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1. INTRODUCTION

Nowadays numerous studies on the multicriteria optimization have been published. For the
information about the methods to solve such problems the readers are referred to the monographs
[1–3]. A detailed review of the state-of-the-art in such studies can be found in [4]. The methods
based on approximation of the Pareto set [2, 5–10] represent one of the important lines of research
in the multicriteria optimization. There are also other approaches to the problem of multicriteria
optimization that are described in [12–15].

The present paper considers an approach to approximation of the Pareto set on the basis of
the method of non-uniform coverage. This method was used to advantage for seeking the global
extremum of multivariable functions. Its development, generalization, and efficient realization were
discussed in numerous publications of which we mention the pioneering book [11] and some of the
latest papers [16–20]. Owing to a successful definition of the notion of the ε-Pareto set, the method
was extended to the multicriteria problems [8].

The method of non-uniform coverages enables one to establish the ε-Pareto set for the given ε,
that is, guarantees the ε-optimality of the resulting approximation. This distinction of the method
of non-uniform coverage is unique and not met in other approaches to the problem of multicriteria
optimization. For some applications of the multicriteria optimization problems such as construction
of the reachability boundary of the manipulator robot [21], it is very important to have a guaranteed
accuracy of solution.

The present paper proves new properties of the ε-Pareto set and demonstrates its relation to
the Edgeworth–Pareto hull. The initial variant of the method proposed in [8] was used assuming
that the criteria function satisfied the Lipschitz condition. The method of non-uniform coverage
for the multicriteria problems is generalized below to the case of arbitrary minorants. Efficiency
of the proposed approach is demonstrated by comparative analysis of the numerical calculations of
two simplest problems.
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1026 EVTUSHENKO, POSYPKIN

The following notation is used below. The components of the n-dimensional vector x are denoted
by the parenthesized superscript as x = (x(1), . . . , x(n)). The Euclidean norm in the space R

n is

denoted by ‖x‖: ‖x‖ =
√∑n

i=1(x
(i))2. The vector (|x(1)|, . . . , |x(n)|) consisting of the absolute values

of the components of x is denoted by |x|. The vector inequalities are satisfied componentwise.

2. DEFINITION OF THE PARETO-OPTIMAL SOLUTION
OF THE MULTICRITERIA PROBLEM

The problem of multicriteria minimization is denoted conventionally as

min
x∈X

F (x), (1)

where X is the permissible parameter set and the vector function F (·) : Rn → R
m defines the vector

criterion whose components f (1)(·), . . . , f (m)(·) make up a collection of m scalar criteria. The image
Y = F (X) of the permissible set X under the map F is called the set of reachable criterial vectors.
In what follows, the vector function F (·) is assumed to be continuous, and the set X, nonempty
compact. Under these assumptions, Y is also a nonempty compact set.

For an arbitrary point z ∈ R
m, we define the southwest SW(z) and northeast NE(z) sets as

SW(z) = {y ∈ R
m : y � z}, NE(z) = {y ∈ R

m : y � z}.

For an arbitrary set Ω ⊆ R
m, we define its Pareto set P(Ω) as

P(Ω) = {ω ∈ Ω : Ω ∩ SW(ω) = ω}. (2)

If the set of reachable criterial vectors Y is taken as Ω, then this definition coincides with the
standard definition of the Pareto set used in the publications on multicriteria optimization.

The following relation which is valid for any Ω ⊆ R
m is true for the so-defined map P : 2R

m →
2R

m
:

P (P(Ω)) = P(Ω) ⊆ Ω. (3)

We expand the definitions of SW(z) and NE(z) to the case of arbitrary set Ω ⊆ R
m:

SW(Ω) = ∪y∈ΩSW(y), NE(Ω) = ∪y∈ΩNE(y).

The set NE(Ω) is called the hull of the Edgeworth–Pareto set Ω. Validity of the following property
which is true for any nonempty compact set Ω in the space R

m can be readily demonstrated:

Ω ⊆ NE (P(Ω)) = NE(Ω). (4)

Solution of problem (1) lies in determining the set P (Y ) and its preimage under the map F .
The above definitions do not constrain the cardinality of the set X. It may be continual, countable,
or finite. Since Y is a nonempty compact, P (Y ) is not empty [3].

3. NOTION OF THE ε-PARETO SET

We follow [8] in defining the notion of approximate solution of problem (1). For ε � 0, the
discrete set of points Yε ⊆ Y is called the ε-Pareto set if

for any point y∗ ∈ P(Y ) there exists a point yε ∈ Yε such that yε − ε× em � y∗, (5)
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and

P(Yε) = Yε. (6)

Here, the vector em denotes a vector from the space R
m with all components equal to 1. Rela-

tions (5) and (6) are called, respectively, the first and second conditions for ε-Pareto optimality.
The second condition enables one to reject the excessive points from the discrete point collec-
tion Yε. The set Aε ⊆ X such that F (Aε) = Yε is called the ε-optimal solution of problem (1)
which is assumed to be solved with the given accuracy ε if the ε-Pareto set Yε and its preimage Aε

are determined.

Lemma 1. If the ε-Pareto set Yε is constructed, then for any point y from the Edgeworth–Pareto
NE(Y ) hull there exists a point yε ∈ Yε such that

yε − εem � y. (7)

Proof. Let y ∈ NE(Y ). According to (4), there exists a point y∗ ∈ P(Y ) such that y∗ � y.
According to (5), for the point y∗ a point yε will turn up such that yε − εem � y∗. Therefore,
yε − εem � y∗ � y, and, consequently, inequality (7) is true.

It follows from (5) that the ε-Pareto set is at the same time the ε-Pareto set for any ε, ε � ε.
In particular, P(Y ) is the ε-Pareto set for any ε � 0. Consequently, under the above assumptions
about the compactness and nonemptiness of Y for any ε � 0 there always exists at least one ε-Pareto
set. The ε-Pareto set is defined uniquely only for ε = 0. In this case, it coincides with P(Y ).
Generally speaking, for ε > 0 there may be arbitrarily many sets meeting the introduced definition.

The boundary of the set NE(Y ) is denoted by ∂(NE(Y )). We consider the set

Sε(Y ) = Y ∩ ∪y∈∂(NE(Y ))SW(y + εem)

which is called below the ε-band of the set Y .

Assertion 1. The inclusion

Yε ⊆ Sε(Y ) (8)

is valid for any ε-Pareto set Yε.

Proof. Let inclusion (8) be not satisfied, which means that there exists ε-Pareto set Yε comprising
a point yε not belonging to the ε-band. It is easy to prove that in this case the point y = yε−εem is
the interior point of the set NE(Y ). According to (4), there exists a point y∗ from P(Y ) such that
y∗ � y. Since y∗ is the boundary point of Y and y is the interior point, y∗ �= y. By the definition
of the ε-Pareto set, there exists a point v ∈ Yε such that

v − εem � y∗ � y = yε − εem.

Whence it follows that v � yε. At that, v �= yε, and we encounter a contradiction with the second
optimality condition P(Yε) = Yε.

For any point u ∈ R
m and the set V ⊆ R

m, we define the distance from u to V as ρ(u, V ) =
infv∈V ‖u− v‖.

By the deviation of the nonempty set U ⊆ R
m from the nonempty set V ⊆ R

m is meant the
value

d(U, V ) = sup
u∈U

ρ(u, V ).
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Fig. 1. Illustration of Theorem 1.

The deviation d(U, V ) is not symmetrical relative to the permutation of the arguments because,
generally speaking, the values of d(U, V ) and d(V,U) differ. We introduce a symmetrical Hausdorff
distance between two nonempty subsets U and V of the space R

m:

dH(U, V ) = max (d(U, V ), d(U, V )) .

Theorem 1. Under the above assumptions about the set Y , valid are the following assertions
relating the Edgeworth–Pareto hulls1 of the ε-Pareto set and the set of reachable criteria vectors

NE(Yε) ⊆ NE(P(Y )) = NE(Y ) ⊆ NE(Yε − ε× em), (9)

dH(NE(Yε),NE(Y )) � dH(NE(Yε),NE(Yε − ε× em)) � ε, (10)

dH(NE(Y ),NE(Yε − ε× em)) � dH(NE(Yε),NE(Yε − ε× em)) � ε. (11)

The proof of these assertions that are illustrated in Fig. 1 is evident.

Theorem 1 implies that as ε tends to zero, the sets NE(Yε) and NE(Yε − ε× em) tend in the
Hausdorff metric to the Edgeworth–Pareto hull NE(Y ) of the set of reachable criterial vectors inside
and outside the set Y (Fig. 1). At that, the set P(Y ) lies in between the sets NE(Yε − ε× em) and
NE(Yε), that is,

P(Y ) ∈ (NE(Yε − ε× em) \ NE(Yε)) ∪ Yε.

Now we relate the ε-Pareto set and the Pareto set for problem (1).

Lemma 2. Let y∗ ∈ P(Y ). Then, for any δ > 0 there is ε > 0 such that the inequality

ρ(y∗, Yε) � δ (12)

is satisfied for the ε-Pareto set Yε.

Proof. Let us consider a monotone decreasing sequence {εk}, εk > 0, limk→∞ εk = 0 tending
to zero. We assume that the lemma is invalid. Then, for any k there exists a εk-Pareto set Yεk

1 The idea of using the Edgeworth–Pareto hull in the solution of the multicriteria problems belongs to A.V. Lotov [22].
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such that ρ(y∗, Yεk) > δ. By definition of the ε-Pareto set, there exists a point yk ∈ Yεk such that
yk − εkem � y∗. By virtue of compactness of the set Y , we can assume without loss of generality
that the sequence {yk} converges to the point y ∈ Y . Since limk→∞ εk = 0 and yk − εkem � y∗, we
have y � y∗. Since ρ(y∗, Yεk) > δ for each k, we have ρ(y∗, y) � δ and, consequently, y∗ �= y, which
contradicts to the fact that y∗ belongs to P(Y ).

We cite a definition from [23]. Let ε > 0 be a given positive number. The set Ω ⊆ R
m is called

the ε-network for the set Y ⊆ R
m if for each point y ∈ Y there exists a point z from Ω such that

‖y − z‖ � ε.

Theorem 2. For any δ > 0, there exists ε > 0 such that any ε-Pareto set Yε makes up a δ-network
for the set P(Y ).

Proof. Obviously, the set Yε makes up the ε-network of the set P(Y ) if and only if

d(P(Y ), Yε) � δ.

We consider the monotone sequence {εk}, εk > 0, limk→∞ εk = 0 tending to zero and assume that
the theorem is invalid. Then, for any k there exists a εk-Pareto set Yεk such that d(P(Y ), Yεk) > δ,
which implies existence of the point yk ∈ P(Y ) such that ρ(yk, Yεk) > δ. In virtue of compactness
of the set Y , we can assume without loss of generality that the sequence {yk} converges to some
point y ∈ Y . Let K be a natural number such that ‖yi − y‖ � δ/3 for i � K.

According to Lemma 2, there exists ε > 0 such that ρ(yK , Yε) � δ/3 is valid for any ε-Pareto
set Yε. Let N be an integer greater than or equal to K such that εN � ε. According to the
assumption, ρ(yN , YεN ) > δ. On the other hand, since YεN is the ε-Pareto set, ρ(yK , YεN ) � δ/3.
Consequently, there exists a point u ∈ YεN such that ‖u− yK‖ � δ/3. According to the properties
of the norm, we get ‖u− yN‖ � ‖u− yK‖+ ‖yK − y‖+ ‖y − yN‖ � δ and encounter contradiction
with the inequality ρ(yN , YεN ) > δ, which proves the theorem.

Theorem 2 does not relate ε and δ. Such relation may be established for the Jeoffrion-optimal
points. We introduce notation for the set of indices of the criteria M = {1, . . . ,m}. According
to [3], y∗ ∈ P(Y ) is called the Jeoffrion-optimal point if there exists a positive number θ(y∗) such
that for all points y ∈ Y the following is valid: if y(i) < y

(i)
∗ , then there exists j ∈ M such that

y(j) > y
(j)
∗ and

y
(i)
∗ − y(i)

y(j) − y
(j)
∗

� θ(y∗). (13)

Assertion 2. If y∗ is the Jeoffrion-optimal point, then for any ε-Pareto set Yε the inequality

ρ(y∗, Yε) � ε
√
mmax(1, θ(y∗)) (14)

is valid for ε > 0.

Proof. Let ε > 0 and Yε be the ε-Pareto set. By definition of the ε-Pareto set, there exists a
point yε ∈ Yε such that yε − ε× em � y∗. We define two subsets M+ and M− of the set M :

M+ =
{
i ∈ M : y

(i)
∗ > y(i)ε

}
,

M− =
{
i ∈ M : y

(i)
∗ � y(i)ε

}
.

Obviously, M = M+ ∪M−. Since yε − εem � y∗, we get that 0 � y
(i)
ε − y

(i)
∗ � ε is valid for any

i ∈ M−. Since y is Jeoffrion-optimal, for any i ∈ M+ there exists j ∈ M− such that

y
(i)
∗ − y

(i)
ε

y
(j)
ε − y

(j)
∗

� θ(y∗).
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Fig. 2. Illustrative example for Theorem 2.

Consequently,

0 � y
(i)
∗ − y(i)ε � θ(y∗)(y(j)ε − y

(j)
∗ ) � θ(y∗)ε

is satisfied for i ∈ M+. Therefore, the inequality |y(i)ε − y
(i)
∗ | � δ, where δ = max(ε, θ(y∗)ε), is valid

for all i ∈ M . The following theorem follows from the definition of the Euclidean metric.

Assertion 2 enables one to estimate from above the accuracy of approximation provided by the
ε-Pareto set with the use of θ(y). We consider problem (2) where the criteria and the permissible
set are defined as follows:

f (1)(x) = x(1),

f (2)(x) = (x(1) − 1)2 + x(2),

0 � x(1) � 1,

0 � x(2) � 1.

(15)

The bold line in Fig. 2 represents the Pareto set defined in the criteria space by a segment of
the curve y(2) = (y(1) − 1)2. All points of this set, except for y0 = (1, 0), are Jeoffrion-optimal. At
that,

θ(y∗) = max

(
2(1− y(1)),

1

2(1 − y(1))

)
,

where y∗ = (y(1), (y(1) − 1)2).

The marked points make up the ε-Pareto set obtained for ε = 0.05 by the method of non-
uniform coverages. One can see that in the neighborhood of the point y0 where the approaching
parameter θ(y∗) grows without limit the approximation accuracy is smaller than at other points.
This property corresponds to the estimate (14). The maximal density of the points of the ε-Pareto
set is observed at the central part of the graph where θ(y∗) is minimal.

The accuracy of discrete approximation over the given segment comprising only the Jeoffrion
point can also be estimated numerically. For example, over the segment f (1) ∈ [0, 1/2] the param-
eter θ(y∗) does not exceed 2. Consequently, on this segment the distance from any point of the
Pareto set to the nearest point of the ε-Pareto set does not exceed 2

√
2ε.

4. SEARCH OF AN APPROXIMATE SOLUTION TO THE MULTICRITERIA PROBLEM

4.1. General Theory

We recall the fundamental idea of the method of non-uniform coverages for the single-criterion
problems. The problem of seeking the global minimum on the compact permissible set X ⊆ R

n is
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formulated for the continuous scalar function f : Rn → R:

f∗ = globmin
x∈X

f(x) = f(x∗), (16)

where x∗ is any point where the global minimum f∗ is reached. For this problem, we define the set
of global decisions X∗ and the set of ε-optimal decisions Xε:

X∗ = {x ∈ X : f(x) = f∗}, Xε = {xε ∈ X : f(xε) � f∗ + ε}, ε > 0. (17)

We assume that the set X∗ is nonempty. For approximate solution of problem (16), it suffices
to determine at least one point xε of the set Xε. Then, f(xε) exceeds f∗ at most by ε.

For the function f(x) : Rn → R, set Ω ⊆ R
n, and number λ ∈ R we define the Lebesgue set

L(f(·),Ω, λ) = {x ∈ Ω : f(x) � λ}. (18)

Using the notion of the Lebesgue set, it is possible to define the necessary and sufficient conditions
for global optimality of the point x∗ ∈ X as x∗ ∈ X∗ ⇔ L(f(·),X, f(x∗)) = X.

The criterion for global ε-optimality is set down in a similar way. Let xε ∈ X, then

xε ∈ Xε ⇔ L(f(·),X, f(xε)− ε) = X. (19)

Now we consider the case of m criteria where m > 1. For an arbitrary set Λ ⊆ Y , Ω ⊆ R
n, and

the vector function F (·) : Rn → R
m, we define the Lebesgue set

L(F (·),Ω,Λ) = {x ∈ Ω : F (x) ∈ NE(Λ)}. (20)

In the case of m = 1, this definition coincides with (18).

The introduced notion can be used for an alternative definition of the Pareto set. Let Θ ⊆ Y
and P(Θ) = Θ, then

Θ = P(Y ) ⇔ L(F (·),X,Θ) = X. (21)

The global ε-optimality criterion is as follows. Let Θ ⊆ Y and P(Θ) = Θ, then

Θ is the ε-Pareto set ⇔ L(F (·),X,Θ − εem) = X. (22)

We consider collection X1, . . . ,Xk, Xi ⊆ X of the subsets of the permissible set and totality
of the finite subsets of the set of reachable criterial vectors Λ1, . . . ,Λk, Λi ⊆ Y . Let μi(·) be the
minorant for the vector function F (·) on the set Xi, that is, μi(x) � F (x) for each x ∈ Xi. Let
given be the totality of subsets L1, . . . ,Lk of the set X satisfying the following relations for the
given Xi,Λi, μi(·):

Li ⊆ L(μi(·),Xi,Λi − ε× em), i = 1, . . . , k, (23)

where Λi − εem = {x : x = λ− ε× em for some λ ∈ Λi}.
We say that the totality of the sets {Li} covers the set X if

X = ∪k
i=1Li. (24)

In this case, the union of the sets Li is referred to as covering.

Theorem 3. If the coverage condition (24) is satisfied, then the set Yk = P
(
∪k
i=1Λi

)
is the

ε-Pareto set for problem (1).

AUTOMATION AND REMOTE CONTROL Vol. 75 No. 6 2014



1032 EVTUSHENKO, POSYPKIN

Proof. We consider an arbitrary point y∗ ∈ P(Y ), y∗ = F (x∗), x∗ ∈ X . If the coverage condition
is satisfied, then x∗ ∈ L(μi(·),Xi,Λi − ε) for some i, 1 � i � k. Consequently, there exists the

vector λi ∈ Λi such that λi − εem � μi(x∗) � F (x∗). Since Yk = P
(
∪k
i=1Λi

)
, there is yε ∈ Yk such

that yε � λi. Whence it follows that yε−εem � λi−ε×em � F (x∗) = y∗. Validity of condition (5)
is established in virtue of arbitrariness of selecting y∗ ∈ P(Y ). Condition (6) follows from (3).

The method of non-uniform coverage constructs the set Yk and the covering set {Li} satisfying
the conditions of Theorem 3. These means will be discussed in detail in what follows.

4.2. Determination of the Set Li

Determination of the nonempty set Li immediately from definition (23) is a challenge that can
be simplified using the evident relation

L(μi(·),Xi,Λi − εem) = ∪λ∈Λi
L(μi(·),Xi, λ− εem), (25)

where L(μi(·),Xi, λ− εem) = {x ∈ Xi : μi(x) � λ− εem}. It follows from (25) that the set Li can
be sought in the form of a union

Li = ∪λ∈Λi
Lλ
i , (26)

where Lλ
i ⊆ L(μi(·),Xi, λ− εem). The sets Lλ

i are found easier than Li. We indicate two methods
for determination of the set Lλ

i .

1. Let μi(·) be an arbitrary minorant for the vector function F (·) on the set Xi. Let also

the means for determination of the minimum α
(j)
i of the function μ

(j)
i (·) on the set Xi, αi =

(α
(1)
i , . . . , α

(m)
i ) be known for each j ∈ M . We assume that

Lλ
i =

{
Xi if αi � λ− εem
∅, otherwise.

Then, according to (26)

Li =

{
Xi if there is λ ∈ Λi such that αi � λ− εem
∅, otherwise.

(27)

This construction of the set Li can be conveniently used in the case where the minimum of the

minorant μ
(j)
i is readily determined on the set Xi.

2. Let μi(·) be an arbitrary minorant for the vector function F (·) on the set Xi and the means

of determining the set Kj
i ⊆ L(μ(j)

i (·),Xi, λ
(j) − ε) be known for each index j, 1 � j � m. Then,

we assume that

Lλ
i = ∩m

j=1K
j
i . (28)

Two following minorants will be used in what follows. If the function f (j)(x) satisfies the
Lipschitz condition with the constant lji on the set Xi, then according to [11] the minorant for f(x)
is given by the function

μ
(j)
i (x) = f (j)(ci)− lji ‖x− ci‖, (29)

where ci ∈ Xi. Only this case was considered in [8].
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If the gradient f
(j)
x (·) of the differentiated function f (j)(·) meets the Lipschitz condition with

the constant lji , then the minorant

μ
(j)
i (x) = f (j)(ci) + 〈f (j)

x (ci), x− ci〉 − lji
2
‖x− ci‖2 (30)

is used [17].

The values of the minorants (29) and (30) at the point ci coincide with the value of the crite-
rion f (j)(·) minorated at this point. That is why these minorants are referred to as the reference
minorants, and the point ci, as the reference point.

In practice, the set Xi usually is an n-dimensional parallelepiped. There are analytical formulas
for determination of the minimum of the minorants introduced on the n-dimensional parallelepiped.
Therefore, no problems arise at using rule (27) to determine the set Li.

For the minorant (29), the set L(μ(j)
i (·),Xi, λ

(j) − ε) is the intersection of the sphere of radius

ρji (λ) = (f (j)(ci)− λ(j) + ε)/lji centered at the point ci and the set Xi. The case where a minorant

like (29) has the same reference point ci for all criteria was considered in [8]. At that, the set Kj
i

is assumed to be equal to the Lebesgue set, that is, to be defined as the intersection of the sphere
B(ci, ρ

j
i (λ)) and the set Xi. Then,

Lλ
i = B(ci, ρi(λ)) ∩Xi,

where ρi(λ) = min1�j�M ρji (λ), and

Li = B(ci, ρi) ∩Xi, (31)

where ρi = maxλ∈Λi
ρi(λ).

Therefore,
ρi = max

λ∈Λi

min
1�j�M

(f (j)(ci)− λ(j) + ε)/lji .

This formula coincides with (3) from [8] to within the notation.

For the minorant (30), the set L(μ(j)
i (·),Xi, λ

(j) − ε) is the intersection of the set Xi and the
sphere of radius

ρji (λ) =

√√√√ 2

lji

(
1

2lji
‖f (j)

x (ci)‖2 + f(ci)− λ(j) + ε

)

centered at the point zi = ci + f
(j)
x /lji .

In this case, the approach used for the minorant (29) does not work because the spheres have
different centers and their intersection is a complicated figure yielding with difficulty to the algo-
rithmic processing. We consider two possibilities of approaching this problem.

The first variant relies on the fact that the set L(μ(j)
i (·),Xi, λ

(j)−ε) comprises a sphere of radius

ρji (λ) =

(√
‖f (j)

x (ci)‖2 + 2lji (f
(j)(ci)− λ(j) − ε)− ‖f (j)

x (ci)‖
)
/lji (32)

centered at the point ci. By assuming that the set Kj
i is the intersection of this sphere with the

set Xi and reasoning as in the case of minorant (29), we establish that the set Li is computable
from (31), where ρji (λ) is computed from (32).

In the second variant, the n-dimensional parallelepipeds belonging to the set L(μ(j)
i (·),Xi,λ

(j)−ε)

are taken as the set Kj
i . The method to determine such parallelepiped is described in [20]. The

set Lλ
i is the intersection of the parallelepipeds and, consequently, a parallelepiped as well. The

set Li is a union of parallelepipeds that can be used conveniently in the algorithms.
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4.3. Algorithm

We consider a possible realization of the non-uniform coverage method. Construction of the
set Yk is an important part of the proposed algorithm. To construct the set Yk, in the course of
operation of the algorithm supported is a list A of the points of the permissible set X such that
the image F (A) of the set A under the map F contains a finite collection of pairwise incomparable
points which upon completion of the algorithm is the set Yk. The values of criteria are stored
together with the values of parameters, which allows one to avoid calculation of the criteria at each
comparison.

The list A is constructed successively using the Update procedure realizing addition of a current
point to the set A.

Update procedure (A, x)

Parameters:

A—current list of points.

x—new point.

1. Execute the following actions for each point a from A:

if F (a) � F (x), then complete the procedure;

if F (x) � F (a), then remove a from A.

2. Add x to A.

The image F (A) of the set A constructed using the given procedure satisfies, obviously, condi-
tion (6). The sequence of the added points may be generated by different means which are discussed
at length in the description of the entire algorithm.

The methods of local optimization enabling one to determine from the point x ∈ X the point
x′ ∈ X such that F (x′) � F (x) improve accuracy of approximation and accelerate operation of the
Cover algorithm. This procedure is applied to the points x prior to adding them to the list A
(see [12–14]).

Now, we consider the basic algorithm Cover which decomposes successively the permissible
set X into the subsets, generates and rejects the sets Li until they make up the coverage of the
permissible set. The list A of permissible points is generated in the course of algorithm’s operation.

Cover algorithm

1. Initialize the list of subsets S = {X} and the list of points A = ∅.
2. Take some set Xi from S.

3. Select the point ci ∈ Xi and update the list of points A: Update(A, ci).

4. Determine the set Li and its complement X ′
i : X

′
i = Xi \ Li.

5. If X ′
i �= ∅, then decompose X ′

i into p subsets Yi = {Y i
1 , . . . , Y

i
p} and add them to S.

6. Remove Xi from S.

7. If S is empty, then complete the algorithm; otherwise, go to step 2.

By using Theorem 3, one can readily demonstrate that after completion of the algorithm the
set A is an ε-optimal solution and the set f(A) is the ε-Pareto set for problem (1).

The following variant of the above algorithm was used in the experiments:

• it was assumed that the permissible set is a parallelepiped and all sets Xi are parallelepipeds
as well;

• the parallelepiped X ′
i is always decomposed into two equal parallelepipeds by the hyperplane

passing orthogonally through the middle of the maximum-length edge;

• the center of the parallelepiped Xi is always taken as the point ci.
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4.4. Software Realization

The Cover algorithm is software realized on the basis of the BNB-Solver packet [18] representing
a collection of the C++ classes realizing the general scheme of the branch-and-bound method for
the serial and parallel architectures. The program seeking the global extremum is obtained by
uniting the functionalities of these classes and the functionality of the problem-dependent modules
encapsulating the features of a particular method.

To solve a particular problem, one has to realize the modules computing the objective func-
tion F (x), gradients of the components, estimates of the Lipschitz constants and the spectrum
boundaries for the components of the objective function. For polynomials of more than one vari-
able, the objects can be calculated mechanically. Therefore, modules were added to support the
polynomial objective functions and constraints.

The Cover method is readily parallelized. Several flows execute independently the algorithm’s
iterations 2–7 on the shared-memory multiprocessor systems accessing the common list S. Each
flow also supports a local list of subsets to prevent losses at synchronization of access to the general
list. Part of the subsets from this list is copied periodically to the general list. As soon as the local
list is exhausted, the flow takes from the general list a new subset to be processed. Realization for
the distributed-memory systems follows the same lines, but instead of copying the messages are
transmitted through the network. Selection of the parameters defining the exchange frequency and
the number of data transmitted is pivotal for process control. The issues of parallel realization of
the method of non-uniform coverage are discussed in [18].

5. EXPERIMENTAL RESULTS

At comparing the algorithms to seek the minimum of a scalar function, the best one is that which
establishes the permissible solution with the least value of the objective function. Comparison of
the algorithms of multicriteria optimization is a more complicated problem because here it is
impossible to specify here a single parameter for comparison. A detailed review of the procedures
for comparison of the approximate solutions of the multicriteria problems can be found in [24]. We
use below two numerical indices of those proposed in this book.

The first index is called Hyper Volume (HV) and measures the total volume of the domain made
up by the united overlapping parallelepipeds situated between some given (reference) point and the
points of discrete approximation (Fig. 3). A point r such that r(i) � maxx∈X f (i)(x), i = 1, . . . ,m,
is usually taken as the reference. We notice that determination of the reference point needs not to
be always a trivial problem. If A and A′ are two approximation Pareto sets and A′ � A, then the
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Fig. 3. Hyper Volume (HV) index.
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Table 1. Comparison of the results of different algorithms for Example 1

Method nit ε ngen np hv

SEMO 500 – 500 221 3.27
MC 500 – – 22 3.38
NUC 490 0.07 – 36 3.42

HV index of A′ exceeds that of A for the same reference point. Stated differently, a greater HV
usually corresponds to more accurate approximations.

Beside closeness to the true Pareto set, the quality of the resulting approximation is also char-
acterized by the uniformity of distribution of its points. For the same number of points, that
approximation is preferable where the points are distributed more uniformly. The following in-
dex (33) allows one to make a rough estimate of this distribution. For the approximation A with
k points, we determine

UD(A) =

√√√√ k∑
i=1

(di − d)2, d =

(
k∑

i=1

di

)
/k, (33)

where di is the minimal distance from the point numbered i to the rest of the points A. The smaller
values of this index usually correspond to more uniform distributions of points. In particular, if
all minimal distances are identical, the index takes on zero value. We notice that index (33) is not
meaningful for problems where the Pareto set is disconnected.

Three algorithms were compared in the experiments:

1) NUC: non-uniform coverage method;

2) MC: Monte Carlo method, a stochastic algorithm where the random points are distributed
uniformly in the permissible domain and the discrete approximation is constructed using he
Update procedure;

3) SEMO: genetic algorithm SEMO from the PISA library [25].

The following parameter values were compared:

1) nit—the number of calls of functions computing the criteria;

2) ε—accuracy, this parameter is meaningful only for the method of non-uniform coverage and
defines the value ε of the resulting ε-Pareto set;

3) ngen—number of generations, this parameter is meaningful only for the genetic algorithm;

4) np—the number of points in the discrete approximation;

5) hv—value of the Hyper Volume index;

6) ud–value of the index of uniformity of distribution of points in the approximation.

We consider two examples for comparison.

Example 1. Consider problem (1) where the criteria are given by

f (1)(x(1), x(2)) = x(1), f (2)(x(1), x(2)) = min(|x(1) − 1|, 1.5 − x(1)) + x(2) + 1,

and the permissible domain obeys the inequalities 0 � x(1) � 2 and 0 � x(2) � 2. In this example,
the boundary of the Pareto set consists of two segments. The first segment connects the points
(0, 2) and (1, 1), and the second, the points (1.5, 1) and (2, 0.5).

The parameters of the three algorithms were selected so as to have approximately the number
of calculations of criteria close to 500 for them all. Table 1 compiles the experimental results
of different algorithms. Dash in the table means that for the given method the parameter is
meaningless. The uniformly index was not calculated because the Pareto set is disconnected.
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Fig. 4. Approximations of the Pareto set obtained for Example 1 using different methods.

Figure 4 depicts discrete approximations of the Pareto set obtained by the SEMO, MC, and
NUC methods for Example 1. One can see that the quality of approximation of the method of
non-uniform coverages is much superior to the two other methods.

Example 2. In this example, solved is problem (1) with criteria given by

f (1)(x) = (x(1) − 1)(x(2))2 + 1, f (2)(x) = x(2).

The permissible domain obeys the inequalities 0 � x(1) � 1 and 0 � x(2) � 1.

One can readily see that the solution of the given problem in the space of criteria is represented
by a segment of the parabola y(1) = 1− (y(2))2 for y(1), y(2) ∈ [0, 1]. The problem is nonconvex. As
in Example 1, the parameters of the algorithms were selected so as to provide approximately the
same number of computations of criteria close to 500. Table 2 compiles the experimental results
for different algorithms. Figure 5 depicts the discrete approximations of the Pareto set obtained
by the methods SEMO, MC, and NUC for Example 2.
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Fig. 5. Approximations of the Pareto set obtained by different methods for Example 2.

Analysis of Table 2 and the graphs in Fig. 5 shows that in terms of the Hyper Volume index the
method of non-uniform coverages is much superior to the stochastic algorithm and is somewhat
inferior to the genetic algorithm. At that, the genetic algorithm constructed an approximation
with the three-fold number of points as compared with the method of non-uniform coverages. The
ud index characterizing uniformity of point distribution and analysis of the graphs show that the
points constructed by the method of non-uniform coverages have a much more uniform distribution.

Table 2. Comparison of the results of different algorithms for Example 2

Method nit ε ngen np hv ud

SEMO 500 – 500 104 0.312 1.116
MC 500 – – 67 0.300 1.277
NUC 515 0.0675 – 29 0.306 0.210
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It deserves noting that in distinction to the genetic and stochastic algorithms, the method of non-
uniform coverages guarantees the ε-optimality for the given ε.

6. CONCLUSIONS

The present paper proposed a new approach to approximation of the Pareto set on the basis
of the method of non-uniform coverages. It features two basic advantages. First, it enables one
to construct the ε-Pareto set for the given ε, that is, guarantees the ε-optimality of the approxi-
mation. This feature is unique and not found in other approaches to the problem of multicriteria
optimization.

Second, it follows from the experiments that the points of discrete approximation obtained
by the method of non-uniform coverages are distributed more uniformly as compared with the
approximations by the other discussed methods. For the same cardinality of the approximation
set, the method of non-uniform coverages provides, therefore, better approximations, which is its
unconditional merit from the practical point of view.
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