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Abstract

 

—Several theorems on sufficient unimodality conditions are formulated for a sum of 

 

k

 

 normal distri-
butions with the same variance and with different mean values 

 

µ

 

i

 

, 

 

i

 

 = 1, …, 

 

k

 

, 2 

 

≤

 

 

 

k

 

 < 

 

∞

 

, taken with their a priori
probabilities 

 

π

 

i

 

. On the basis of these theorems, estimates for the lower and upper bounds for the mode numbers

 

m

 

 are obtained for 

 

k

 

 

 

≥

 

 3 in the case when the mixture contains 

 

k

 

* components, 2 

 

≤

 

 

 

k

 

* < 

 

k

 

, satisfying the uni-
modality conditions.
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INTRODUCTION

The need for preliminary estimation of the number
of modes in Gaussian mixtures is dictated by their wide
application in various fields of science and practice,
including simulation, pattern recognition, spectros-
copy, meteorology, and sea fishery [1–4]. In this study,
several theorems on the sufficient unimodality condi-
tions of a mixture of 

 

k

 

 normal distributions with the
same variance 

 

σ

 

2

 

 and with different mean values 

 

µ

 

i

 

, 

 

i

 

 =
1, …, 

 

k

 

, 2 

 

≤

 

 

 

k

 

 < 

 

∞

 

, taken with their a priori probabilities

 

π

 

i

 

, are formulated on the basis of the principle of con-
tracting mappings. The unimodality theorems are used
as the basis for estimating the upper bound for the mode
number 

 

m

 

 in a mixture with 

 

k

 

 

 

≥

 

 3 in the case when 

 

k

 

*
components of this mixture (2 

 

≤

 

 

 

k

 

* < 

 

k

 

) satisfy the uni-
modality conditions.

1. BASIC THEORETICAL RESULTS

The probability density function of such a mixture
has the form

(1.1)

The distribution parameters 

 

π

 

1

 

, …, 

 

π

 

k

 

, 

 

µ

 

1

 

, …, 

 

µ

 

k

 

, and 

 

σ

 

2

 

in formula (1.1) are known. The mode of function 

 

f

 

(

 

x

 

)
(the point of its local maximum) is a root of the equa-
tion (

 

x

 

) = 0, which is equivalent to the equation

f x( ) 2πσ( ) 1– πi x µi–( )2 2σ2( ) 1–
–[ ],exp

i 1=

k

∑=

x R, R∈ ∞– +∞,( ), πi 0, πi

i 1=

k

∑> 1.= =

f x'

 

x

 

 = 

 

ϕ

 

(

 

x

 

), (1.2a)

(1.2b)

Obviously, the number of modes in the mixture
under investigation satisfies the inequality [3]

1 

 

≤

 

 

 

m

 

 

 

≤

 

 

 

k

 

.

For definiteness, we set

 

µ

 

1

 

 < 

 

µ

 

2

 

 < … < 

 

µ

 

k

 

.

In [5], the following proposition is proved.

 

Theorem 1.

 

 All fixed points (FPs) of operator 

 

ϕ

 

 lie
in the interval (

 

µ

 

1

 

, 

 

µ

 

k

 

). If operator 

 

ϕ

 

 has only one FP, it
is a mode of function 

 

f

 

(

 

x

 

).
It is known [6] that operator 

 

ϕ

 

 has only one fixed
point on segment [

 

µ

 

1

 

, 

 

µ

 

k

 

], if it is a contracting operator
on this segment; operator 

 

ϕ

 

 is a contracting operator on
segment [

 

µ

 

1

 

, 

 

µ

 

k

 

] if

(1.3)

Derivative (

 

x

 

) has the form

(1.4a)

(1.4b)

ϕ x( ) πiµi x µi–( )2 2σ2( ) 1–
–[ ]exp

i 1=

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

× πi x µi–( )2 2σ2( ) 1–
–[ ]exp

i 1=

k

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

1–

.

ϕx' x( ) 1.<

ϕx'

ϕx' x( ) psi
2 ψsψi

s i>
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

ψ j

j 1=

k

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

2–

,=

i 1 … k 1, s–, , 2 … k,, ,= =

ψ j π j x µ j–( )2 2σ2( ) 1–
–( ), jexp 1 … k,, ,= =
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(1.4c)

where ρsi is the Mahalanobis distance. In this case, the
unimodality condition (1.3) for the mixture assumes the
form

(1.5)

This inequality was used for deriving the theorems of
unimodality for the given mixture, which will be for-
mulated below. The proofs of Theorems 3 and 4 are
given in [1].

Theorem 2. For k ≥ 2, a Gaussian mixture is unimo-
dal if

(1.6)

Proof. The sufficient conditions for operator ϕ to be
contracted on segment [µ1, µk] are as follows: inequal-
ity (1.5) holds if all distances ρsi satisfy the inequality

(1.7)

On the basis of the third axiom of metric [6], inequali-
ties (1.7) are equivalent to inequality (1.6). If inequality
(1.6) holds, inequality (1.5) is valid, which is the suffi-
cient unimodality condition for the mixture.

Corollary 2.1 For k ≥ 3, if there exists a value of

 such that

the number m of modes in the mixture satisfies the ine-
quality

m ≤ k – t.

Theorem 3. For k = 2, a mixture is unimodal if

Corollary 3.1. For k ≥ 3, if there exists at least one
value

the number m of modes satisfies the inequality

m ≤ k – 1.

Corollary 3.2. For k ≥ 4, if set p = {ρi, i + 1}, i = 1,
2, …, k – 1, contains at least one nonempty subset P1,

(1.8a)

consisting of n1 elements satisfying the conditions

(1.8b)

ρsi µs µi– σ 1– , i s,<=

ρsi
2 2–( )ψsψi

s i>
∑ ψ j

2

j 1=

k

∑– 0.<

ρk1
2 2.≤

ρsi
2 2, i s, i<≤  = 1 2 … k 1, s–, , ,  = 2 3 … k., , ,

ρs s t+,
2

ρs s t+,
2 2, s 1, t 1, s t k,≤+≥ ≥≤

ρ21
2 4.≤

ρs s 1+,
2 4, s 1 2 … k 1–, , ,{ },∈≤

P1 ρi i 1+, ρ j j 1+, … ρs s 1+, ρt t 1+,, , , ,{ },=

ρi i 1+, 2, ρ j j 1+, 2 … ρs s 1+,, , 2, ρt t 1+, 2,≤ ≤ ≤ ≤
j i 2 … s j 2, t+ s 2,+≥ ≥, ,+≤

i 1, t 1 k,≤+≥

and

(1.8c)

where ρ0 is a sufficiently large positive number, ρ0 > 2,
and the number m of modes in the mixture satisfies the
inequality

m ≤ k – n1. (1.9)

It was found experimentally that ρ0 = 6. The maxi-
mum number of elements in set P1 is defined as

(1.10)

where ε is a small positive number, 0 < ε ≤ 0.01, and
E[y] is the integer part of y. The number of elements of
set P1 satisfies the inequalities

1 ≤ n1 ≤ nmax.

Theorem 4. For k = 2,  > 4, the mixture is uni-
modal if

(1.11)

Corollary 4.1. For k ≥ 3, if there exists at least one
value

and if the triple ρi, i + 1, πi , πi + 1 satisfies conditions
(1.11), the number of modes in the mixture satisfies the
inequality

m ≤ k – 1.

Corollary 4.2. For k ≥ 4, if set P = {ρi, i + 1}, i = 1, 2,
…, k – 1, has at least one nonempty subset P2,

(1.12a)

consisting of n2 elements satisfying the conditions

(1.12b)

and if for each triple of quantities

inequalities (1.11) hold and

(1.12c)

ρi 1+ i 2+, ρ0 … ρ j 1– j,, , ρ0,≥ ≥
ρ j 1+ j 2+, ρ0 … ρt 1– t, ρ0, ρt 1+ t 2+, ρ0,≥ ≥, ,≥

nmax E 2 1– k ε+[ ],=

ρ12
2

π1π2
1–( )ln ρ12

2 2 1–≥ 2 ρ12 ρ12
2 4–+( )2 1–[ ],ln+

π1 π2.≠

ρi i 1+,
2 4, i 1 2 … k 1–, , ,{ },∈>

P2 ρi i 1+, ρ j j 1+, … ρs s 1+, ρt t 1+,, , , ,{ },=

ρi i 1+, 2> ρ j j 1+,, 2 …,,>
ρs s 1+, 2> ρt t 1+,, 2, i 1, t 1 k,≤+≥>

j i 2 … s j 2 t s 2,+≥,+≥, ,+≥

ρi i 1+, πi πi 1+ ;, ,
ρ j j 1+, π j π j 1+ ; … ρt t 1+, πt πt 1+, , ,, ,

ρi 1+ i 2+, ρ0,≥
ρ j 1+ j 2+, ρ0 … ρt 1+ t 2+,, , ρ0,≥ ≥
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where ρ0 is a sufficiently large positive number, ρ0 > 2,
we have the following inequality for the number m of
modes in the mixture:

m ≤ k – n2. (1.13)

It was found experimentally that ρ0 = 6.
The maximum number nmax of elements in set P2 is

defined by formula (1.10); the number n2 of elements in
set P2 satisfies the inequalities

1 ≤ n2 ≤ nmax.

Theorem 5. For k ≥ 3 and  > 2, a mixture is uni-
modal if

(1.14a)

(1.14b)

Proof. Inequality (1.14a) follows from inequality
(1.5), which represents sufficient conditions for the
compactness of operator ϕ and of the uniqueness of its
FPs, which is a mode of function f(x) in accordance
with Theorem 1.

Inequality (1.14a) is inconvenient for defining the
unimodality of function f(x) since both sides of this ine-
quality are functions of x. Consequently, it is expedient
to find the relations between the upper bounds of both
of its sides.

We will prove auxiliary theorems for two continu-
ous functions a1(x) and a2(x), which are positive-defi-
nite on segment [µ1, µk],

(1.15)

and for their upper bounds b1 and b2,

(1.16)

Lemma 1. If two continuous positive-definite func-
tions a1(x) and a2(x) and their upper bounds b1 and b2
satisfy inequalities

b1 < b2, (1.17)

(1.18)

on segment [µ1, µk], then

(1.19)

Proof. We write inequality (1.18) in the form

The last inequality leads to inequality (1.19) provided
that –b2 + b1 < 0 (i.e., if inequality (1.17) is valid), QED.

ρk1
2

ρsi
2 2–( )ψs x( )ψi x( )

ρsi P3∈
∑

< 2 ρsi
2–( )ψs x( )ψi x( ) ψi

2 x( ),
i 1=

k

∑+
ρsi P4∈
∑

P3 ρsi; ρsi
2 2>{ }, P4 ρsi; ρsi

2 2≤{ },= =

s i, s> 2 … k, i, , 1 … k 1.–, ,= =

a1 x( ) 0, a2 x( ) 0,> >

b1 a1 x( ), b2 a2 x( ).> >

b2 b1 a2 x( ) a1 x( )–≤–

a1 x( ) a2 x( ).<

a1 x( ) a2 x( ) b2– b1.+≤

Lemma 2. If two continuous positive-definite func-
tions a1(x) and a2(x) and their upper bounds b1 and b2
satisfy the conditions

(1.20)

(1.21)

on segment [µ1, µk], then the following inequality
holds:

b1 < b2. (1.22)

Proof. We write inequality (1.22) in the form

From the latter inequality, we obtain inequality (1.22)
only if inequality (1.20) holds, i.e.,

QED.
To use Lemmas 1 and 2 for formulating the unimo-

dality conditions for a mixture, we introduce the fol-
lowing notation for the functions appearing in inequal-
ity (1.14a):

(1.23)

Using expression (1.4b), we can easily find the
upper bounds for functions a1(x) and a2(x) in expres-
sion (1.23):

(1.24)

Then Theorem 5 and Lemma 1 lead to the following
proposition.

Theorem 6. For k ≥ 3 and  > 2, a mixture is uni-
modal if the following two inequalities hold:

(1.25)

(1.26)

a1 x( ) a2 x( ),<

b2 b1– a2 x( ) a1 x( )–≥

b1 b2 a2 x( )– a1 x( ).+≤

a2 x( )– a1 x( )+ 0,<

a1 x( ) ρsi
2 2–( )ψsψi,

ρsi P3∈
∑=

a2 x( ) 2 ρsi
2–( )ψsψi

ρsi P4∈
∑ ψ j

2.
j 1=

k

∑+=

b1 ρsi
2 2–( )πsπi,

ρsi P3∈
∑=

b2 2 ρsi
2–( )πsπi

ρsi P4∈
∑ π j

2.
j 1=

k

∑+=

ρk1
2

ρsi
2 2–( )πsπi

ρsi P3∈
∑ 2 ρsi

2–( )πsπi

ρsi P4∈
∑ π j

2,
j 1=

k

∑+<

2 ρsi
2–( )πsπi

ρsi P4∈
∑ π j

2 ρsi
2 2–( )πsπi

ρsi P3∈
∑–

j 1=

k

∑+

≤ 2 ρsi
2–( )ψs x( )ψi x( )

ρsi P4∈
∑
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in these inequalities, sets P3 and P4 are defined in
(1.14b).

Corollary 6.1. For k ≥ 4 and  > 2, if the set of k
mixture components contains a subset k* of compo-
nents with numbers i, i + 1, …, i + k* – 1, 1 ≤ i < k –
k* + 1, 3 ≤ k* < k, which satisfy conditions (1.25) and
(1.26), the number m of modes of the mixture satisfies
the inequality

(1.27)

Theorem 5 and Lemma 2 lead to the following prop-
osition.

Theorem 7. For k ≥ 3 and  > 2, inequalities
(1.14a) and

(1.28)

lead to inequality (1.25).

Thus, for k ≥ 3 and  > 2, sufficient conditions of
unimodality of a mixture, viz., inequalities (1.25) and
(1.26), are obtained from the principle of contracting
mappings. It is practically impossible to verify the ful-
fillment of inequality (1.26) at each point x ∈ [µ1, µk].

+ ψ j
2 x( ) ρsi

2 2–( )ψs x( )ψi x( );
ρsi P3∈
∑–

j 1=

k

∑

ρk1
2

m k k* 1.+–≤

ρk1
2

2 ρsi
2–( )πsπi π j

2

j 1=

k

∑+
ρsi P4∈
∑ ρsi

2 2–( )πsπi

ρsi P3∈
∑–

≥ 2 ρsi
2–( )ψs x( )ψi x( )

ρsi P4∈
∑

+ ψ j
2 x( )

j 1=

k

∑ ρsi
2 2–( )ψs x( )ψi x( )

ρsi P3∈
∑–

ρk1
2

2. RESULTS OF EXPERIMENTS

Numerous experiments performed for k = 3, 4, 10,
20, 40, and 100 proved that a mixture is unimodal if
inequality (1.25) holds; operator ϕ can be either con-
tracting or noncontracting. If inequality (1.25) is vio-
lated, the mixture can be either unimodal or multimo-
dal. In this case, for correct decision making, it is nec-
essary to calculate the values of function (x) at points

(2.1)

and calculate the number of sign reversals from plus to
minus (this number will be denoted by p). If p = 1, the
mixture is probably unimodal. For p ≥ 2, the mixture is
multimodal. For the number m of modes in the mixture,
the following inequality holds:

m ≥ p. (2.2)

It was established experimentally that the optimal value
of h in (2.1) is equal to 4–1σ since for this value the
equality holds in (2.2):

m = p. (2.3)

The table contains the results obtained for ten three-
component mixtures (k = 3): their parameters ρ21, ρ32,
ρ31, π1, π2, and m (the number m of modes was obtained
using the computational algorithm for fixed points of
function f(x) [7]), as well as the values of decision rules
(DRs) b1, b2, and p (1.25), (2.1)–(2.3).

In accordance with DR (1.25), mixtures 1–3 are uni-
modal (b1 < b2), and the number of modes in mixtures
4–10 is not defined (b1 > b2). Applying the second deci-
sion rule (2.1)–(2.3) to these modes, we obtained the
exact number of modes (m = p).

Although we have determined the exact number m
of modes for each mixture from the table using our cri-
teria, we will still illustrate the estimation of the upper
bound for m. On the basis of Corollary 3.1 for mixtures
1–8, we have m ≤ 2 since ρ21 ≤ 2.

f x'

µ1 µ1 h+ µ1 2h … µ1 lh+ µk, , ,+, ,

Table

No.
of mixture

Mixture parameters Values of DR

ρ21 ρ32 ρ31 π1 π2 m b1 b2 p

1 1.41 0.59 2 0.33 0.33 1 0.22 0.52 1

2 1.80 0.20 2 0.50 0.25 1 0.40 0.50 1

3 1.00 1.20 2.20 0.10 0.20 1 0.20 0.64 1

4 1.41 1.41 2.82 0.60 0.20 1 0.71 0.44 1

5 1.41 1.41 2.82 0.45 0.10 2 1.20 0.42 2

6 1.50 1.50 3.00 0.33 0.33 1 0.83 0.33 1

7 1.50 1.50 3.00 0.40 0.20 2 1.16 0.36 2

8 2.00 3.00 5.00 0.80 0.10 2 2.07 0.66 2

9 2.50 2.50 5.00 0.40 0.20 3 4.36 0.36 3

10 2.50 2.50 5.00 0.33 0.33 3 3.50 0.33 3
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As regards the determination of a large value of ρ0
(ρ0 = 6) in the wording of Corollaries 3.2 and 4.2, we
proceeded from the behavior of each component of
function f(x),

namely,

Each function fi(x) has inflections at points xi = µi ± σ.
In addition, the landmark was the 3σ rule for the Gaus-
sian distribution [8].

Numerical experiments aimed at determining the
value of ρ0 were performed for various mixtures with
k = 4, 10, 20, 40, and 100. In this case, the values of
parameters πi , ρi, i + 1, i = 1, 2, …, k – 1 were defined as
follows: πi = k–1,

In all experiments, the number of modes calculated in
accordance with the algorithm developed in [7] was
equal to 2–1k, which coincides with formula (1.10).

CONCLUSIONS

The main result of this research is the refinement of
the upper bound for the number of modes in the sim-
plest Gaussian mixture, which was obtained as corol-
laries of the theorems on the unimodality of the mix-
ture. The results formulated here can be helpful in solv-
ing problems of approximation, pattern recognition,
spectroscopy, and other fields of science.
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