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A special modi�cation of the Lagrange function is used to reduce a nonlinear optimization
problem to a system of nonlinear equations that is singular in the general case. By applying the
p-factor transformation, this system is reduced to a new nondegenerate system with the same
solution, which can be solved by Newton-type methods. Thus, the method suggested combines
a version of the modi�ed Lagrange function (MLF) method proposed by Evtushenko in [3] and
Tret'yakov's 2-factor-method (its description can be found, for example, in [1]).

Traditionally, nonlinear systems are divided into two classes: regular and nonregular. Regular
systems are those to which the classical implicit function theorem can be applied, and nonregular
systems are those to which this theorem is inapplicable. This paper deals with nonregular
systems.

Consider the nonlinear optimization problem
min
x∈X

f(x). (1)

Here, the feasible set is X = {x ∈ Rn | g(x) ≤ 0m}, where 0m is a zero vector in Rm,
(g(x))> = (g1(x), g2(x), . . . , gm(x)) is a row vector function, and the functions f(x) and gj(x)
map Rn to R.

The Lagrange function for problem (1) is given by L(x, v) = f(x)+v>g(x), where v ∈ Rm
+ is

a Lagrange multiplier vector. Assuming that f(x) and g(x) are twice continuously di�erentiable,
the gradient and Hessian of the Lagrange function are de�ned as

∇xL(x, v) = ∇f(x) +
m∑

i=1

vi∇gi(x),

∇xxL(x, v) = ∇2f(x) +
m∑

i=1

vi∇2gi(x).
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It is assumed that the solution set X∗ ⊂ Rn of problem (1) is not empty. In what follows,
we also assume that the constraint regularity condition (CRC) is satis�ed, in other words, the
gradients of the active constraints ∇gi(x

∗) are linearly independent. This condition guarantees
that each x∗ ∈ X∗ is associated with a unique Lagrange multiplier vector v∗ ∈ V ∗ that satis�es
∇xL(x∗, v∗) = 0n and v∗i = 0 if gi(x

∗) > 0, i = 1, 2, . . . , m.
Consider the nonstandard version of the MLF method proposed in [3], in which the modi�ed

Lagrange function has the form

LE(x, λ) = f(x) +
1

2

m∑
i=1

λ2
i gi(x), (2)

where λ> = (λ1, λ2, . . . , λm).
Obviously, the ith component of the Lagrange multiplier vector v is expressed in terms of the

ith component of the new vector λ by the formula vi =
(λi)

2

2
. Thus, the use of λ automatically

ensures that the corresponding Lagrange multiplier vector v is nonnegative.
A solution x∗ ∈ X∗ is associated with a vector λ∗ with components λ∗i = ±√

2v∗i . The
vectors x and λ are jointly denoted by the single symbol w ∈ Rn+m. Similarly, the pair [x∗, λ∗]
is denoted by w∗. Therefore, LE(x, λ) = LE(w). According to the Kuhn�Tucker theorem, w∗

satis�es the system

G(w) =


 ∇f(x) +

1

2

m∑
i=1

λ2
i∇gi(x)

D(λ)g(x)


 = 0m+n. (3)

Here, D(λ) is a diagonal matrix whose dimension is determined by the dimension of λ and its
ith diagonal element is λi. Note that system (3) can generally have an in�nite set of solutions
even in the neighborhood of w∗. Let ∇g(x)> be the Jacobi matrix of the mapping g(x). For
system (3), the Jacobi matrix is given by

G′(w) =


 ∇2f(x) +

1

2

m∑
i=1

λ2
i∇2gi(x) ∇g(x)D(λ)

D(λ)∇g>(x) D(g(x))


 . (4)

For the pair [x∗, λ∗], we de�ne the set of active constraints as I(x∗), the set of weakly active
constraints as I0(x

∗), and the set of strongly active constraints as I+(x∗)

I(x∗) = {j = 1, 2, . . . , m | gj(x
∗) = 0},

I0(x
∗) = {j = 1, 2, . . . , m | λ∗j = 0, gj(x

∗) = 0},
I+(x∗) = {j = 1, 2, . . . , m | λ∗j 6= 0, gj(x

∗) = 0}.

When the MLF method is substantiated and analyzed, the CRC condition is usually supple-
mented with the following conditions:

(i) Strict complementarity (SC) condition; i.e., λ∗i gi(x
∗) = 0 for i = 1, 2, . . . , m and, if

gi(x
∗) = 0, then λ∗i 6= 0 for all i = 1, 2, . . . , m.
(ii) Second-order su�cient optimality conditions: there is a number ν > 0 such that

z>∇2
xxLE(x∗, λ∗)z ≥ ν‖z‖2 (5)

for all z ∈ Rn satisfying ∇gj(x
∗)>z ≤ 0, j ∈ I(x∗).

Assume that the SC condition is ful�lled at the point x∗. Then both λ∗i = 0 and gi(x
∗) = 0

hold for some index i. Therefore, I0(x
∗) is not empty. In this case, matrix (4) becomes singular
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at the point w∗ and, consequently, system (3) cannot be solved by Newton-type methods. The
main goal of this paper is to show that the p-regularity theory can be e�ectively used in this
situation (for the basic principles of the theory, see [4, 5]).

Consider the system of nonlinear equations (3). Let the mapping G be nonregular at the
point w∗, in other words, the Jacobi matrix (4) is singular and rank(G′(w∗)) = r < n + m. In
this case, w∗ is called a degenerate solution to system (3).

The singularity of the matrix G′(w∗) means that there is at least one nonzero vector h such
that

G′(w∗)h = 0m+n. (6)
Obviously, for such a vector h, the solution to system (3) also solves the modi�ed system

Φ(w) = G(w) + G′(w)h = 0m+n. (7)

For a singular matrix G′(w∗), Lemma 2 below shows that the matrix Φ′(w∗) = G′(w∗)+
+G′′(w∗)h is nonsingular and, consequently, the solution w∗ to system (7) is locally unique.
The nonsingularity of Φ′(w∗) underlies the construction of the 2-factor-method for solving
degenerate systems of nonlinear equations.

Consider the 2-factor-operator G′(w) + G′′(w)h, h ∈ Rn+m, ‖h‖ 6= 0, where the vector h
satis�es the condition

rank [G′(w∗) + G′′(w∗)h] = n + m. (8)
A particular form of h depends on the speci�c features of system (3). Note that the 2-factor-
operator can be de�ned in di�erent manners (see, e.g., [4, 5]). In this paper, we use the most
convenient form.

De�nition 1. The mapping G is called 2-regular at the point w∗ with respect to some vector
h ∈ Rn+m if condition (8) is satis�ed.

Consider an iterative process for solving system (3), which is called the 2-factor-method:

wk+1 = wk − [G′(wk) + G′′(wk)h]−1[G(wk) + G′(wk)h], k = 0, 1, . . . , (9)

where w0 is an initial approximation in a su�ciently small neighborhood of w∗.
Theorem 1. Let w∗ be a solution to system (3), Uε(w

∗) be a su�ciently small neighborhood
of w∗, and the mapping G ∈ C3(Rn+m → Rn+m) be 2-regular at w∗ with respect to some nonzero
element h ∈ Rn+m satisfying (6).

Then the sequence de�ned by (9) converges to w∗ and satis�es

‖wk+1 − w∗‖ ≤ α‖wk − w∗‖2, (10)

where α > 0 is an independent constant and w0 ∈ Uε(w
∗).

Lemma 2 given below implies that, under the su�cient optimality conditions for problem (1),
the mapping G de�ned by (3) is 2-regular at w∗ with respect to some element h. Consequently,
the system G(w) = 0m+n can be solved by applying the 2-factor-method. By Theorem 1, the
method has a quadratic convergence rate.

Assume that the SC condition may be violated at x∗. Without loss of generality, we also
assume that the set I0(x

∗) consists of the �rst s indices; i.e., I0(x
∗) = {1, 2, . . . , s}. The set

I0(x
∗) can be numerically determined by applying the zero-element identi�cation procedure [2].

Additionally, we assume that I+ = {s + 1, s + 2, . . . , p} and introduce the notation ` = m− p.
Since λ∗j = 0 and gj(x

∗) = 0 for all j = 1, 2, . . . , s, the rows and columns of G′(w∗) with
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the indices from the (n + 1)th to (n + s)th are all zero. The vector h ∈ Rn+m is de�ned as
h> = (0>n , 1>s , 0>m−s), where 1>s is an s-dimensional all-one row vector. Consider the mapping

Φ(w) = G(w) + G′(w)h. (11)

Lemma 1. Let V be an n×n matrix and Q be an n× p matrix such that the columns of Q
are linearly independent and 〈V x, x〉 > 0 for all x ∈ ∈ {ker Q>}\{0}. Suppose that GN is an
`× ` diagonal matrix of full rank.

Then the matrix

Ā =




V Q 0
Q> 0 0
0 0 GN


 (12)

is nonsingular.

Lemma 2. Let f , gi ∈ C3(Rn) (i = 1, 2, . . . , m); the mapping Φ be de�ned by formula (11);
and the CRC condition and the second-order su�cient optimality conditions (5) be satis�ed.

Then the 2-factor-operator Φ′(w) = G′(w) + G′′(w)h is not degenerate at the point w∗.
The proof follows from Lemma 1 if we set V = ∇2

xxLE(x∗, λ∗); GN = D(gN(x∗)), where
gN(x) = (gp+1(x), gp+2(x), . . . , gm(x))>; and Q = [∇g1(x

∗), . . . ,∇gs(x
∗), λ∗s+1∇gs+1(x

∗), . . . ,
. . . , λ∗p∇gp(x

∗)]. Then Φ′(w∗) = Ā.
Lemma 2 implies that the 2-factor-method (9) can be used to solve system (3). Applying

Theorem 1 to the solution of the original problem (1), we derive the following result.
Theorem 2. Assume that x∗ is a solution of problem (1). Let f , gi ∈ C3(Rn), i =

= 1, 2, . . . , m; and let the CRC condition and the second-order su�cient optimality conditions
(5) be satis�ed.

Then there exists a su�ciently small neighborhood Uε(w
∗) of the Kuhn�Tucker point w∗ =

= [x∗, λ∗] such that estimate (10) holds for method (9).
Note that the singularity of G′(w∗) makes it possible to construct a whole class of 2-factor-

methods by using the condition PG′(w∗)h = 0, where h is a nonzero vector from Rn+m and P
is the orthoprojector onto the orthogonal complement of the image of G′(w∗). In this case, the
2-regularity condition reduces to rank[G′(w∗) + PG′′(w∗)h] = n + m and the scheme for the
2-factor-method is written as

wk+1 = wk − [G′(wk) + PG′′(wk)h]−1 × [G(wk) + PG′(wk)h]. (13)

The convergence theorem also holds for method (13). The only di�erence is that the vector
h ∈ Ker G′(w∗) does not need to be calculated. However, an additional matrix P has to be
speci�ed in this case.

The method described is illustrated by the following example.

Example. Consider the problem

min
x∈R2

(x2
1 + x2

2 + 4x1x2) (14)

subject to x1 ≥ 0 and x2 ≥ 0.
It is easy to verify that the point x∗ = (0, 0)> is the solution to this problem with the

corresponding Lagrange multiplier v∗ = (0, 0)>. In this example, I0(x
∗) = {1, 2} and the
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modi�ed Lagrange function is LE(x, λ) = x2
1 +x2

2 +4x1x2− 1

2
λ2

1x1− 1

2
λ2

2x2. Let h = (0, 0, 1, 1)>.
Then system (3) can be written as

G(w) =




2x1 + 4x2 − 1

2
λ2

1

2x2 + 4x1 − 1

2
λ2

2

−λ1x1

−λ2x2




= 04. (15)

The Jacobi matrix for system (15) is

G′(w) =




2 4 −λ1 0
4 2 0 −λ2

−λ1 0 −x1 0
0 −λ2 0 −x2


 .

This matrix is singular at the point w∗ = (0, 0, 0, 0)>. The mapping G is 2-regular at w∗ with
respect to the introduced element h, and the scheme for the 2-factor-method is written as




2 4 −λ1 − 1 0
4 2 0 −λ2 − 1

−λ1 − 1 0 −x1 0
0 −λ2 − 1 0 −x2







xk+1
1 − x1

xk+1
2 − x2

λk+1
1 − λ1

λk+1
2 − λ2




= −




2x1 + 4x2 − 1

2
λ2

1 − λ1

2x2 + 4x1 − 1

2
λ2

2 − λ2

−λ1x1 − x1

−λ2x2 − x2




,

where k = 0, 1, . . . and (x1, x2, λ1, λ2)
> = (xk

1, x
k
2, λ

k
1, λ

k
2)
>. ¥

In this example, system (7) has a nonunique solution. Therefore, the method fails to converge
globally. However, we can use another version of the method and solve the system Ψ(w) =
= G′(w)h = 04, which is linear with respect to w. Here, h ∈ Ker G′(w∗). Since G is 2-regular
with respect to the element h at the point w∗, the matrix Ψ′(w∗) is nonsingular. Consequently,
the problem has the unique solution w∗ = 0n+m.
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