Алгоритмы решения проблем $1 \mid\mid \sum T_j$ и четно-нечетного разбиения

Александр А. Лазарев a , Александр А. Кварацхелия a , Евгений Р. Гафаров a

 a Kazan State University, E-mail: Alexandr. Lazarev@ksu.ru

Рассматриваются две классические комбинаторные проблемы: минимизация суммарного запаздывания для одного прибора $(1 \mid \mid \sum T_j)$ и проблема четно-нечетного разбиения (ЧНР). Проблема ЧНР является NP-полной в обычном смысле, известна схема полиномиального сведения примеров проблемы ЧНР к каноническим примерам проблемы $1 \mid \mid \sum T_j$ [1].

Разработаны алгоритмы решения частного случая проблемы $1 \mid \mid \sum T_j$ когда параметры требований удовлетворяют условиям $p_1 \geq p_2 \geq \ldots \geq p_n, d_1 \leq d_2 \leq \ldots \leq d_n(1)$ с трудоемкостью $O(n^2 \sum p_j)$ операций [2]. Среди предложенных алгоритмов выделяется Алгоритм B-1 решения частного случая, когда в дополнение к (1) выполняется $d_n - d_1 \leq p_n$. Алгоритм B-1 основан на идее метода динамического программирования и выполняет построение кусочно-линейных функций $F_k(t)$ для целых значений $t \in [0, d_n]$, где $F_k(t)$ является оптимальным значением целевой функции примера с множеством требований $\{k, \ldots, n\}$ и директивными сроками $d_j(t) = d_j - d_n + t$.

Получены следующие результаты:

- (a) Алгоритм B-1 строит оптимальное расписание для канонических примеров;
- (b) Разработан Алгоритм B-1-модифицированный, который строит функции $F_k(t)$ путем перебора точек "излома" данных функций. Трудоемкость данного алгоритма полиномиальным образом зависит от количества этих точек;
- (c) Проведены экспериментальные исследования, по результатам которых, количество точек "излома" функций для примеров случая (1) не превышает n^3 . Выделены множества "трудоемких" канонических примеров, для которых трудоемкость алгоритма растет экспоненциальным образом. Предложены методы сведения данных примеров к менее трудоемким.

Список литературы

- [1] J. Du and J. Y.-T. Leung Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res., 15 (1990), 483-495.
- [2] A. Lazarev, A. Kvaratskhelia, A. Tchernykh (2004). Solution algorithms for the total tardiness scheduling problem on a single machine, Workshop Proceedings of the ENC'04 International Conference (2004), 474-480.