
Minimizing weighted total earliness,

total tardiness and setup costs

H.A. ten Kate1

J. Wijngaard2

W.H.M. Zijm3

SOM theme A : Structure, Control, and Organization of Primary Processes

Abstract

A single machine scheduling problem is described which covers

earliness costs, tardiness costs and setup costs. Setups are needed

whenever a switch is made to a job of another product family. All

jobs within the same product family have the same processing time.

Besides setup costs also setup times are involved. Idle time is

allowed, preemption is not allowed. Both a mixed integer

programming formulation and a Branch and Bound approach are

presented which solve the problem optimally. Experimental results

are given for a number of heuristic methods.

1 Faculty of Management and Organization, University of Groningen, P.O. box 800, 9700
AV, The Netherlands. This research was sponsored by the (former) Economics Research
Foundation, which is part of the Netherlands Organization for Scientific Research (NWO).

2 Faculty of Management and Organization, University of Groningen, The Netherlands.

3 Department of Mechanical Engineering, University of Twente, P.O. Box 217, 7500 AE,
Enschede, The Netherlands.

1

1. Introduction

Consider a production-to-order system in which the product range can be

decomposed to a number of product families. Between production of orders for

products belonging to the same family almost no setup is required, whereas a serious

setup is incurred between orders for products belonging to different families. Hence,

for reasons of efficiency, we prefer to continue with orders for products belonging

to the same family as long as possible. However, the need to finish orders as close

as possible to their required due dates (as is the ultimate goal in Just In Time

manufacturing systems) may conflict with the efficiency objective. In general, a

trade-off has to be made between efficiency on the one hand and a high degree of

customer service on the other hand.

In a dynamic environment, the set of orders to be produced is changing

every time a new order arrives or a scheduled order is completed. In such an

environment one often works according to a "rolling horizon" method, where a

detailed schedule is presented for a fixed set of orders which is maintained for a

certain period of time, after which the schedule is updated. Questions about the

length of the horizon and the length of the review period then naturally arise, but

the basic underlying scheduling problem is a static one: scheduling a fixed set of

orders such that due-dates are met as close as possible, taking into account the

family structure for reasons of efficiency.

In Ten Kate[1994] a simulation model is described which is used to analyze

the order acceptance in such production systems. Order acceptance is required to

control the total set of orders which have to be scheduled. This is necessary because

otherwise too many orders may be accepted for a short period of time, and even the

best solution for the static scheduling problem will result in a bad performance for

the dynamic problem. The simulation model has been simplified as far as possible

in order to facilitate the analysis. Still, the main characteristics of the model are a

good representation of the essential factors of the above described production

systems.

In the simulation model as well as in practice fast but good heuristic

methods are needed to solve the static scheduling problem. This paper is devoted

2

to finding such heuristic methods for the scheduling problem encountered in the

simulation model. It is a first step towards finding such heuristics for the general

static scheduling problem in these kind of production systems.

We consider a single machine production system in which production is to

order. Jobs are characterized by their type (the family they belong to) and their due

date. We assume that jobs of the same type have the same processing time and setup

time. Each time we start producing jobs of a type different from the one just

completed, a setup is required. Jobs finished too early must be kept in stock until

their due date. Earliness costs have to be paid for each time unit such a job is early.

Jobs finished too late lead to backlogging and customer dissatisfaction. Therefore,

for each time unit a job is finished too late, tardiness costs are used to represent the

costs of backlogging and customer dissatisfaction. Tardiness costs are assumed to

be higher than earliness costs. For reasons of efficiency we prefer to have a small

number of setups, and we assume that setup costs have to be paid every time a setup

is needed. Our objective is to minimize the total costs. We assume that idle time

is allowed and that preemption is forbidden.

Note that setup costs are equal across all job types, tardiness costs are equal

across all job types, and earliness costs are equal across all job types. In any

dynamic environment there is a classical trade-off between efficiency on the one

hand and a timing aspect on the other hand. Due to the efficiency aspect jobs should

be clustered over a longer period of time, whereas the timing aspect desires to

produce the jobs as close as possible to the desired due dates, in order to meet due

dates and at the same time keeping the inventories low. The cost parameters used

in the simulation model are merely used as intermediate variables for both aspects

in the above mentioned trade-off and are not suggested to reflect real-life costs. The

setup cost parameter is used to reflect the need for efficiency, whereas the earliness

and tardiness cost parameters are used for the timing aspect. Choosing them

independent from jobs or job types is sufficient for controlling the above mentioned

trade-off.

The sequel of this paper is organized as follows. In section 2 an overview

of related problems in the literature is presented. In section 3 general properties of

the static scheduling are discussed and it is described how this problem may be

3

solved optimally. Since solving the problem optimally can take a long computation

time if the set of jobs to be scheduled is large, in the simulations a heuristic

scheduling procedure has to be used. In section 4 various heuristic scheduling

procedures are described. They are tested in section 5, where also the (hybrid)

scheduling procedure is described which is used in the simulations.

2. Literature overview

Scheduling problems which contain some of the characteristics described above are

scattered throughout the literature. Gupta and Kyparisis[1987] review a number of

important ones. Baker and Scudder[1990] present a review on scheduling problems

with earliness and tardiness penalties. They discern two major classes of problems.

The first class involves a common due date for all jobs. This problem is in the

second class, which permits the due dates to differ. Ow and Morton[1989] examine

the problem of minimizing total earliness and tardiness costs and present some

interesting heuristic methods. However, they do not allow idle time, which is

inconsistent with the earliness/tardiness criterion (Baker and Scudder[1990]). Garey

et al.[1988] also consider the problem of minimizing the total earliness and tardiness,

and they do allow idle time. For problems with all tasks having the same length as

well as for problems with a fixed sequence they discuss efficient algorithms to find

an optimal solution.

As is recognized in Baker and Scudder[1990], the search for optimal

schedules may be decomposed in two sub-problems : finding a good job sequence

and scheduling inserted idle time. Fry et al.[1987] consider the problem of

minimizing weighted total earliness and tardiness. They present a method to

optimally insert idle time, and give empirical results for some heuristics. Yano and

Kim[1991] consider the problem of minimizing weighted earliness and tardiness.

They present a dynamic programming approach for inserting idle time. Furthermore,

they compare the solutions of a number of heuristic methods with the optimal

solutions, which are found by a Branch and Bound procedure. For the

earliness/tardiness problem with general sequence-dependent setup times

Coleman[1992] describes a mixed integer programming formulation.

4

Some papers address batch setup times: Zdrzalka[1991] considers a problem

with unit batch setup times and delivery times. The objective is to minimize the

maximum delivery time, which is equivalent with minimizing maximum lateness.

Monma and Potts[1989] consider the complexity of a number of scheduling

problems with batch setup times. For single machine problems they consider

maximum lateness, total weighted completion times and number of late jobs criteria.

The scheduling problem with batch setup times is related to the lot-sizing problem.

Potts and Van Wassenhove[1992] present a review on the integration of both. When

holding costs are assumed, the problem comes close to the problem as described

here. Woodruff and Spearman[1992] describe a tabu search method which basically

concerns this problem. However, instead of allowing jobs to be tardy, they use the

due dates as deadlines. The same holds for Jordan and Drexl[1994] who consider

a comparable problem. Since the problem can be interpreted as a scheduling problem

as well as a lot-sizing problem, they compare solution methods for both approaches.

They show that the solution methods which interpret the problem as a scheduling

problem are faster than the solution methods which interpret the problem as lot-

sizing problem.

The problem in this text combines earliness costs and tardiness costs with

batch setup times and, moreover, setup costs. As far as is known, no attention has

been given to this particular problem so far.

3. The problem

3.1 Formal description

The static scheduling problem can be described as follows : Given a set S,

containing m jobs which belong to F product families (F≤ m; S contains mf jobs

of family f). Each job Jfj (j∈{1..mf}, f ∈{1..F}) is characterized by its family f and

its due date dfj. For each family f (f∈{1..F}) a processing time pf and a setup time

sf are given. A setup is required every time we start to produce another family,

whereas no setup is needed between two products of the same family.

By any scheduleσ(S) for S a completion time Cfj,σ is determined for every

Jfj. From Cfj,σ earliness is defined as Efj,σ = max{0,dfj-Cfj,σ}, and tardiness is defined

5

as Tfj,σ = max{0,Cfj,σ-dfj}. In the remainder of this text the indexσ will be skipped

for all schedule-related variables (Efj, Tfj, Cfj and other), unless ambiguity could arise.

The objective is to find a scheduleσ(S) in which the total weighted costs, consisting

of earliness, tardiness and setup costs, are minimal. Thereby the earliness costs per

order per unit of time are denoted byα, the tardiness costs per order per unit of time

are denoted byβ, and the costs per setup are denoted byγ. A binary variableτfj is

used which is equal to 1 if a setup is needed before the production of job Jfj, and

which is equal to 0 otherwise. The total weighted costs thus are :

Idleness of the machine between the production of two jobs is permitted but

F

f 1

mf

j 1

α Efj β Tfj γ τfj

preemption of the production of a job is not, i.e. once we have started producing

a job, we must complete it without any further interruption.

3.2 Inserting idle time

Since this problem is a generalization of the problem considered in Garey et

al.[1988] (take F=m, sf=0, α=β=1, γ=0), we know that the problem is NP-hard.

However, given a fixed sequence we can optimally insert idle time: for a fixed

sequence setup costs are fixed, and for all jobs the processing time plus the possible

setup time is fixed. Therefore, for a fixed sequence the problem is equivalent to the

problem considered in Fry et al.[1987]. The linear programming formulation below

gives an optimal solution for inserting idle time in a fixed sequence of jobs. It is

due to Fry et al.[1987], but has been reformulated in terms of the notation used in

this text. Remark that instead of job-dependent earliness and tardiness costs, as in

Fry et al.[1987], equal penalties for all jobs are used here.

In this formulation the following notation is used : Consider a sequenceπ
of all jobs in S. Letπ[i] denote the ith job in the sequenceπ. Denote by qfj the sum

of processing time and, if necessary, setup time. For all job-related variables it holds

that if π[i]=Jfj then, for example, Efj can also be denoted by Eπ[i] . From any sequence

π(S) the scheduleσ(S) is obtained by optimally inserting idle time.

6

Linear programming to insert idle time (LPIT)

Minimize (LPIT 0)
m

i 1

αEπ[i] βTπ[i]

subject to Cπ[i] = Cπ[i-1] + qπ[i] + Iπ[i] ∀ i∈{1..m} (LPIT 1)

Tπ[i] - Eπ[i] = Cπ[i] - dπ[i] ∀ i∈{1..m} (LPIT 2)

Cπ[0] := 0 (LPIT 3)

Eπ[i] , Tπ[i] , Iπ[i] ≥ 0 ∀ i∈{1..m} (LPIT 4)

Equation (0) represents the sum of earliness and tardiness costs which has to be

minimized. In equation (1) the completion time of the ith job in π is computed by

adding the processing time qπ[i] and the idle time Iπ[i] to the completion time of the

(i-1)th job in π. A fictitious completion time Cπ[0] is set to 0 in equation (3). In

equation (2) earliness and tardiness are defined. By definition both are non-negative.

If the completion time Cfj is greater than the due date dfj then Tfj equals (Cfj - dfj)

and Efj equals zero. If the completion time Cfj is smaller than the due date dfj then

Efj equals (dfj - Cfj) and Tfj equals zero. Due to the minimization of the objective

function Efj and Tfj will never both be greater than zero. In this way Efj and Tfj will

always get their proper values. Equation (4), finally, ensures non-negativity.

For any sequenceπ(S) LPIT can be solved to get the optimally inserted idle time.

However, as is recognized by Fry et al.[1987] and others (eg. Yano and Kim[1991])

an easy-to-understand algorithm exists to insert idle time optimally. This algorithm

is, tailored to the particular problem, described in a number of versions, but the basic

idea for all versions is the same and is based on the following observation: If a job

is early the total costs may be decreased by right shifting this job4. For a job which

is tardy right shifting the job will increase the total costs. For a subset of jobs in

S for which no idle time is present between any two jobs of this subset, the net

result of a right shift is determined by comparing the sums of decreases and

increases.

4 Right shifting a job means that the completion time of the job is increased. Equally, left
shifting means that the completion time of a job is decreased.

7

Starting from the last job, the algorithm right shifts the jobs one by one,

until either their due date is met or another subset of jobs is met. If the net result

of further right shifting the new, enlarged, subset is positive, the whole subset is

right shifted until either again a new subset is met, or until the net result of right

shifting is changed (due to a job in the subset which meets its due date). If either

the due date of the job is met, or the net result of right shifting the set of jobs

becomes negative, the next job is taken, until all jobs have been done. The

implementation of this algorithm as it is used here is based on Fry et al.[1987].

3.3 Sequencing jobs within a family

For jobs within one family, which all have the same processing time, it will be

shown that it is always preferable to sequence them according to the earliest due

date rule. This result is comparable with the result in Garey et al.[1988], for

problems in which all tasks have the same length.

THEOREM 1

There is an optimal schedule in which, for all job types, jobs of the same job type

are sequenced according to non-decreasing due dates.

PROOF5:

For interchanging two jobs of the same job type we do not need to consider setup

costs or setup times. Therefore we can use a proof which is similar to the one used

in Garey et al.[1988].

Suppose we are given a schedule with job Jj and job Jt belonging to the same

job type, and job Jj being produced before job Jt while dj > dt. Possibly the start time

of job Jt is not equal to the completion time of job Jj, either because first a number

of other jobs have been scheduled, or because idle time has been inserted. Because

job Jj and job Jt have equal processing times (they belong to the same job type)

interchanging them leads to a feasible schedule.

For this situation (Jj precedes Jt, dj > dt), six cases can be distinguished,

5 For ease of presentation, the index f for the family is left out of the notation since all jobs
concern the same family.

8

namely both jobs early, i.e. dj>dt≥Ct>Cj (1), both jobs tardy, i.e. Ct>Cj≥dj>dt (2), and

four cases in which only job t is tardy, i.e. dj≥Ct≥dt≥Cj (3), dj≥Ct>Cj≥dt (4),

Ct≥dj≥Cj≥dt (5) and Ct≥dj>dt≥Cj (6). It can easily be checked that for the first two

cases the costs for the schedule with job Jj and job Jt interchanged are equal to the

costs of the original schedule, whereas for the other cases the costs for the schedule

with job Jj and job Jt interchanged are lower than the costs of the initial schedule.

So, by using this argument repetitively, starting from any schedule we can

always construct a schedule in which the jobs of the same job type are ordered

according to their due dates, and which has costs lower than or equal to the costs

of the original schedule. Since the ordering rule is transitive, this proves the

theorem.

Due to this theorem the number of sequences which have to be evaluated can be

reduced significantly. An upper bound on the number of sequences can be given by

m!/(Πmf!) : the number of sub-sequences with respect to family f (f∈{1..F}) is

restricted to 1 instead of mf!. This is an upperbound, because the single sub-sequence

for a family has to be partitioned in a number of batches. The feasible numbers of

batches per family are mutually dependent. For instance, for a situation with two

families it can not occur that family 1 consists of three batches, whereas family 2

consists of only one.

Still the number of potential sequences increases exponentially since a

(weak) lower bound can be obtained as . In this expression it is assumed
F 1

i 0

(F i)mF i

(without loss of generality) that m1≥m2≥...≥mF. The expression is exponential in the

(minimum) number of orders per family.

The result from the theorem in previous section can slightly be generalized to a

problem in which the earliness costs and tardiness costs are job-dependent, ie.α and

β are replaced byαfj andβfj . The processing times are still assumed to be equal for

all jobs within a family. For this generalized problem it can be shown that ifαfj≤αft

andβfj≥βft for all j,t with dfj≤dft then there is always an optimal sequence for which

the jobs are ordered by a non-decreasing due date order.

9

A further generalization allows the processing times pf to be job-dependent

(pfj for Jfj) too. When considering the sequencing of jobs within one family, this

leads to a problem which is comparable with the problem considered in Fry et

al.[1987]. The comparison of (adjacent) jobs within one family is now comparable

to the comparison of two (adjacent) jobs in Fry et al.[1987], Yano and Kim[1991]

or Garey et al.[1988]. Therefore, the dominance results from these articles are valid

for orders within the same family in the generalized problem. We may also conclude

that for this last generalized problem the sequencing of orders within one family is

already NP-hard.

3.4 Finding the optimal solution

We have used two methods for finding the optimal solution of a given instance of

the problem. Because of Theorem 1, it is assumed that for all product families f

(f∈{1..F}) the jobs Jfj (j∈{1..mf}) are numbered such that they are ordered according

to their due dates. First we present a mixed integer programming formulation which

can be solved by the use of commercially available software for generic mixed

integer programming formulations. Next, we describe a branch and bound method

which uses the structure of this particular problem. This branch and bound procedure

has been implemented in Turbo Pascal® 6.0.

Mixed integer programming formulation for the static scheduling problem (IPS)

(Note : In equation 6, when summing over h and t, we have h∈{1..F}, h≠f and

t∈{1..mh}.)

Minimize (IPS 0)
F

f 1

mf

j 1

α Efj β Tfj γ τfj

subject to

Tfj - Efj = Cfj - dfj f∈{1..F}, j ∈{1..mf} (IPS 1)

Cf1 ≥ pf + sf f∈{1..F} (IPS 2)

Cfj ≥ Cfj-1 + pf f∈{1..F}, j ∈{2..mf} (IPS 3)

Cfj ≤ Cht - ph - sh + Mφfjht f∈{1..F}, h∈{1..F}, f ≠h,

j∈{1..mf}, t∈{1..mh} (IPS 4)

10

φfjht + φhtfj = 1 f∈{1..F-1}, h∈{f+1..F},

j∈{1,..mf}, t∈{1..mh} (IPS 5)

afj = Σh≠fΣt φfjht f∈{1..F}, j ∈{1..mf} (IPS 6)

τfj ≥ (afj - afj-1)/N f∈{1..F}, j ∈{2..mf} (IPS 7a)

τf1 = 1 f∈{1..F} (IPS 7b)

Tfj, Efj, Cfj, afj ≥ 0 ; φfjht, τfj ∈ {0,1} (IPS 8)

The basic idea behind this formulation is comparable to the formulation LPIT above,

used to optimally insert idle time. It is extended, since the job sequence is not fixed

anymore. The job is now determined by the zero-one variablesφfjht, which indicate

the precedence relations between jobs. Equations (6) and (7) have been added to

determine the number of required setups.

In the objective function (0) the sum over all jobs Jfj of the costs of

earliness, tardiness and setup is minimized. Equation (1) is equal to (LPIT 2) and

determines earliness and tardiness. The inequalities (2) and (3) impose some

restrictions on the completion times due to the completion times of other jobs of the

same type. Further, if job Jfj is produced before job Jht (inequalities (4),φfjht=0) then

the completion time of Jfj must be smaller than the completion time of job Jht minus

the processing time for job Jht and minus the setup time for job Jht. If job Jfj is

produced after job Jht (φfjht=1) then the completion time of job Jfj is not restricted

by the completion time of job Jht. Equation (5) expresses that either job Jfj is

produced before job Jht or that job Jht is produced before job Jfj. Note that the number

of variables and constraints can be reduced by integrating equation (5) into the

inequalities (4).

For any job Jfj, afj (in equation (6)) is the total number of jobs not of family

f, that precede job Jfj. If the number of predecessors of another family is not equal

for jobs Jfj and Jfj-1, then before job Jfj is produced a setup is required. In that case

the zero-one variableτfj is restricted, by inequalities (7a), to a value greater then

zero, soτfj=1. If the number of predecessors is equal for Jfj and Jfj-1 thenτfj is not

restricted, and because of the minimization of the objective function it will beτfj=0.

Obviouslyτf1=1 for f∈{1..F} (equation (7b)). Again, the number of variables and

constraints may be decreased by integrating equation (6) into the inequalities (7).

11

It is easy to see that for problems with no setup costs (γ=0), equations (6)

and (7) can be skipped. Since this leads to a reduction of the number of zero-one

variables, solving these problems takes considerably less time than solving the prob-

lems with setup costs (γ>0).

The branch and bound method which has been used is comparable with the one

described in Yano and Kim[1991]. They shortly describe a backward sequencing

procedure (see also Hoogeveen and Van de Velde[1992]) for the problem without

setup costs and setup times. For this problem, with setup costs and setup times, the

same approach can be followed. Assumes that the root node of the search tree is at

level 0. Then, for a set of m jobs, any node at level i (i∈(0..m)) in the search tree

corresponds to a partial sequence which consists of the jobs in the final i positions.

Due to Theorem 1 at any node only one job per family has to be considered as the

next job to be added to the partial sequence.

A lower bound on the total costs for a node, at level i (i∈(0..m)) say, can

be obtained as the sum of two partial lower bounds. The first partial lower bound

is a lower bound on the costs for the i jobs in the partial sequence. The second

partial lower bound is a lower bound on the costs for the (m-i) jobs not in the partial

sequence. For the i jobs in the partial sequence the first partial lower bound can be

obtained by computing the earliest possible starting time for these jobs. The earliest

possible starting time can be obtained from the sum of the production times of the

(m-i) jobs not in the partial sequence, increased by a minimum of setup time which

is surely needed. Starting from this earliest possible starting time idle time can be

inserted optimally. The costs of this partial schedule are a lower bound on the costs

of the partial sequence when the full sequence is completed.

The second partial lower bound, for the (m-i) jobs not in the partial

sequence, is computed as the corresponding minimum of setup costs which is sure

to be incurred. As this lower bound is weak, a breadth first search strategy would

lead to a high need for computer memory. Therefore, a depth first search strategy

is used.

Despite its simplicity, the branch and bound method appears to be faster than

solving the Mixed Integer Programming formulation by commercially available

12

software (see section 5).

4. Heuristic methods

Because the static scheduling problem is NP-hard, solving it optimally will become

impossible for large instances, at least within a reasonable time. Since this problem

has to be solved frequently in the simulation model a fast procedure is needed.

Therefore, heuristic methods have to be exploited. In general, solutions produced

by heuristic methods are not optimal. The goal here is to develop fast heuristics

which on average produce results close to the optimum. In this section, a description

of three heuristic methods for the solution of the static scheduling problem is given.

Because of Theorem 1 all methods are constructed such that the solution found

satisfies the condition that jobs of the same type are sequenced according to non-

decreasing due dates.

Three methods build up a sequence by subsequently adding jobs, whereafter

a schedule is created by optimally inserting idle time. These methods are the earliest

due date rule, the clustered types/ shortest processing time rule, and the cheapest

insertion rule. The fourth method is a local optimization method, used to improve

the results of the above mentioned three methods.

4.1 The earliest due date procedure (EDD)

In this scheduling procedure, first a sequence is constructed by ordering all jobs,

independent of their family, according to non-decreasing due dates. From this

sequence a schedule is obtained by optimally inserting idle time. If demand for

capacity is low, this procedure gives good results with respect to earliness and

tardiness costs. However, when constructing a sequence it disregards setup costs.

If the demand for capacity is low, efficiency is less important, and although costs

are associated with the large number of setups, the due date performance (measured

by earliness and tardiness costs) is very good in those cases. If efficiency is

indispensable, due to high demand for capacity, the procedure can be expected to

give bad results, due to the indirect effect of bad efficiency on the tardiness.

13

4.2 The clustered types/shortest processing time procedure (SPT)

Instead of focussing on the earliness and tardiness costs this procedure minimizes

the number of setups. First sub-sequences are constructed by combining all jobs of

the same type (using an EDD order because of Theorem 1). Then the sub-sequences

are ordered according to increasing pf, the production time for a single job of family

f. The schedule is obtained from this sequence by optimally inserting idle time.

This procedure minimizes the number of setups, disregarding the earliness

and the tardiness costs. In contrast with the EDD procedure, this procedure can be

expected to perform well when demand for capacity is high. In those cases it is

highly necessary to be efficient. If the demand for capacity is low, however,

efficiency is less needed and the SPT procedure can be expected to show a bad

performance, since the earliness and tardiness costs will be high.

4.3 The cheapest insertion procedure (CI)

The procedure consists of two steps. The first step is an initial step in which the first

job is added to the schedule. In the second, iterative, step the other jobs are added

one by one.

In the initial step compute for all jobs the costs of scheduling just this one

job. Choose the job which adds minimum costs. In the second step compute for all

remaining jobs the best position to be inserted at in the current schedule. Choose

the job which adds minimum insertion costs, and insert it at the computed best

position. In both steps, in case of ties any job may be chosen. In our implementation,

we have chosen the one with the smallest index. Repeat the second step until all jobs

are scheduled.

In contrast with the previous four procedures, which construct a sequence

without making explicit calculations, this procedure does calculate the costs of the

schedule. Thereby it computes earliness and tardiness costs as well as setup costs.

It is one variant of a number of so-called insertion procedures, which all construct

a schedule by inserting jobs one by one in the schedule at the most profitable place.

In this case the choice for a particular job is made by taking the job which allows

for the cheapest insertion.

14

4.4 Local optimization procedure (LOC)

In general, local optimization methods, also called local search methods, try to

improve on an existing schedule. This is done by defining a neighborhood relation

among schedules. Two schedules are neighbors if they can be obtained from each

other by carrying out exactly one operation. As an example of an operation consider

the exchange of two adjacent jobs. An algorithm starts with any feasible schedule

and searches among all neighbors of the schedule for the best neighbor (in terms

of the value of the objective function). If a better neighbor is found, the current

schedule is replaced by this neighbor. The procedure is repeated until a schedule is

obtained which only has neighbors with worse values of the objective function.

We have used a local optimization method in which the neighborhood

relation is defined by two operations. The first operation is a pairwise interchange

between two adjacent jobs, see Figure 1(a+b). For the second operation we consider

a schedule as an ordered number of batches. This operation consists of a backward

part and a forward part. Both parts are leading to a neighbor. The backward (for-

ward) part of this operation moves the first (last) job of a batch to the last (first)

position in the previous (next) batch of the same type. See Figure 1(a+c). As

mentioned, the three constructive heuristic procedures from sections 4.1, 4.2 and 4.3

are used to obtain a starting schedule.

In the simulation models a combination of these three heuristic procedures,

all improved by local optimization, is used. The scheduling procedure in the

simulation procedure simply computes all three, after which the best schedule is

picked. The heuristic procedures used in this combination can be seen as

complementary: The EDD procedure considers the earliness and tardiness costs only,

while the SPT procedure minimizes the setups costs, but does not consider earliness

and tardiness. Although an SPT schedule is often very bad, especially in those cases

where EDD may not do well it often finds good solutions. The CI procedure

considers the whole cost function at once.

5. Results

For a number of representative examples the solutions of the heuristic procedures

15

in section 4 can be compared with the optimal solutions. Thus, insight can be

Figure 1. Neighborhood relation.

obtained in the performance of both the individual heuristic methods and the

combined heuristic method used in the simulation model. Either with the mixed

integer programming formulation or with the problem specific branch and bound

method the optimal schedule is computed for a number of instances. The results are

then compared to the results of the heuristic methods.

Problems are tested for a number of combinations of the parameters F and

m. For all problems the processing times pf (f∈{1..F}) have been chosen randomly

from the integer uniform distribution between 1 and 6. All setup times sf (f∈{1..F})

have been fixed at the value 2. Given the processing and setup times, the due dates

have been determined randomly, using a Poisson distribution with the arrival

intensity parameterλ=1/θ*(p̄+s̄), where ¯p is the average of the processing times and

s̄ is the average of the setup times over al families.

This way the average time between the due dates is related to the average

time needed for setup and production of one job. The parameterθ was used to

distinguish between problems with a heavy load (θ=0.8) and problems with a small

load (θ=1.5). For all combinations of F and m we generated 20 problems withθ=0.8

and 20 problemsθ=1.5. All jobs were randomly assigned to one of the families, all

16

families having a chance of 1/F for being picked. For all problems four cost settings

are used. For all settings the earliness costs are fixed at valueα=1, whereas the

tardiness costsβ and the setup costsγ are varied. The four settings are

(α,β,γ)=(1,8,0), (α,β,γ)=(1,8,20), (α,β,γ)=(1,8,40) and (α,β,γ)= (1,15,20).

For all combinations of F,m andθ, for all costs settings, we computed the

average over the 20 problems of the relative deviations from the optimum value.

Given the objective value x of the heuristic solution and the optimal value opt this

was computed as

Comparing the computation times, the branch and bound method appears to be much

faster solving the mixed integer programming formulation by using mixed integer

programming software6. Using a personal computer (486DX at 40Mhz) for the

mixed integer programming formulation the smaller problems (m≤8) were solved

within a few seconds and almost all problems were solved within 2 minutes. The

branch and bound method solved these problems in less than half a second.

For some of the larger problems (m≥12) the computation times became far

too large using the mixed integer programming formulation. By computing only the

solutions forγ=0 for these problems we could delete equations 6 and 7, and the

variables afj andτfj from the mixed integer programming formulation in section 3.

Because of this, the number of zero-one variables was reduced, which led to a severe

reduction of the computation times. However, the branch and bound method could

easily solve all these larger problems. For problems of size F=4, m=16, including

setup costs, the average computation time was about 20 seconds.

In the appendix (see page 14) the results are presented. As can be seen, in

all cases under consideration the combination of the earliest due date method with

the local optimization method (EDD-LOC) performs good. This is in contrast with

clustered type/shortest processing time method, which on average gives bad results,

even after improvement with the local optimization method (SPT-LOC). The

6 We used the XA software package from Sunset Software Technology.

17

cheapest insertion method (CI) appears to give good results all by itself. However,

the improvement by local optimization is modest, compared to the improvements

of the solutions found by the earliest due date method. Anyhow, local optimization

seems to perform quite well starting from any method.

Comparing the results for the different costs settings, it appears that the earli-

ness/ tardiness oriented EDD method performs better whenγ is smaller. This corre-

sponds to what may be expected. The results of the clustered types/shortest

processing time method (SPT), which is oriented on setup costs, also correspond to

the expectations. Obviously, withγ=0 the results are very poor. Asγ grows the

results get better. Still, however, the results for this method are moderate. With

respect to the different cost settings, the power of the local optimization method is

shown once more. The effects of varying the cost parameters disappear after using

the local optimization method.

Note that the moderate results of the clustered types/shortest processing time

rule can not be improved within reasonable margins by the local optimization

method. The main reason for this is that the local optimization method has

difficulties to break up a large batch into two smaller ones, since it needs more than

one operation to do so.

In the last row (BOA) we show the results when taking for all cases the best

solution from all heuristic methods. This is the heuristic method used to create the

schedules in the simulation model. From this we learn that this hybrid method almost

always provides a solution which is within 2% of the optimal solution, which is

satisfying.

6. Discussion

This paper has described a scheduling problem which combines earliness costs,

tardiness costs and both setup times and setup costs. Two methods for finding the

optimal solution of this scheduling problem have been presented and a number of

heuristic methods were described and tested for a number of different cost settings.

Using a simple local optimization method the results obtained are almost always

within a few percent of the optimum. Also, it appears that in almost all cases at least

18

one of the heuristic methods produces the optimal solution. Therefore, taking a

combination of a few heuristic methods, that are complementary by nature, may

yield near-optimal solutions for all cases.

With respect to further research two main suggestions can be given. The first

suggestion concerns the generalized static scheduling problem. In the most general

formulation of the problem both the processing times and the costs parameters are

allowed to vary per job. How should the mixed integer programming formulation

and the branch and bound method be adapted in order to find optimal solutions for

this generalized problem? It is no longer optimal to choose a due date ordering

within the family. Furthermore, one may ask what a good heuristic method looks

like. An interesting suggestion may be to stick to a due date ordering in a first stage,

using heuristics like the ones presented here, and thereafter optimize the ordering

within the batches of jobs of the same family.

The second suggestion for further research concerns the behavior of the

proposed scheduling heuristics in a more dynamic setting. In practice the set of jobs

to be scheduled changes continuously. How should we cope with the arrival of new

jobs? Do they need to be scheduled immediately or is it sufficient to reschedule only

periodically? In the last case, what should be the length of the rescheduling period?

One may also ask what happens when the set of jobs to be scheduled grows larger

and larger. Do we still need to schedule all jobs at once, or is it possible to restrict

our horizon, and use a rolling schedule. If so, how large should we take our horizon

and what will be the review period?

19

References

Baker, K.R. & G.D. Scudder (1990), Sequencing with earliness and tardiness

penalties : A review, Operations research, vol. 38, no. 1.

Coleman, B.J. (1992), Technical note : A simple model for optimizing the single

machine early/tardy problem with sequence-dependent setups, Production and

operations management, vol. 1, no. 2, pp. 225-228.

Fry, T.D., R.D. Armstrong & J.H. Blackstone (1987), Minimizing weighted absolute

deviation in single machine scheduling, IIE transactions, vol. 19, no. 4.

Garey, M.R., R.E. Tarjan & G.T. Wilfong (1988), One processor scheduling with

symmetric earliness and tardiness penalties, Mathematics of operations research, vol.

13, no. 2.

Gupta, S.K. & J. Kyparisis (1987), Single machine scheduling research, Omega, vol.

15, no. 3.

Hoogeveen, J.A. & S.L. van de Velde (1992), Minimizing total inventory cost on

a single machine in just-in-time manufacturing, In : J.A. Hoogeveen, Single-Machine

bicriteria scheduling, Ph.D. thesis, CWI, Amsterdam, the Netherlands.

Jordan, C. & A. Drexl (1994), Lotsizing and scheduling by batch sequencing,

Manuskripte aus den Instituten for Betriebswirtschafslehre der Universität Kiel, nr.

343.

Monma, C.L. & C.N. Potts (1989), On the complexity of scheduling with batch

setup times, Operations research, vol. 37, no. 5.

Ow, P.S. & T.E. Morton (1989), The single machine early/tardy problem,

Management Science, Vol. 35, No. 2.

20

Potts, C.N. & L.N. van Wassenhove (1992), Integrating scheduling with batching

and lot-sizing: a review of algorithms and complexity, Journal of the operations

research society, vol. 43, no. 5.

Ten Kate, H.A. (1994), Towards a better understanding of order acceptance,

International journal of production economics, vol. 37, pp. 139-152.

Woodruff, D.L. & M.L. Spearman (1992), Sequencing and batching for two classes

of jobs with deadlines and setup times, Production and operations management, vol.

1, no. 1.

Yano, C.A. & Y.-D. Kim (1991), Algorithms for a class of single-machine weighted

tardiness and earliness problems, European journal of operational research, vol. 52.

Zdrzalka, S. (1991), Approximation algorithms for single-machine sequencing with

delivery times and unit batch setup times, European journal of operational research,

vol. 51.

21

Appendix 1 Test results for the static scheduling problem.
Average relative deviations (%) for F=2, m=8.

Procedure θ=0.8

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 21.48 26.25 36.47 27.00

CI 4.92 12.24 14.38 14.26

SPT 207.49 40.10 25.02 46.25

EDD-LOC 1.18 2.39 1.03 1.09

CI-LOC 1.02 1.05 2.18 0.90

SPT-LOC 5.16 1.03 2.74 1.53

BOA 0.00 0.00 0.00 0.00

Procedure θ=1.5

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 8.40 29.90 42.23 30.85

CI 2.03 9.68 9.27 10.97

SPT 1989.47 138.04 69.63 190.83

EDD-LOC 0.03 0.42 0.85 0.36

CI-LOC 0.00 0.40 2.85 0.31

SPT-LOC 15.73 0.91 2.03 0.74

BOA 0.00 0.40 0.00 0.31

22

Average relative deviations (%) for F=2, m=16.

Procedure θ=0.8

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 57.38 68.85 82.93 70.56

CI 16.75 23.23 20.86 18.95

SPT 1008.46 188.72 114.50 233.36

EDD-LOC 0.62 1.95 3.83 1.83

CI-LOC 1.02 1.24 5.45 1.38

SPT-LOC 38.83 17.86 9.87 8.84

BOA 0.00 0.00 1.35 0.00

Procedure θ=1.5

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 22.76 35.57 52.16 36.44

CI 2.44 12.87 20.21 13.45

SPT 7950.76 497.20 284.11 601.32

EDD-LOC 4.54 1.39 1.54 2.11

CI-LOC 0.89 2.05 5.57 2.01

ESP-LOC 4.54 1.39 1.54 2.49

BOA 0.00 0.24 0.00 0.24

23

Average relative deviations (%) for F=3, m=6.

Procedure θ=0.8

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 24.67 26.98 30.61 27.44

CI 3.51 5.04 8.50 5.36

SPT 465.91 71.67 43.53 95.73

EDD-LOC 0.34 0.00 0.00 0.00

CI-LOC 0.00 0.19 0.18 0.05

SPT-LOC 2.67 3.42 3.20 3.13

BOA 0.00 0.00 0.00 0.00

Procedure θ=1.5

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 11.05 14.37 19.61 14.35

CI 3.06 4.85 3.27 8.29

SPT 870.86 77.38 37.07 99.97

EDD-LOC 0.60 0.21 0.86 1.25

CI-LOC 0.74 1.70 0.44 1.14

SPT-LOC 16.40 2.70 1.49 2.55

BOA 0.60 0.00 0.00 0.00

24

Average relative deviations (%) for F=3, m=12.

Procedure θ=0.8

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 77.43 70.69 74.83 80.09

CI 31.45 20.16 17.28 33.44

SPT 383.06 107.57 65.00 139.25

EDD-LOC 5.31 2.88 3.46 1.65

CI-LOC 6.25 6.52 5.59 7.96

SPT-LOC 23.06 17.74 17.85 21.43

BOA 0.34 0.93 0.92 0.94

Procedure θ=1.5

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 13.96 24.26 35.39 24.66

CI 1.66 15.34 16.01 15.21

SPT 2797.81 309.90 176.75 399.68

EDD-LOC 0.87 1.79 3.90 0.93

CI-LOC 0.00 4.88 7.81 5.06

SPT-LOC 65.81 12.76 7.54 13.84

BOA 0.00 0.09 1.36 0.09

25

Average relative deviations (%) for F=4, m=8.

Procedure θ=0.8

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 33.22 33.71 38.11 35.60

CI 13.55 8.77 8.63 11.82

SPT 473.86 67.19 41.69 87.94

EDD-LOC 0.15 0.12 1.25 0.78

CI-LOC 2.71 2.57 3.09 3.09

SPT-LOC 17.95 3.91 2.66 4.87

BOA 0.00 0.07 0.30 0.64

Procedure θ=1.5

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 12.39 15.12 23.89 14.92

CI 3.62 7.52 5.41 7.75

SPT 2630.89 147.71 85.07 175.42

EDD-LOC 1.19 0.89 1.11 0.66

CI-LOC 2.47 2.39 1.01 2.81

SPT-LOC 4.70 6.54 7.66 7.22

BOA 0.67 0.16 0.41 0.00

26

Average relative deviations (%) for F=4, m=16.

Procedure θ=0.8

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 68.26 56.50 61.82 66.19

CI 28.01 17.91 24.81 21.66

SPT 633.21 163.61 99.48 209.40

EDD-LOC 4.64 3.29 4.29 4.11

CI-LOC 1.61 7.13 5.59 7.43

SPT-LOC 39.02 8.55 8.59 20.71

BOA 1.36 1.48 1.59 2.16

Procedure θ=1.5

α,β,γ
1,8,0

α,β,γ
1,8,20

α,β,γ
1,8,40

α,β,γ
1,15,20

EDD 19.86 22.38 31.83 24.37

CI 4.71 14.61 20.07 15.72

SPT 6675.40 274.13 150.58 321.89

EDD-LOC 1.84 0.69 2.55 0.78

CI-LOC 1.75 6.07 10.15 5.69

SPT-LOC 231.35 47.40 27.59 56.30

BOA 0.93 0.53 1.28 0.66

27

