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Abstract—The paper provides some examples of mutually dual unconstrained optimization
problems originating from regularization problems for systems of linear equations and/or in-
equalities. The solution of each of these mutually dual problems can be found from the
solution of the other problem by means of simple formulas. Since mutually dual problems
have different dimensions, it is natural to solve the unconstrained optimization problem of the
smaller dimension.
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INTRODUCTION

I.I. Eremin is well known as the author of duality theory for improper linear optimization
problems. He always paid much attention to the detection of duality in problems arising in different
optimization methods. The authors of this paper were greatly impressed by the remark made
by Eremin at one of the conferences “Mathematical Programming and Applications” that a dual
unconstrained problem of quadratic programming can be considered as mutually dual for an original
primal constrained problem of quadratic programming [1,2].

Formally, unconstrained minimization problems have no Lagrange function, and, consequently,
a dual problem cannot be directly constructed for them. Nevertheless, using additional variables,
we can introduce artificial constraints and obtain an equivalent problem of nonlinear programming,
for which the dual problem can be defined in the standard way. There exists a class of optimization
problems for which mutually dual problems are problems of unconstrained optimization and the
solution of each of these two problems can be expressed in terms of the solution of the other. These
are problems of quadratic programming, which arise, for example, in the regularization of systems
of linear equations and/or inequalities. Since mutually dual problems have different dimensions, it
is natural to solve the unconstrained optimization problem of the smaller dimension. We present a
typical result appearing under the regularization of a system of linear equations and inequalities [3]
and in the SVM method of pattern recognition [4].

In Section 1, we consider a regularized problem of solving a system of linear equations. Through-
out this paper, we use the Euclidean norm. For the regularized problem, which is a problem of
unconstrained minimization of a strictly convex quadratic function, we give a mutually dual problem
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REGULARIZATION AND NORMAL SOLUTIONS S103

of unconstrained maximization of a strictly concave quadratic function. We obtain simple formulas
according to which the solution of each of these problems is found from the solution of the other
problem. We also consider some approaches to finding a normal solution of a system of linear
equations that are different from the regularization method.

In Sections 2 and 3, we consider similar mutually dual problems of finding normal solutions
for systems of linear equations with nonnegative variables and systems of linear inequalities,
respectively. Here, problems of unconstrained optimization of piecewise quadratic functions arise,
for which the generalized Newton method, which is globally convergent in a finite number of steps,
is especially efficient.

1. NORMAL SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

Consider a consistent system of linear equations

Ax = b. (1.1)

Here, A is a nonzero m× n matrix and the vector b ∈ R
m is such that ‖b‖ �= 0. The regularization

method involves a sequence of unconstrained minimization problems

min
x∈Rn

F (x), F (x) =
1
2
(‖b − Ax‖2 + ε‖x‖2) (1.2)

with a positive parameter ε tending to zero. The unique solution x(ε) of problem (1.2) for fixed ε

is expressed explicitly by the formula

x(ε) = (εIn + A�A)−1A�b. (1.3)

Here and below, Ik denotes the unit matrix of order k. The solution x(ε) converges as ε → 0 to a
normal solution of system (1.1) [3]. In (1.3), the inverse matrix exists for any rank of the matrix A

and for any ε > 0.
Expression (1.3) for calculating x(ε) can be represented in another form by means of the

Sherman–Morrison–Woodbury formula [5]:

x(ε) =
1
ε

(
In − A�(εIm + AA�)−1A

)
A�b. (1.4)

Note that, in this formula, a square matrix of order m is inverted, in contrast to formula (1.3),
where a matrix of order n is inverted. Below, we derive one more formula (1.17) to calculate
x(ε), which also involves the inversion of a matrix of order m but with a fewer number of matrix
multiplications than in formula (1.4).

It is possible to consider problem (1.2) from different points of view: as the quadratic penalty
function method, the regularization of a linear programming problem with zero objective function,
the least squares method, or multicriteria optimization. For example, (1.2) is an auxiliary problem
of the penalty method with a penalty coefficient at the objective function for the following problem
of quadratic programming:

min
x∈X

1
2
‖x‖2, X = {x ∈ R

n : Ax = b}. (1.5)
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S104 GOLIKOV, EVTUSHENKO

Problem (1.2) is equivalent to the regularized linear programming problem

min
x∈X

{
0�n x +

ε

2
‖x‖2

}
, X = {x ∈ R

n : Ax = b}. (1.6)

It is easy to show that the problem dual to (1.6) is the following unconstrained maximization of a
quadratic function [1] (Eremin showed that these problems are mutually dual):

max
u∈Rn

{
b�u − 1

2ε
‖A�u‖2

}
. (1.7)

This problem, in turn, is a penalized version of the linear programming (LP) problem

max
u∈U

b�u, U = {u ∈ R
m : A�u = 0n}.

Note that the solution u(ε) of unconstrained maximization problem (1.7) can be used to calculate
a solution of problem (1.6) by the formula

x(ε) =
1
ε
A�u(ε).

According to [6, 7], this formula gives a solution of problem (1.5) for any ε > 0.
For a fixed parameter ε, we can consider problem (1.2) as the least squares method (the minimal

residual method) applied to the inconsistent system

Ax = b, −
√

εx = 0n. (1.8)

The vector x(ε) is a solution of unconstrained minimization problem (1.2) and a pseudosolution of
system (1.8). By z1(ε) = b−Ax(ε) and z2(ε) =

√
εx(ε), we denote the components of the minimal

residual vector z(ε)� = [z1(ε)�, z2(ε)�] for system (1.8).
According to the theorem of alternatives (see, for example, [8, 9]) for inconsistent sys-

tem (1.8), we can construct a consistent alternative system of the form

A�u1 −
√

εu2 = 0n, b�u1 = ρ > 0. (1.9)

Here, ρ is a fixed positive constant, and the vectors of unknowns are u1 ∈ R
m and u2 ∈ R

n.
According to [9], the normal vector ũ(ε)� = [ũ1(ε)�, ũ2(ε)�] of alternative system (1.9) is expressed
in terms of the minimal residual vector z(ε) by the formulas

ũ1(ε) =
ρz1(ε)
‖z(ε)‖2

, ũ2(ε) =
ρz2(ε)
‖z(ε)‖2

.

Let the vector of variables z ∈ R
m+n be decomposed as z� = [z�1 , z�2 ], where z1 ∈ R

m and
z2 ∈ R

n. We write the problem of strictly concave quadratic programming

max
z∈Z

{
b�z1 −

1
2
(‖z1‖2 + ‖z1‖2)

}
, Z = {z ∈ R

m+n : A�z1 −
√

εz2 = 0n}. (1.10)

This problem can be considered as a regularization of the LP problem

max
z∈Z

{b�z1 + 0�n z2}, Z = {z ∈ R
m+n : A�z1 −

√
εz2 = 0n},
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which is mutually dual to the LP problem

min
x∈X

0�n x, X = {x ∈ R
n : Ax = b,

√
εx = 0n}. (1.11)

For ε �= 0 and ‖b‖ �= 0, the constraints in (1.11) are inconsistent, and the problem is improper
of the first kind [10]. We can consider (1.2) as an auxiliary problem for the quadratic penalty
function method applied to LP problem (1.11). It is known [1] that the problem of the quadratic
penalty function method for the LP problem and the regularized LP problem are mutually dual;
i.e., problems (1.2) and (1.10) are mutually dual.

In problem (1.10), we can eliminate the variables z2 by expressing them in terms of z1 and
substitute z2 = (1/

√
ε)A�z1 into the objective function of (1.10). Then, we come to the following

equivalent problem of unconstrained maximization for a strictly concave quadratic function:

max
z1∈Rm

H(z1), H(z1) = b�z1 −
1
2ε

‖A�z1‖2 − 1
2
‖z1‖2. (1.12)

Thus, this problem and problem (1.2) are mutually dual.

Theorem 1.1. For any ε > 0, the unique solution x(ε) = Arg min
x∈Rn

F (x) of problem (1.2) and

the unique solution z1(ε) = Arg max
z1∈Rm

H(z1) of problem (1.12) are related by the equations

x(ε) =
1
ε
A�z1(ε), (1.13)

z1(ε) = b − Ax(ε), (1.14)

and the equality of the optimal values of the objective functions holds: F (x(ε)) = H(z1(ε)).

Proof. For ε > 0, the strictly convex quadratic function F(x) on R
n is bounded from below

by zero. Therefore, by the Frank–Wolfe theorem [11], problem (1.2) always has a unique solution.
The maximized quadratic function H(z1) for ε > 0 is strictly concave and is bounded from

above on the whole space R
m. Indeed, the following expressions are valid:

H(z1) = b�z1 −
1
2ε

‖A�z1‖2 − 1
2
‖z1‖2 =

1
2
‖b‖2 − 1

2
‖b‖2 + b�z1 −

1
2
‖z1‖2 − 1

2ε
‖A�z1‖2

=
1
2
‖b‖2 − 1

2
‖b − z1‖2 − 1

2ε
‖A�z1‖2 ≤ 1

2
‖b‖2.

Consequently, problem (1.10) for any ε > 0 always has a unique solution.
For mutually dual problems (1.2) and (1.12), by the weak duality theorem, the following

inequality holds for any z1 ∈ R
m, x ∈ R

n, and ε > 0:

b�z1 −
1
2ε

‖A�z1‖2 − 1
2
‖z1‖2 ≤ 1

2
(‖b − Ax‖2 + ε‖x‖2).

By the duality theorem, the optimal values of the objective functions of these problems coincide:

b�z1(ε) −
1
2ε

‖A�z1(ε)‖2 − 1
2
‖z1(ε)‖2 =

1
2
(‖b − Ax(ε)‖2 + ε‖x(ε)‖2). (1.15)

It is easily seen that expressions (1.13) and (1.14) satisfy the necessary and sufficient optimality
conditions for problem (1.2)

−A�(b − Ax(ε)) + εx(ε) = 0n
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and the necessary and sufficient optimality conditions for problem (1.12)

b − z1(ε) −
1
ε
AA�z1(ε) = 0m.

The theorem is proved.

Note that, in view of relations (1.13) and (1.14) between the solutions x(ε) and z(ε), equal-
ity (1.15) of the optimal values of the objective functions for mutually dual problems (1.2) and
(1.12) is representable in the following two forms, each containing the solution of only one of the
problems:

b�z1(ε) = ‖z(ε)‖2,

b�(b − Ax(ε)) = ‖b − Ax(ε)‖2 + ε‖x(ε)‖2. (1.16)

As follows from (1.16), ε‖x(ε)‖2 = z1(ε)�Ax(ε). Hence, we obtain a known result in the least
squares method: z1(0)⊥Ax(0) for ε = 0. Note that, if system (1.1) is inconsistent, then z1(0) �= 0.

Problem (1.12) for any ε > 0 and for any rank of the matrix A can be solved explicitly:

z1(ε) = ε(εIm + AA�)−1b.

Substituting this expression into (1.13), we obtain one more formula to calculate the solution x(ε)
of problem (1.2):

x(ε) = A�(εIm + AA�)−1b. (1.17)

This formula involves the inversion of a matrix of order m, in contrast to formula (1.3), where it is
required to invert a matrix of order n. Therefore, if m < n in problem (1.1), then it is reasonable
to use formula (1.17) or formula (1.13) for calculating x(ε). In the case when formula (1.13) is
applied, one must solve unconstrained optimization problem (1.12) with m unknowns.

Expression (1.17) for calculating x(ε) can be represented in another form by means of the
Sherman–Morrison–Woodbury formula

x(ε) =
1
ε
A�(Im − A(εIn + A�A)−1A�)b.

In this formula, it is required to invert a matrix of order n, in contrast to formula (1.17), where a
matrix of order m is inverted.

It is shown in [12] that, for any matrix A from system (1.1), its pseudoinverse matrix can be
defined as follows:

A+ = lim
ε→0

(εIn + A�A)−1A� = lim
ε→0

A�(εIm + AA�)−1,

and, for any vector b (in particular, for b that makes system (1.1) inconsistent), x̃∗ = A+b is a
vector with minimum norm among all vectors minimizing ‖b − Ax‖2.

In [9], another method for finding a normal solution of system (1.1) is proposed. This method is
based on the application of theorems on alternatives. In this case, system (1.1) has the inconsistent
alternative system

A�u = 0n, b�u = ρ �= 0,
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for which the following problem of minimization of its residuals is solved:

min
u∈Rm

1
2
{‖A�u‖2 + (ρ − b�u)2}. (1.18)

Here, ρ is an arbitrary nonzero constant.
Let u∗ be a solution of unconstrained minimization problem (1.18). Then, the normal solution

of original system (1.1) is expressed by the formula

x̃∗ =
A�u∗

ρ − b�u∗
. (1.19)

If the rank of the matrix A in the original system is m, then the solution of problem (1.18) is found
analytically as

u∗ = ρ(AA� + bb�)−1b.

Substituting this formula into (1.19), we obtain one more expression for the normal solution of (1.1):

x̃∗ =
A�(AA� + bb�)−1b

1 − b�(AA� + bb�)−1b
.

2. REGULARIZATION OF SYSTEMS OF LINEAR EQUATIONS

WITH NONNEGATIVE VARIABLES

Consider now the consistent system of linear equations with nonnegative variables

Ax = b, x ≥ 0n,

and its regularized problem

min
x∈R

n
+

F (x), F (x) =
1
2
(‖b − Ax‖2 + ε‖x‖2) (2.1)

with a positive parameter ε tending to zero.
The unconstrained maximization problem

max
u∈Rm

H(u), H(u) = b�u − 1
2ε

‖(A�u)+‖2 − 1
2
‖u‖2 (2.2)

is dual to regularized problem (2.1). Here and below, a+ denotes a vector a in which all negative
components are replaced by zeros.

Theorem 2.1. For any ε > 0, the unique solution x(ε) = Arg min
x∈R

n
+

F (x) of problem (2.1) and

the unique solution u(ε) = Arg max
u∈Rm

H(u) of problem (2.2) are related by the equations

x(ε) =
1
ε
(A�u(ε))+,

u(ε) = b − Ax(ε),

and the equality of the optimal values of the objective functions holds: F (x(ε)) = H(u(ε)).
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Proof. The minimand in problem (2.1) for ε > 0 is a strictly convex quadratic function
bounded from below by zero on R

n
+. Therefore, by the Frank–Wolfe theorem [11], problem (2.1)

always has a solution, which is unique.
In problem (2.2), the maximized piecewise quadratic function for ε > 0 is strictly concave and

bounded from above on the whole space R
m. By the Frank–Wolfe theorem, problem (2.2) always

has a unique solution.
Introducing additional variables y ∈ R

m and constraints Ax + y = b, we rewrite problem (2.1)
in the equivalent form

min
y∈Rm

min
x∈R

n
+

1
2
{‖y‖2 + ε‖x‖2}, (2.3)

Ax + y = b.

For this problem, we introduce the Lagrange function

L(y, x, u) =
1
2
‖y‖2 +

ε

2
‖x‖2 + uT (b − Ax − y).

Here, u ∈ R
m are Lagrange multipliers for problem (2.3). The problem dual to (2.3) has the form

max
u∈Rm

min
y∈Rm

min
x∈R

n
+

L(y, x, u). (2.4)

Let us write the minimum condition in y and x for the inner problem in (2.4):

Ly(y(ε), x(ε), u) = y(ε) − u = 0m,

Lx(y(ε), x(ε), u) = εx(ε) − A�u ≥ 0n, x�(ε)(εx(ε) − A�u) = 0, x(ε) ≥ 0n.

From these conditions, we easily find solutions of the inner minimization problem in (2.4):

y(ε) = u, (2.5)

x(ε) =
1
ε
(A�u)+. (2.6)

Substituting solutions (2.5) and (2.6) into the Lagrange function L(y, x, u), after simple transfor-
mations, we obtain the dual function for problem (2.4)

H(u) = b�u − 1
2ε

‖(A�u)+‖2 − 1
2
‖u‖2;

i.e., we come to dual problem (2.2) for problem (2.3) and, hence, for problem (2.1). Duality theory
implies the equality of the optimal values of the objective functions in problems (2.1) and (2.2).

The outer problem in (2.4) consists in the unconstrained maximization of H(u) with respect to u.

The necessary and sufficient maximum condition for this problem is Hu(u(ε)) = b− 1
ε
A(A�u(ε))+−

u(ε) = b − Ax(ε) − u(ε) = 0m. Hence, by (2.6), we have

u(ε) = b − 1
ε
A(A�u(ε))+ = b − Ax(ε).

The theorem is proved.
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It follows from the theorem that, if the number of rows in the m × n matrix A is m < n,
then, instead of minimization problem (2.1), it is reasonable to solve dual problem (2.2), which is a
concave piecewise quadratic problem of unconstrained maximization. Problem (2.2) can be solved
very efficiently by the generalized Newton method. The function H(u), which is maximized in
problem (2.2), is concave, piecewise quadratic, and differentiable. The usual Hessian matrix does
not exist for this function. Indeed, the gradient of the function H(u)

Hu(u) = b − 1
ε
A(A�u)+ − u

is not differentiable. However, for this function, we can define the generalized Hessian matrix,
which is a nondegenerate (m × m)-matrix of the form

Huu = −
(1

ε
AD(z)A� + Im

)
,

where D(z) denotes the diagonal (n × n)-matrix with its ith diagonal element zi equal to 1 if
(A�u)i > 0 and equal to 0 if (A�u)i ≤ 0, i = 1, . . . , n. The proof of the finite global convergence of
the generalized Newton method for the unconstrained optimization of a piecewise quadratic function
with the step size chosen by the Armijo rule can be found in [4, 13, 14]. The generalized Newton
method makes it possible to effectively solve problems on uniprocessor computers for n ≈ 106 and
m ≈ 104 and on multiprocessor computer systems for n of the order of tens of millions and m of
the order of hundreds of thousands [15].

3. REGULARIZATION OF SYSTEMS OF LINEAR INEQUALITIES

The regularization of systems of linear inequalities is similar to the procedure considered in the
preceding section. Let a consistent system of linear inequalities

Ax ≥ b

be given. The regularized problem has the form

min
x∈Rn

F (x), F (x) =
1
2
(‖(b − Ax)+‖2 + ε‖x‖2) (3.1)

with a positive parameter ε tending to zero. Then, the following maximization problem on the
positive orthant

max
u∈R

m
+

H(u), H(u) = b�u − 1
2ε

‖A�u‖2 − 1
2
‖u‖2 (3.2)

is dual to regularized problem (3.1).
In this case, we have a theorem similar to Theorem 2.1.
Theorem 3.1. For any ε > 0, the unique solution x(ε) = Arg min

x∈Rn
F (x) of problem (3.1) and

the unique solution u(ε) = Arg max
u∈R

m
+

H(u) of problem (3.2) are related by the equations

x(ε) =
1
ε
A�u(ε),

u(ε) = (b − Ax(ε))+ ,

and the equality of the optimal values of the objective functions holds: F (x(ε)) = H(u(ε)).
Unfortunately, it is difficult to apply the Newton method directly to problem (3.2), in contrast

to problem (2.2) [7, 16].
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