Вычисление неподвижных точек непрерывного монотонно возрастающего оператора

Н. Н. Апраушева, С. В. Сорокин

Аннотация. Разработан алгоритм решения уравнения $x = \varphi(x)$, где φ — непрерывный монотонно возрастающий оператор с непрерывной производной $\varphi_x'(x) > 0$ при всех $x \in (-\infty, +\infty)$. Известно, что все неподвижные точки (HT) $a_1, a_2, ..., a_n$ оператора φ лежат на отрезке [a, b], концы которого не являются HT, и что $0 < \varphi_x'(x) \le C$ при всех $x \in [a, b]$, C — известная константа.

Построив уравнение $x = \zeta(x)$, равносильное исходному уравнению, $\zeta(x) = (1+C^{-1})x-C^{-1}\varphi(x)$, получаем все решения этих уравнений использованием чередования последовательностей Пикара $x_s = \varphi(x_{s-1}), x_s = \zeta(x_{s-1}), s=1, 2, ...,$ на множестве отрезков $[a, a_1], [a_1, a_2], ... [a_n, b]$. Разработанный алгоритм применён для вычисления всех критических точек плотности вероятности простейшей гауссовой смеси.

Ключевые слова: непрерывный монотонно возрастающий оператор, неподвижная точка, метод Пикара, гауссова смесь, плотность вероятности, критическая точка.

1. Введение

Нас интересует получение всех решений уравнения

$$x = \varphi(x), \tag{1.1}$$

где φ — непрерывный монотонно возрастающий оператор при всех $x \in R$, $R = (-\infty, +\infty)$, имеющий на отрезке [a, b] n неподвижных точек (HT) и непрерывную ограниченную производную $\varphi_x'(x)$,

$$0 < \varphi_x'(x) \leq C, \quad \forall x \in [a, b], \tag{1.2}$$

C — известная постоянная. Полагаем, что точки a и b не являются неподвижными точками оператора φ .

2. Использование метода Пикара

Если оператор φ в (1.1) на отрезке [a, b] имеет n неподвижных точек

$$a_1 < a_2 < \dots < a_n,$$
 (2.1)

то отрезок [a, b] делится ими на n+1 отрезков

$$[a_0, a_1], [a_1, a_2], \dots [a_n, a_{n+1}], \quad a_0 = a, \quad a_{n+1} = b.$$
 (2.2)

В (2.2) отрезки $[a_0, a_1]$, $[a_n, a_{n+1}]$ имеют по одной неподвижной точке, а остальные отрезки — по две неподвижные точки.

В силу непрерывности и монотонного возрастания оператора φ кривая $y_1 = \varphi(x)$ пересекает прямую $y_2 = x$ n раз в точках $A_1, A_2, ..., A_n$, абсциссами которых являются НТ (2.1) этого оператора. Поэтому в каждом интервале $(a_i, a_{i+1}), i=0, 1, ..., n$, величина

$$\tau(x) = \varphi(x) - x \tag{2.3}$$

имеет постоянный знак, а в смежных интервалах $(a_i, a_{i+1}), (a_{i+1}, a_{i+2})$ она имеет противоположные знаки, т.е. выполняется равенство

$$\operatorname{sgn}_{x \in (a_i, a_{i+1})} \tau(x) = -\operatorname{sgn}_{x \in (a_{i+1}, a_{i+2})} \tau(x) , \quad i = 0, 1, \dots, n-1.$$
 (2.4)

Теорема 1. Если в (2.3)

$$\tau(x) > 0, \quad \forall \ x \in (a_i, a_{i+1}) \quad i \in \{0, 1, \dots, n-1\},$$
 (2.5)

то последовательность итераций Пикара [5]

$$x_s = \varphi(x_{s-1}), \quad s = 1, 2, \dots,$$
 (2.6)

сходится к a_{i+1} ,

$$\lim_{s \to \infty} x_s = a_{i+1}, \ x_0 \in (a_i, a_{i+1}], \ i \in \{0, 1, \dots, n-1\}.$$
 (2.7)

Доказательство. В силу (2.3), (2.5) и непрерывности оператора φ последовательность (2.6) является монотонно возрастающей и ограниченной на отрезке $[a_i, a_{i+1}], i \in \{0, 1, ..., n-1\}$. По теореме Больщано-Коши имеем

$$\lim_{s \to \infty} x_s = x_c, \quad x_s, x_c \in (a_i, a_{i+1}], \tag{2.8a}$$

Переходя в равенстве (2.6) к пределу,

$$\lim_{s\to\infty} x_s = \lim_{s\to\infty} \varphi(x_{s-1}), \tag{2.8b}$$

в силу непрерывности функции $\varphi(x)$ и равенств (2.8) получаем

$$x_c = \varphi(x_c),$$

т. е. x_c — неподвижная точка оператора φ . А так как на отрезке $[a_i, a_{i+1}]$ неподвижными точками оператора φ могут быть только его концы (или только один конец a_1, a_n), то HT $x_c \in [a_i, a_{i+1}]$ и как предел монотонно возрастающей последовательности (2.6) она совпадает с неподвижной точкой $a_{i+1}, x_c = a_{i+1}$, что и требовалось доказать.

Теорема 2. Если в (2.3)

$$\tau(x) < 0, \quad \forall \ x \in [a_{i+1}, a_{i+2}), \quad i \in \{0, 1, \dots, n-1\},$$
 (2.9)

то последовательность (2.6) сходится к a_i ,

$$\lim_{s\to\infty} x_s = a_i, \quad x_0 \in [a_i, a_{i+1}), \quad i \in \{1, 2, \dots, n\}.$$

Доказательство. В силу (2.3), (2.9), (2.6) и непрерывности оператора φ последовательность (2.6) является монотонно убывающей и ограниченной на отрезке $[a_i, a_{i+1}], i \in \{1, 2, ..., n\}$. По теореме Больцано-Коши такая последовательность имеет предел. Далее доказательство повторяет доказательство теоремы 1.

Следующая теорема является следствием теорем 1 и 2.

Теорема 3. Если $[a_i, a_{i+1}], [a_{i+1}, a_{i+2}], i \in \{0, 1, ..., n-1\}$ — смежные отрезки и для всех точек интервала (a_i, a_{i+1}) имеет место неравенство (2.5), а для всех точек интервала (a_{i+1}, a_{i+2}) — неравенство (2.9), то

$$\lim_{s \to \infty} x_s = a_{i+1}, \quad x_0 \in (a_i, a_{i+1}], \quad i \in \{0, 1, \dots, n-1\},\$$

$$\lim_{s\to\infty} x_s = a_{i+1}, \ x_0 \in [a_{i+1}, a_{i+2}), \ i \in \{0, 1, \dots, n-1\}.$$

Из теоремы 3 следует, что для n>2 при использовании последовательности Пикара (2.6) нельзя получить неподвижные точки с четными номерами a_{2i} . Для вычисления таких точек перейдем к уравнению,

$$x = \zeta(x), \tag{2.10}$$

равносильному уравнению (1.1) и такому, чтобы последовательность итераций Пикара

$$x_s = \zeta(x_{s-1}), \quad s = 1, 2, \dots,$$
 (2.11)

сходилась к ним.

3. Построение оператора ζ

Оператор ζ должен быть непрерывным, монотонно возрастающим, иметь непрерывную положительную производную при всех $x \in [a, b]$. Кроме того, для величин $\tau(x)$ в (2.3) и $\xi(x)$,

$$\xi(x) = \zeta(x) - x,\tag{3.1}$$

должно выполняться равенство

$$sgn \ \xi(x) = -sgn \ \tau(x), \quad \forall \ x \in (a_i, a_{i+1}), \quad i = 0, 1, ..., n.$$
 (3.2)

Применяя элементарные операции к уравнению (1.1), получим равносильное ему уравнение,

$$x-\lambda x = x-\lambda \varphi(x), \ \lambda \neq 0,$$

где λ — некоторый множитель. Из последнего уравнения получаем искомое уравнение

$$x = (1 + \lambda) x - \lambda \varphi(x), \tag{3.3a}$$

$$\zeta(x) = (1+\lambda)x - \lambda\varphi(x). \tag{3.3b}$$

Множитель λ в формулах (3.3) определяем так, чтобы функция $\zeta(x)$ была непрерывной вместе со своей производной и монотонно возрастающей при всех $x \in [a, b]$. Из выражения производной $\zeta'_x(x)$,

$$\zeta_x'(x) = 1 + \lambda - \lambda \varphi_x'(x), \tag{3.4}$$

следует, что она будет непрерывной и положительной для всех $x \in [a, b]$ при выполнении условий

$$\lambda > 0, \ \lambda \varphi_x'(x) \leq 1.$$
 (3.5)

Из неравенств (3.5) и (1.2) получаем

$$\lambda \leq [\max_{x} \varphi_{x}^{'}(x)]^{-1}, x \in [a, b], \lambda = C^{-1}.$$

Тогда в формулах (3.3a), (3.3b), (3.4) имеем

$$x = (1+C^{-1})x - C^{-1}\varphi(x),$$
 (3.6a)

$$\zeta(x) = (1 + C^{-1})x - C^{-1}\varphi(x),$$
 (3.6b)

$$\zeta_x'(x) = 1 + C^{-1} - C^{-1} \varphi_x'(x).$$
 (3.7)

Т. к. уравнения (1.1) и (3.6а) равносильны, то операторы φ и ζ имеют одни и те же неподвижные точки.

Теорема 4. Оператор ζ в (3.6b) является непрерывным вместе со своей производной $\zeta_x'(x)$ и монотонно возрастающим при всех $x \in [a, b]$. В каждом интервале $(a_i, a_{i+1}) \subset [a, b]$, $i = 0, 1, \ldots, n$, имеет место равенство (3.2).

Доказательство. Из (3.7) и (1.2) следует, что производная $\zeta_x'(x)$ функции $\zeta(x)$ непрерывна и положительна при всех $x \in R$, что гарантирует непрерывность и монотонное возрастание функции $\zeta(x)$ при всех $x \in [a, b]$.

Для доказательства второй части теоремы, использовав формулу (3.6b) в выражении (3.1), получаем

$$\xi(x) = C^{-1}(x - \varphi(x)). \tag{3.8}$$

Так как $\tau(x) = \varphi(x) - x$ и C > 0, то из (3.8) следует равенство (3.2).

По аналогии с доказательствами теорем 1, 2 легко показать, что если в интервале $(a_i, a_{i+1}), i = 0, 1, \dots, n-1$, величина $\xi(x) > 0$, то последовательность итераций Пикара (2.11) монотонно возрастает и

$$\lim_{s\to\infty}\zeta(x_s)=a_{i+1},$$

и что если в интервале (a_i, a_{i+1}) , i = 1, 2, ..., n, $\xi(x) < 0$, то последовательность (2.11) монотонно убывает и

$$\lim_{s\to\infty}\zeta(x_s)=a_i.$$

4. Алгоритм решения уравнения (1.1)

Опираясь на свойства последовательностей итераций Пикара (2.6) и (2.11), сформулируем алгоритм решения исходного уравнения (1.1).

1. В точке x = a фиксируем знаки величин

$$\tau(x)$$
, $\xi(x)$, (4.1)

определяемых выражениями (2.3), (3.1) соответственно, и вычисляем HT a_1 по той из последовательностей (2.6) или (2.11), которой соответствует положительное значение одной из величин в (4.1).

2. Вычислив НТ a_1 с заданной точностью δ , в точке $x = a_1 + 2\delta$ определяем знаки величин в (4.1) и вычисляем следующую НТ a_2 по той из последовательностей (2.6) или (3.1), которой соответствует положительное значение одной из величин в (4.1) и т. д. до вычисления НТ a_n .

5. Вычисление критических точек плотности вероятности гауссовой смеси

Разработанный алгоритм был успешно использован для вычисления критических точек (КТ) плотности вероятности простейшей гауссовой смеси f(x),

$$f(x) = \sum_{i=1}^{k} \pi_i f_i(x), f_i(x) = (\sqrt{2\pi}\sigma)^{-1} \exp[-(x-\mu_i)^2(2\sigma^2)^{-1}],$$

 $x \in R$, μ_i — математическое ожидание i-ой компоненты, π_i — её априорная вероятность, σ^2 — её дисперсия, $\pi_i \in (0, 1)$, $\sum_{i=1}^k \pi_i = 1$, $2 \le k < \infty$. Параметры распределения смеси известны.

Критические точки функции f(x) — это корни уравнения $f_x'(x) = 0$, которое после дифференцирования функции f(x) принимает вид

$$\sum_{i=1}^{k} \pi_i(\mu_i - x) \exp[-(x - \mu_i)^2 (2\sigma^2)^{-1}] = 0,$$
 (5.1)

Использовав формулу Байеса, уравнение (5.1) преобразуем к равносильному уравнению

$$x = \sum_{i=1}^{k} P(x/\omega_i) \mu_i, \qquad (5.2a)$$

$$P(x/\omega_i) = \pi_i f_i(x) \left(\sum_{j=1}^k \pi_j f_j(x) \right)^{-1}.$$
 (5.2b)

Тогда задача определения КТ функции f(x) сводится к вычислению НТ оператора φ_1 ,

$$\varphi_1(x) = \sum_{i=1}^k P(x/\omega_i) \ \mu_i. \tag{5.3}$$

Для определённости положим

$$\mu_1 < \mu_2 < \dots < \mu_k.$$
 (5.4)

Так как $0 < P(x/\omega_i) < 1$ и $\sum_{i=1}^k P(x/\omega_i) = 1$, то из (5.2a) следует, что любая

НТ оператора φ_1 принадлежит выпуклой оболочке (BO) множества точек (5.4). Поскольку μ_1 , μ_k — крайние точки BO, то имеем теорему.

Теорема 5. Все неподвижные точки оператора φ_1 лежат в интервале (μ_1, μ_k) .

Покажем, что число HT оператора φ_1 конечно. Так как для числа мод m функции f(x) выполняются неравенства [4]

$$1 \leq m \leq k$$
,

то для числа критических точек n_1 этой функции имеют место неравенства

$$1 \leq n_1 \leq 2k - 1. \tag{5.5}$$

Применив результаты работы [6] к уравнению (5.1), получаем завышенную оценку для числа его корней n_1 ,

$$n_1 \le 2^{k(k-1)/2} (k+1)^k.$$
 (5.6)

Из неравенств (5.5), (5.6) следует, что число неподвижных точек оператора φ_1 конечно.

Замечание. Функция f(x) может иметь вырожденные критические точки (ВКТ). ВКТ — такие критические точки, для которых $f_{xx}^{"}(x) = 0$ [3], и, следовательно, они являются решениями системы уравнений $f_x'(x) = 0$, $f_{xx}^{"}(x) = 0$. Найдя выражения для $f_x'(x)$ и $f_{xx}^{"}(x)$, получим уравнение всех ВКТ функции f(x)

$$x^2 = \sum_{i=1}^k P(x/\omega_i) \mu_i^2 - \sigma^2.$$

Из результатов работы [2] следует, что производная $\varphi_{1x}'(x)$ непрерывна положительна и ограничена при всех $x \in R$,

$$\varphi_{1x}'(x) < 4^{-1} \sum_{s>i} \rho_{si}^2$$
, $s = 2, 3, ..., k$, $i = 1, 2, ..., k-1$, $\rho_{si} = (\mu_s - \mu_i) \sigma^{-1}$.

Так что оператор φ_1 в (5.3) обладает всеми свойствами оператора φ в уравнении (1.1).

При построении оператора ζ_1 ,

$$\zeta_1(x) = (1 + C_1^{-1})x + C_1^{-1}\varphi_1(x), \tag{5.9}$$

можно положить

$$C_1 = 4^{-1} \sum_{s>i} \rho_{si}^2$$
, $s = 2, 3, ..., k$, $i = 1, 2, ..., k-1$. (5.10)

Очевидно, уравнение $x = \zeta_1(x)$ равносильно уравнению (5.2a), а оператор ζ_1 в (5.9) обладает всеми свойствами оператора ζ в (3.6b).

На основании изложенного выше разработанный нами алгоритм применим для вычисления всех критических точек функции f(x).

Экспериментальная проверка этого алгоритма проводилась на ПЭВМ тестовыми примерами, графически, а также вычислением значений $f_x'(x)$ в КТ [1]. Установлено, что для реализации алгоритма на компьютере PIV, 2.26 GHz, 1Gb при любом $k \ge 2$ должно выполняться неравенство $\rho_{i,i-1} \le 76$,

i = 1, 2, ..., k-1. Полученное число 76 является результатом ограничения разрядности программного обеспечения использованного компьютера.

Приведём некоторые результаты экспериментов по расчёту КТ. В таблице для k=2 представлены значения параметров распределения смесей (σ =1), вычисленных критических точек и время их расчёта t (в сек.) при абсолютной погрешности δ =0.001 (ЛМ — точка локального минимума). Данные этой таблицы согласуются с теоретическими выводами в [2]: двухкомпонентная смесь при $\rho_{21} \le 2$ унимодальна, а при $\rho_{21} > 2$ она может быть унимодальной или бимодальной в зависимости от значений π_1 , π_2 , ρ_{21} .

Таблица

№ смеси	Параметры			Критические точки				
	распределения			Моды		ЛМ	δ	t
	μ_1	π_1	$ ho_{21}$	\hat{x}_1	\hat{x}_2	\breve{X}_1		
1	0	0.5	2	1.000			10^{-3}	0.047
2	0	0.2	2	1.924			10^{-3}	0.016
3	0	0.6	3	0.024	2.942	1.745	10^{-3}	0.125
4	0	0.3	4	0.004	3.999	1.717	10^{-3}	0.078
5	0	0.95	4	0.0001	3.972	3.016	10^{-3}	0.157
6	0	0.95	4	0.00001			10^{-3}	0.016
7	0	0.6	9	0.0005	9.000	4.548	10^{-3}	0.219

Для смеси № 4 из таблицы на рисунках 1, 2 даны графики функций f(x), $\varphi_1(x)$ и $\zeta_1(x)$. По рис. 2 видно, что все три неподвижные точки операторов φ_1 , ζ_1 совпадают (φ_1 обозначен —, ζ_1 обозначен —).

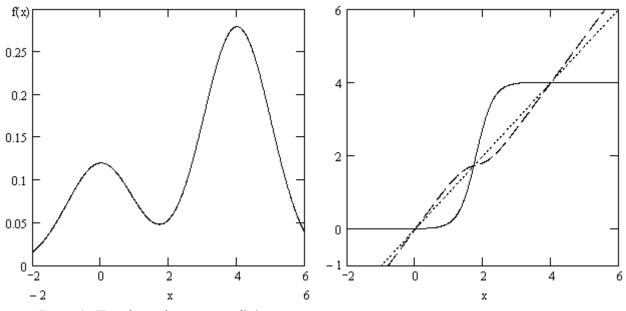


Рис. 1. График функции f(x).

Рис. 2. Графики функций $\varphi_1(x)$ и $\zeta_1(x)$.

Многочисленные эксперименты показали, что время расчёта критических точек t есть возрастающая функция параметров m, ρ_{k1} , δ и слабо зависит от числа компонент смеси k.

6. Заключение

Разработан простой алгоритм получения всех решений уравнения $x = \varphi(x)$, при условиях: 1) φ — непрерывный монотонно возрастающий оператор с непрерывной производной $\varphi_x'(x)$, при всех $x \in R$, 2) все неподвижные точки $a_1, a_2, ..., a_n$ оператора φ лежат на отрезке [a, b], 3) $0 < \varphi_x'(x) \le C$, $\forall x \in [a, b]$, C — известная константа. Алгоритм базируется на использовании уравнения $x = \zeta(x)$ ($\zeta(x) = (1 + C^{-1})x - C^{-1}\varphi(x)$), равносильного уравнению, И на использовании чередования исходному s = 1, 2, ...,последовательностей Пикара $x_s = \varphi(x_{s-1}),$ $X_{s}=\zeta(X_{s-1}),$ множестве отрезков $[a, a_1], [a_1, a_2], \dots [a_n, b].$

Проиллюстрировано успешное использование этого алгоритма для вычисления критических точек плотности вероятности простейшей гауссовой смеси.

Авторы выражают глубокую благодарность профессору А. Г. Хованскому за полезные советы и конструктивные замечания.

Список литературы

- 1. Апраушева Н. Н., Моллаверди Н., Сорокин С. В., Торхова Н. А. О модах простейшей гауссовой смеси. М.: ВЦ РАН, 2003.
- 2. *Апраушева Н. Н., Сорокин С. В.* Об унимодальности простейшей гауссовой смеси // ЖВМиМФ. 2004, 44, № 5. С. 838-846.
- 3. Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений. М.: Наука, 1982. 304 с.
- 4. *Carreira-Perpiñán M. A., Williams C.* On the Number of Modes of a Gaussian Mixture. Inform. Res. Report EDI-INF-RR-0159. School of Inf. Univ. Of Edinburg, 2003.
- 5. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1972.
- 6. *Хованский А. Г.* Малочлены. М.: Фазис, 1997.

Апраушева Нина Николаевна. Россия, Москва, ул. Вавилова, 40, Вычислительный центр имени А. А. Дородницына РАН, e-mail: plat@ccas.ru

Сорокин Станислав Викторович. Россия, Москва, ул. Вавилова, 40, Вычислительный центр имени А. А. Дородницына РАН, e-mail: www2008@ccas.ru