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In the artical several sufficient conditions of the unimodality and necessary condition of 

the bimodality are formulated for the multivariate  Gaussian mixtures of two 

components with the equal covariance matrixes Σ and with various vectors of 

expectation values i, i = 1, 2. The results are received by the generalization of the 

theorems for an one-dimensional case. 

 

Introduction 

Wide use of Gaussian mixtures in various 

areas of a science and a practice [3, 6, 8] needs 

the definition of the number of its modes 

depending on the values of distribution 

parameters. In general the question on a 

number of the modes of the Gaussian mixture 

is not solved. In the article the solution of this 

problem is presented for the multivariate 

mixture of two components, with the equal 

covariance matrixes Σ and with the various 

vectors of the expectation values i, i = 1, 2. 

Results are received by the generalizing the 

theorems for an one-dimensional case [4]. 

  

The Statement of the Problem and the 

Solution Methods 

The probability density of such a mixture is 

expressed by the formula 

 

f(X,θ) =  
(1) 

 

 

θ =  (1,2,π 1,π 2, Σ)
 
,  

 

X=(x1, x2, …, xp), X  R
p
, p≥2, Σ is a 

covariance matrix of i-th component |Σ|>0, i 

is a vector of the expectation value i-th 

component,  i is a priori probability, 

 i (0, 1), 1 + 2 = 1, X is a row-vector, X′ is 

a column-vector. 

Since function (1) and a Mahalanobis 

distance. 

 

  2
  = (2–1) Σ

–1
 (2–1)

′  

 

are the invariants in relation to the linear 

orthogonal transformation, for simplification 

of proofs we shall go from the initial system of 

coordinates to the system of the principal 

components [1, 2]. Then 

 

Y = X B,   νi = iB,   i = 1, 2, 
cov(Y′, Y) = cov(B′X′, XB) =  

B′ Σ B = Λ, 

 

 

where B is an orthogonal matrix of the 

eigenvectors of a matrix Σ, Λ — a diagonal 

matrix. In the new system of coordinates the 

function (1) becomes 

 

f(Y, θ*) =  
 

, (2) 

θ * =  (ν1, ν2, 1, 2, Λ)
 
,  

 

The mode of the smooth function f(Y, θ*) 

is its critical point (CP), i.e. its coordinates 

satisfy the system of the equations [7] 

 

f(Y, θ*)  = 0,   i = 1, 2, … , p.  

 



This system of the equations after 

differentiation of the function (2) with respect 

to yi is reduced to the system 

 

1 (yi,–ν1i) + 2 (yi,–ν2i)  = 0, (3) 

i = 1, 2, … , p,  

Ks= ,   s = 1, 2.  

 

We will present each equation of the system 

(3) in the form of 

 

yi –ν1i = – (yi –ν2i) , (4) 

i = 1, 2, … , p,  

 

Since ν1 ≠ ν2 then can put 11 ≠ 21. Then 

y1 = ν11, y1 = ν21 are not the roots of the first 

equation of the system (4), and each equation 

of this system at i = 2, 3, …, p  is possible to 

divide by the first equation. After such 

operations we have a system of the equations 

 

 = (yi –ν2i) ,  

i = 2, 3, …, p,  

 

equivalent to the system 

 

(ν1i –ν2i)y1 +(ν2i –ν11)yi + (5) 

ν11ν2i– ν1iν21 = 0,  

i = 2, 3, …, p,  

 

Each equation of the system (5) is an 

equation of the hyperplane which is collinear 

to the coordinate axis 0z and passing through 

one CP of the surfaces (2). From the equations 

(5) we have 
 

, (6) 

i = 2, 3, …, p,  

 

Substituting the expressions (6) to the formula 

(2) we will receive 

 

 
 

, 
(7) 

 

where ρ
2
 is a Mahalanobis distance in the 

system of principal components 

 

.  

 

The function (7) describes the plane curve 

which is passing through any CP of the surface 

(2) and received by the hyperplane set (5) 

section of this surface. Obviously, it is 

possible to receive as many parametrizations 

of this curve, as available inequalities ν1i ≠ν2i, 

i {1, 2, …, p}. 

At p=1 the probability density of the 

investigated mixture is presented in the form 

of 

 

 
 

, (8) 

θ1 = (ν1, ν2, 1, 2, σ
2
)
 
,  

ρ
2
 = (ν2–ν1)

2
σ

–2.  

 

Analytical expressions (7) and (8) differ 

only the constant multipliers before square 

brackets and not influencing the character and 

position of the extrema. Therefore the 

sufficient conditions theorems of the 

unimodality of the investigated mixture, 

proved for p=1 in [4] exist and for p≥2. 

Theorem 1. The probability density (2) is 

unimodal, if ρ≤2. 

Theorem 2. The probability density (2) for 

ρ>2 and 1≠2 is unimodal, if 

 

  

.  

 

Theorem 3. If the probability density (2) is 

bemodal for ρ>2, 1≠2 then the inequality 

 

  

  

 

exists. At p=1, ρ>2, 1≠2 the necessary and 

the sufficient conditions of the unimodality 

and the bimodality for the investigated mixture 

are received in [5]. 
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