,,. O

Corollary 1. If an extreme point u of a polytope U is nondegenerate, then ®(v(u)) is
positive definite.

Corollary 2. If all extreme points of the bounded set U are nondegenerate, then ®(v(u))
is positive definite for all w € U.

According to Corollary 2, if v € Vy, then the matrix ®(v) is invertible. Because of the
continuity it is also invertible in some neighborhood of Vj;. For all points from this set we get

Kl

— [B| N, f:[

&I

z(u,v) = (G(v) + ATA>_1 (ATb + 7o+ ATu— c)) :
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Substituting this formula into the right-hand side of (2.7) we find that the system takes the
explicit form
du/dt = b—A (G(v) + ATA)i1 (ATb +7(v+ATu— c)) :
. (2.10)
dv/dt = —G(v)(G)+ATA) (ATb+7(v+ATu—c)).

Let [u(t, 29), v(t, 29)] denote the solution of the Cauchy problem (2.10) with initial conditions
u(0, 20) = ug, v(0, 20) = vo, 2y = [ug,vq]. Let y(u,v) =c— ATu —v. The condition (2.6) can
be written as

dy(u, v)

dt
Hence, the system of ordinary differential equations (2.10) has the first integral

c— ATu(t, z) — v(t, 2) = (c — ATy — vo) e "

= y;r(u? U)u + yi—l;—(u7 U)U = —-TY.

This implies that ¢ — ATu(t, 29) — v(t, 29) — 0, as t — +oo. Moreover, along the trajectories
of the system (2.10) we get
rdu

b il b" (b — Az(u,v)) = ||b — Azx(u,v)||* + 2" (u,v) A" (b — Az(u,v)) =

= |Ib— Azx(u,v)|]* + 2" (u,v)G(v)x(u,v) + 72" (u, V) (c — Al — v) :

From the second equation of (2.10) it follows that if the transformation ¢(v) satisfies condi-
tion Cy, then each component of the vector v(t, zg) does not change its sign. Hence, if vy > 0,
then v(t,29) > 0 on the entire trajectory. We obtain this important property because of the
matrix G(v) in the right-hand side of (2.10), which plays the role of a “barrier”, preventing
the trajectory v(t, zp) from passing through the boundary of R’}. Hence, we call (2.10) a “dual
barrier-projection method”.

Note that y(u(t, z0), v(t, 20)) = 0, if y(ug,ve) = 0,. We conclude that if ug € U, then we
can get rid of the equation for v and this way simplify systems (2.7) and (2.10). In this case,
(2.7) can be expressed as

CZ; =b— Az(u), (G(v(u)) + ATA> z(u) = A'b, (2.11)

where u(0,ug) = ug € U.
For this system we obtain the following inequality

du

b —

dt

Hence the objective function of the dual problem monotonically increases on a feasible set.
By applying the Euler numerical integration method we obtain the following iterative algo-
rithm

= 1o = Az(uw)|* + 2" (u)G (v(w))a(u) = 0.

Ukl = Uk + Ckk(b — AJIk), VUktr1 = Vg + OékG(Uk)SL’k, (212)
(Glur) + ATA) = ATb+ 7 (v + Aug — ).
Similarly for the system (2.11) we have
Uk+1 = Uk + O (b — Axk) , (G(Uk), +ATA) Ty = ATb, (2.13)

where vy = v(ug). Both variants solve the primal and dual problems simultaneously.

Theorem 1. Let z, and u, be unique nondegenerate solutions of Problems (2.1) and (2.2),
respectively, and let v, = ¢ — ATu,. Assume that the space transformation p(w) satisfies
conditions Cy, Cy and 7 > 0. Then the following statements are true:
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1. The pair [uy,v.] is an asymptotically stable equilibrium state of system (2.10).

2. The solutions u(t, zp),v(t, 20) of system (2.10) converge locally to the pair [u,v.]. The
corresponding function x(u(t, zo),v(t, 29)) converges to the optimal solution x. of the pri-
mal problem (2.1).

3. The point u, is an asymptotically stable equilibrium state of system (2.11).

4. The solutions u(t,ug) of system (2.11) converge locally to the optimal solution u. of the
dual problem (2.2). The corresponding function x(u(t,ug)) converges to the optimal solu-
tion x. of the primal problem (2.1).

5. There exists an o, > 0 such that for any fired 0 < oy, < v, the sequence {ug, vy} generated
by (2.12) converges locally with a linear rate to [u.,v.] while the corresponding sequence
{zr} converges to x,.

6. There exists an o, > 0 such that for any fived 0 < ap < a, the sequence {uy} generated
by (2.13) converges locally with a linear rate to u. while the corresponding sequence {xy}
converges to T.

Proof. Let 62" = [du',dv'], du = u(t, z0) — u, and dv = v(t, zy) — v.. We linearize system
(2.10) in the neighborhood of the point 2] = [u],v]]. Then we obtain the first approximation
of (2.10) about point z,:

02 =—-Qdz,
where
TAD1AT AQ7 (71, — D(6(v.))D(x.))
TG TAT (I, — G(v,)® 1) D(O(v,))D(z,) + 7G(v,) "

® = G(v,) + AT A and I, is the n X n identity matrix.

Suppose that the first m columns of A are linearly independent and denote the m x m
matrix determined by these columns as B. Assume that B is the optimal basis. With respect
to this partition we can write

B B
le%] UZHN] A=[B|N], (2.14)

o Omn Omd o BTB BTN
Glo) = [ Ogm G ] = [ N'B Gy+NTN |’

where 28 > 0,,, v8 = 0,,, v > 04, d =n — m and Gy = D(0(vY)) is the d x d matrix. Using

*

the Frobenious formula we can find ®~' and obtain

4, | BT [ 7L, Q [ D(OWPE))D(B) 0,
<I>1AT—[0dm1, Q—lonm Qi],Ql—l Os TIZ]’

where the matrices ()2 and ()3 are not essential.
It is obvious that the characteristic equation

det (Q — M) = 0

has following roots: \; = 97“(0)1*1, N=7,1<i<m m+1<j<n+n Since the

transformation @(w) satisfies Cs, and since z, is a nondegenerate optimal solution of the
problem (2.1), all these roots are positive and the smallest root is

Q=

)

Ay = min |7, min 9’(0)9&1 > 0.
1<i<m
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Hence, according to Lyapunov’s linearization principle, the equilibrium point z, is asymptoti-
cally stable and the following estimate holds

Inlo(t,20) = = _

Jim sup 05
Denote
o, =2/X, A\ =max |7, max 6°(0)z’|.
1<i<m
If the stepsize oy, < a, then by Theorem 2.3.7 from [5] the linear convergence of the discrete
versions (2.12) follows from the proof given above.

If ug € U, then the solutions of (2.11) coincide with corresponding solutions of (2.10), if
in (2.10) we take vy = v(ug). Therefore, the local exponential convergence of (2.10) implies
the local exponential convergence of (2.11). In the similar way the linear convergence of (2.12)
implies the linear convergence of (2.13). O

We proposed the dual method (2.11) in 1977. It was described in [7] where we also gave

the following primal method

(flgtj = G(x) [c - ATu(x)} : (2.15)

where AG(z)ATu(z) = AG(z)c, G(x) = D(z). Both methods are similar and both solve primal
and dual problems simultaneously. The method (2.15) is very popular now. It was reinvented
recently in [13], [15] and analyzed in the book [14].

3 OTHER VARIANTS OF DUAL METHODS

As before we assume that A has full rank, therefore, the nullspace of A has dimension d = n—m.
Let P be a full rank d x n matrix such that AP" = 0,,4. Therefore, the columns of P are
linearly independent and form a basis for the nullspace of A. We partition A as A = [B, N],
where the square matrix B is nonsingular. We can now write the matrix P as

P=[-N(B")™"| 1.
The definitions of the sets V and Vi can be rewritten as follows:
V={veR": Plv—c) =04}, VU:{UERZ_ZP(U—C):OC;}.
Let £ € R" be an arbitrary vector which satisfies the constraint Az = b. Then

maxb'u=maxz' A'u=maxz (c—v) =2 c— minZ v.
uelU uelU veVy veVy

Hence the solution of the dual problem (2.2) can be substituted by the following equivalent
minimization problem:

min 7' v.
veVy

Applying the stable barrier-projection method [12] to this problem, we obtain

‘OZ’ = —G(v) (z - PTz(v)), (3.1)

PG ()P x(v) = PG(v)ZT + 7P (c —v). (3.2)



If a point v is such that the matrix PG(v)P" is invertible, then we can solve the linear equation
(3.2) and obtain

2(v) = (PGW)PT) " (PG(v)T + TP(c —v)).

Let H(v) = G'?(v) and introduce the pseudoinverse matrix (PH)* = (PH)"(PGP")™!
and the projection matrix (PH)* = (PH)"PH. The system (3.1), (3.2) can be rewritten in
the following projective form:

CZ = H [r(PH)" P(c—v) — (I, — (PH)") Hz]. (3:3)

The first vector in the square brackets belongs to the null space of AH~! and the second
vector belongs to the row space of this matrix. Furthermore,

PE =7P(c—v), Plc—v(t,v))=Plc—uvy)e ™.

Hence, the trajectories v(¢,vg) approach the set V as t — oo.

If vo € Viy and vy > 0, then the entire trajectory does not leave the feasible set V,
the objective function Z'v(¢,vg) is a monotonically decreasing function of ¢ and (3.3) can be
rewritten as follows:

Cjz:s) — Cw) <[n P (PGw)PT)” pg(v)) z, v €V, (3.4)

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then:
1. The point v, is an asymptotically stable equilibrium point of system (3.1).

2. The solutions v(t,vo) of (3.3) converge locally to v, with an exponential rate of conver-
gence.

3. There exists an a, > 0 such that for any fixed 0 < oy, < «, the discrete version
Vg1 = vp — axG(vg) (E — PTxk> . xp = x(vg) (3.5)
converges locally with a linear rate to v, while the corresponding sequence {xy} converges
to x..

The proof is very similar to that of Theorem 1.
Since for system (3.4) Po = 04, it follows that the vector © belongs to null-space of P which
coincides with the row space of A. Therefore, there exists a vector A € R™ such that

b=A"\ (3.6)

If v > 0, then after left multiplying both sides of (3.6) with AG~!(v) and in view of (3.4)
we obtain

A= (4G W)AT) Az = — (AG(0)AT) b,
Hence, on the set iV} the method (3.4) takes the form

dv 7 -1 T\ ! :
= (AG'W)AT) b, € 1ily.



In u-space this method can be written as

du 1 -1
- = (AG (v(u)AT) b, ug € Up,

If we use the quadratic and exponential space transformations (2.3), we obtain

W (AD7 w)AT) b w e U, (37)
and d -1
d%‘ = (AD2(w(u)A") b, ug € Uy, (3.8)

respectively. The system (3.8) coincides with the continuous version of the dual affine scaling
method proposed by I. Adler, N. Karmarkar, M. Resende and G. Veiga in 1989 (see [1]).
According to Theorem 2, the solution of (3.1) converges locally with an exponential rate to
equilibrium point v, = v(u.). Therefore, the solutions of (3.7) also converge to the point wu, in
the set U,.
The discrete version of (3.7) consists of the iteration

-1
kg1 = g+ o (AD7 () AT) b, ug € Up, (3.9)

where v, = v(ug). Taking into account Theorem 2.3.7 from [5] we conclude that the exponential
rate of convergence of (3.7) insures local linear convergence of the discrete variant (3.9) if the
step length oy is sufficient small.

4 NON-LOCAL CONVERGENCE ANALYSIS

In this section we consider the global convergence of the dual barrier-projection method (3.9)
on the set U. Suppose that the problem (2.2) is such that

AB = 0,, (4.1)

where [ is a vector of ones in R".
We assume that the dual problem (2.2) has a unique solution w,.. Let v, = v(u.) and
JN ={1<i<n:vi>0} Then

0< Y vi=8"v.=8"c=C.

ieJN

Here we denoted C' = ici and showed that C' > 0.

Condition (4.1) implies that along all trajectories of the system (3.7) the following property
holds:

> ' (u(t,up)) = const. (4.2)
j=1
Introduce the Lyapunov function

Flu)= Y v (ln vt —1In v’(u)) . (4.3)

ieJN
This function is well-defined and continuously differentiable everywhere on the set

Uy={ueU:v'(u) >0, icJV}.
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Moreover F'(u,) = 0 and F(u) > 0 for all u € U; such that u # w,. This follows from the
well-known inequality

Fu) = - Y En _ _on g (”i(w)vi/c >—Chn ¥ —0
¢ i c

ieJN v iead \ U ieJN
The derivative of the Lyapunov function (4.3) along the solutions of (3.7) is

dF (u)
dt

-1

= Fli=v/ D (w(w) A" (AD ! (v(u))AT) b

Let L
p(w) = (AD7 (w(w)AT) b, w(u) = D (v(u)ATp(u),

These functions satisfy the following conditions:
Az(u) =b, z"(u)v(u) =BT ATp(u) = 0.

Hence

dF
dEfU) =, 2(u) =2 (u) (c — ATu*) =b'u—b"u, <0, (4.4)
where equality holds only if u = wu,.

For an arbitrary ug € Uy define a Lebesgue level set Q = {u € Uy : F(u) < F(up)}. In view
of (4.2) the set Vi is compact. Hence, U and (@) are also compact. The set () does not contain
any vertex from U other than u,. The inequality (4.4) implies that u(t,uy) € @ for all ¢ > 0.

Let )

K = inf (b,u. —u)
weQ  F(u)

Here, (-,-) stands for the standard scalar product in R". Using (4.4) and (4.5), we obtain

(4.5)

F(u(t,ug)) < F(up)e ™

for all t > 0.
Lemma 3. Suppose that the dual problem (2.2) has a unique nondegenerate solution wu..
Then the following estimate holds:

1 — o~ Fluo)/C
¢ min s; > 0, (4.6)

K 2 Klu) =  F(up)  1<jEm

where s; = b (u, — u;) and uj is a verter of U adjacent to u..
Proof. We introduce the variable z = u — u, and write F(u) and K as

n ] <a’iaz> <b,2>
Flus+2)=F(2) = — viln(l—. , K =—sup —-,
( ) zEZJiV vl z€EQ1 F(Z)

where @y = {2 € Z: F(z2) < Flu)}, Z={2zeR": ATz < v.} and a; is the ith column of A.
The function F(z) is convex on the set Q1. Furthermore, F(0) =0, F(z) >0 and b'z <0
for all 2 € Z, 2 # 0,,. Thus, for any point 2 € S = {2 € Q1 : F(2) = F(ug)} and any 0 < a <1

the inequality F'(az) < aF'(Z) holds. Hence,
(b, az)

. < X
F(az) = F(2)

b 2>, K = _F(luo) rileagc(b, z). (4.7)
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The point z = 0 is a vertex of the polytope Z. Let z; be another adjacent vertex of this
polytope and let 3; be a solution of the following equality:

> vin (1= Bq5) + F(ug) = 0, (4.8)

ieJN
where ¢;; = a; 2;/vi. Since F(z;) = +o0, we obtain that 0 < 3; < 1 and

max(b, z) = max G;(b, 2;) = max —f;s; <0. (4.9)

The inequality A"z < v, implies that gij < 1forallie JN. Moreover, for at least one i we
have ¢;; = 1. Therefore,

hl(l — /quzj) Z 1Il<1 — 6j)
Hence any (; which satisfies (4.8) is such that §; > 3, where 3 is a solution of the following
equation:

In(1—73) > vl + F(up) = 0.

ieJN

We conclude that 8 = 1 — e F(0)/C Taking into account (4.7) and (4.9) we obtain the esti-
mate (4.6). O
Let pu(u) = max 2'(u). We note that for any u € Uy the inequality p(u) > 0 holds. By

contradiction, assume that p(u) < 0. Then z(u) < 0, and also z°(u) < 0 at least for one 1.
For any a > 0 we have az(u) < 0, < #. Multiplying this inequality by D(v(u)) we obtain
aAT(AD7Y(v)AT)71b < v(u) or, equivalently,

AT (u + a(AD_l(v)AT)_lb) <ec. (4.10)

Thus we must have that u + a(AD ' (v)AT)™'b € U for any a > 0. This contradicts the
compactness of the set U. From (4.10) it follows that the value 1/p(u) is the upper bound for
a such that v+ az(u) € U.

Theorem 3. Let a stepsize ay, in (3.9) be chosen such that

0<ap=79/plur), 0<~vy<l1. (4.11)

Then for any ug € Uy there exists y(ug) such that 0 < v(ug) < 1 and for all 0 < v < v(up),
k > 0 the following estimate holds:

ap K
Fupsr) < F(ug) (1 - ’“2 ) , (4.12)
where K is defined from (4.5).
Proof. Denote '
Wu,a)=a " > viln(l—az(u).
ieJN
It follows from (3.9) that
F(ukH) = F(uk) - akW(uk, ak). (413)

Using the Taylor series expansion, we obtain

wa) = —oTz(w) — & 3 @)
ey =2ty 2 i acwet)

Y
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where 0 < (%(u) < 1, i € JN. The last equation and (4.4) imply that for any o < ~/u(u)
we have

W(u, o) > b (u, — u) — m EzJN Vi (2 (w)), (4.14)

We introduce the function
(b, uy — u)
> vi(z(u))?

ieJN

r(u) = p(u)

and prove that

= ilelé r(u) > 0. (4.15)

Consider a minimizing sequence {u;} such that all u, € Q, sli—{& Us = and 7 = sli—%lo r(us).
If w # u,, then 7 > 0. We prove that if & = u,, then ¥ > 0. Suppose that the partition
(2.14) holds, where v? = 0,,, v > 04. The same partition will be used for vector v(u) and for

matrix A. Denote I'?(u) = BD ' (v®(u))B", T¥(u) = ND~'(v™(u))NT. Since the matrix B
is nonsingular we have

[(u) = AD7 (o(w) AT = TP (u) + TN (u) = TP (u) [T + (TP () 7T (w)] ,

() = (D% () + D(u),

where ||®(u)|| = o(||u — u.||). Hence we obtain
xB(u) = D_I(UB)BT(FB(U))_lb + D_I(UB)BTq)(u)b =284 o1(u),
e (u) = DTHOM)NTT ™ (u)b = ¢o(u),

plu) = max o' (u) = max 2’ (u) + ga(u),

where ||¢;(u)|| = O(J|lu — ), i = 1,2, 3.
Assume the contrary, i.e. 7 =0, then r(us) < 1 for all s sufficiently large. It follows from

2V (u) = O(||u — u.||) that

> i@’ (w)? = o([lu — w.)).

ieJN
This means that the inequality 7(us) < 1 does not hold for all s sufficiently large. Therefore,
7 > 0. From (4.15) it follows that there exists sufficiently small 0 < y(up) < 1 such that for all
0 < v < 7v(up) and u € @ we have

ey vl (2" (u))? T (uy — ).
(1 —7)?p(u) ;V St () <o ( )

Hence, for such v, u and o < v/pu(u) we obtain from (4.14) that W (u, ) > b' (u, —u)/2. From
this inequality and in view of the inequality b' (u, — u) < KF(u) and (4.13) we conclude that
(4.12) holds for any u;, € Q. O
Let '
S(ug) = maX Max & (u).
If the stepsize ay is such that oy = v/u(ug), then ag > a(ug) = v/S(ug) for all £ > 0. Hence
we have

V(upsr) < V(uy) [1 - aﬂ , (4.16)
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where 0 < a < @(uyp).
Let € be the tolerance for the Lyapunov function. Then it follows from (4.6) and (4.16) that
the total number of iterations performed by algorithm (3.9), (4.11) is no greater than

T (V(eu 0)> |
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