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Abstract

This paper reviews research on the total tardiness (TT) and total weighted tardiness (TWT) problems. Heuristic

methods and optimizing techniques are surveyed for both types of problems in the single-machine environment.

Complexity theory related to these problems is also discussed. Some extensions of the TT and TWT problems are given

for multi-machine environments.
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1. Introduction

In the area of scheduling, two of the most
researched problems are the single-machine total
(mean) tardiness (TT) and total (mean) weighted
tardiness (TWT) problems. Although the first
research on the TT problem was done as early as
1961, the original problem and its weighted
version remain challenging topics of ongoing
research. In 1990, an excellent survey of research
on the weighted tardiness problem was provided
by Abdul-Razaq et al. (1990). This review was
good and extensive, but it dealt only with the

weighted tardiness problem in the single-machine
system. The most recent survey was done by
Koulamas (1994); however, reviewed the research
on the TT problem only.

Although the papers by Abdul-Razaq et al.
(1990) and Koulamas (1994) were of high quality,
neither explored the relationship between the TT
and TWT problems. However, during the past
three decades, these two problems have become
intertwined, with research on one of the problems
encouraging additional research on the other
problem. In fact, a number of researchers have
considered solutions to the two problems within
the same paper. Therefore, we feel it is relevant to
review the literature on both problems simulta-
neously, especially since no researcher has done so
recently. In addition, we present a survey of
extensions of these problems to multi-machine
environments.
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2. The problems

This paper reviews research on just two pro-
blems, namely, the Total Tardiness problem and
the Total Weighted Tardiness problem; we will call
them the TT problem and the TWT problem,
respectively. Since mean tardiness and TT are
different from one another only by a multiplicative
constant, the review of research on mean tardiness
is also included here. To define these two
problems, we will borrow the assumptions and
terminology used by Conway et al. (1967). In the
single-machine environment, we have n jobs,
1; 2;y; n; all ready at time 0, to be processed on
a single machine which is never idle. No pre-
emption of jobs is allowed. A job j is defined by its
processing time pj (which includes the set-up time
of the job j), and its due date dj : The single-
machine Total Tardiness problem requires mini-
mizing the total tardiness T such that

T ¼
Xn

j¼1

Tj ;

where, for the processing sequence (1; 2;y; n), Tj ;
the tardiness of job j; is defined as

Tj ¼ max 0;
Xj

i¼1

pi � dj

 !
:

Again, if wj represents the weight of job j; then the
single-machine TWT problem minimizes T ; where

T ¼
Xn

j¼1

wjTj

and where Tj is the same as above. The mathe-
matical expressions for the TT and the TWT
problems are more complex in multi-machine
systems.

The material reviewed in this paper is organized
in the following way. First, optimizing techniques
for the TT problem are reviewed, followed by a
survey of optimizing methods for the TWT
problems that are presented in the literature. This
is followed by the presentation of some extensions
of the both TT and TWT problems in multi-
machine environments. Next, heuristic methods
available for the TT and TWT problems are
discussed. We then discuss the complexity theory

related to the combinatorial optimization pro-
blems and also mention how complex the TT and
TWT problems are in terms of this theory. Finally,
we conclude with some suggestions for future
research.

3. Optimizing techniques: Single-machine TT

problems

Most of the optimizing techniques developed to
solve the TT problem used branch-and-bound or
dynamic programming as the basic computational
vehicle. Also, a few researchers used a combina-
tion of these two implicit enumeration techniques,
whereas other researchers have proposed methods
which do not use any specific controlled enumera-
tion methodology.

Two of the earliest optimizing techniques for the
TT problem employed the branch and bound
method developed by Schild and Fredman (1961)
and the dynamic programming method developed
by Held and Karp (1962). Although these two
controlled enumeration approaches represent a
significant improvement over exhaustive search,
they are still extremely laborious and are applic-
able only to relatively small problems.

Lawler (1964) presented a dynamic program-
ming formulation for the TT problem. Although
more efficient Oðn2nÞ than explicit enumeration,
the method was ‘‘computationally infeasible for
even modest sized problems’’ in the early 1960s
(p. 302). In the same paper, for the linear penalty
function (TWT), Lawler presented an LP formula-
tion requiring n þ 2T constraints where

T ¼
Xn

j¼1

pj :

It was shown that it is possible to arrive at a much
smaller mixed integer linear programming formu-
lation requiring only 2n constraints, 3n continuous
variables and nðn21Þ=2 021 variables.

Elmaghraby (1968) presented a network model
which was somewhat equivalent to the earlier
dynamic programming formulations. The cost
minimization objective function was changed to a
shortest route problem. Elmaghraby (1968) also
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showed how a branch and bound method can be
applied to substantially reduce the required
computational time compared to the dynamic
programming method. Elmaghraby (1968) did
not report any computational experience but
Shwimer (1972) later noted that the six step
method of Elmaghraby (1968) would be difficult
to program efficiently on a computer.

A good theoretical development for the TT
problem was done by Emmons (1969) who
developed some relationships among the job
variables pj and dj : By exploiting these relation-
ships, the size of most problems can be reduced
considerably. Emmons (1969) developed three
basic theorems and a good number of corollaries
relating job variables and used them to locate as
many jobs as possible at the beginning and at the
end of an optimal sequence. At the end of
the paper, Emmons (1969) extended his results to
the general criterion of the sum of identical,
convex, non-decreasing functions of job tardiness
(TWT) and then proposed an efficient algorithm
for the same problem.

Emmons (1969) did not computerize his algo-
rithm nor did he compare his work with any other
procedure. Although his branching technique can
be improved by some implicit enumeration meth-
od, Emmons (1969) was the first to explore the
relationships among job variables to reduce the
size of the problem. This approach was later
adopted by many researchers to construct partial
optimal sequences using the three theorems and
then applying an implicit enumeration scheme for
the remaining unsequenced jobs. After Emmons,
some extensions to his theoretical results were
made by Fisher (1976) and Rinnooy et al. (1975);
however, these extensions were minor compared to
the monumental work of Emmons.

The next optimizing technique was devised by
Srinivasan (1971) who called his method a ‘‘three
phase hybrid algorithm’’. The first two phases of
this algorithm were used, as in Emmons (1969), to
locate as many jobs as possible in the beginning
and the end of the optimal sequence. Phase III
then arranged the remaining jobs optimally using a
modified dynamic programming algorithm.

Another branch-and-bound algorithm was
developed by Shwimer (1972) to minimize total

penalty cost due to job tardiness. Computational
results were reported in the case of linear penalty
functions and the modifications which permit
treatment of non-linear functions were also
described. Shwimer (1972) suggested the use of
heuristics to reduce branching at the early stages of
the search and emphasized the need for better
initial bounds.

One branch-and-bound approach was proposed
by Rinnooy Kan et al. (1975) who made some
minor extensions to Emmons’ (1969) results. Their
algorithm was employed initially to solve the TWT
problem and then to solve the TT problem as a
special case thereof. They observed that the lack of
structure which is typical of most combinatorial
optimization problems is more pronounced for the
TWT problem than for the TT problem. They
suggested that looking into the effects of inter-
changing more than two jobs at a time may be
worthwhile to determine precedence relation-
ships among some jobs. One of the important
observations they had was as follows: very
sharp lower bounds are needed in the earlier
stages of the search tree, whereas, simpler
lower bounds could be more effective at latter
stages.

Another branch-and-bound algorithm for the
TT problem was presented by Fisher (1976) whose
algorithm uses a ‘‘dual problem to generate a good
feasible solution to start with, and an extremely
sharp lower bound to the optimal solution’’ (p.
229). The author generated a Lagrangian problem
which was subsequently used to generate the
lower bound. Computational results for 50 pro-
blems were reported. The author developed some
theoretical results which were used to reduce
the number of enumerations at the branching
stage. It was claimed that these theoretical
findings contain the results of Emmons (1969)
on the TT problem with some minor extensions.

The next branch-and-bound algorithm was
devised by Picard and Queyranne (1978), who
developed an algorithm for the well known
traveling salesman problem (TSP), of which two
special cases are the TT and TWT problems. The
computational results for both the TT and TWT
problems are reported, but no comparisons were
made with existing methods.
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Another solution for the TT problem, called the
‘‘chain algorithm’’, developed by Baker and
Schrage (1978), used a dynamic programming
scheme along with Emmons’ (1969) results. Their
technique was compared to the method developed
by Rinnooy Kan et al. (1975) and was found to be
much superior in terms of CPU time.

One of the best methods for the TT problem was
devised by Schrage and Baker (1978) who made
skillful use of the dynamic programming techni-
que. The algorithm was compared computation-
ally with those of Kan et al. (1975), Fisher (1976),
Baker and Schrage (1978), Picard and Queyranne
(1978). It was found that the algorithm of Schrage
and Baker (1978) was by far the most efficient in
terms of CPU time. In a study by Kao and
Queyranne (1982), it was observed that a more
recent dynamic programming algorithm of Lawler
(1979) was superior to the DP algorithm of
Schrage and Baker in terms of CPU time.

Two more dynamic programs for the TT
problem are due to Potts and Van Wassenhove
(1982, 1985), who utilized Lawler’s (1977) decom-
position algorithm (discussed in the next
section) in combination with the Schrage–Baker
algorithm to produce an algorithm capable of
solving problems with as many as 100 jobs.
Therefore, the authors legitimately concluded that,
in practical terms, the TT problem had been
solved.

Another algorithm for the TT problem, called
MINIT, was devised by Sen et al. (1983) and was
based on existing relationships among the job
variables. The authors compared their algorithm
with the DP algorithm of Schrage and Baker
(1978) and observed that if storage availability is
unlimited, DP must be preferred to MINIT;
otherwise, MINIT may be considered as a viable
alternative.

Another optimizing technique for the TT
problem is due to Sen and Borah (1991), who
developed a set of relationships among the job
variables and a branching scheme based on these
relationships. The computerized technique was
compared with the DP algorithm of Schrage and
Baker (1978). Although for most problems DP
outperforms the Sen–Borah method, the latter
method generates a smaller set of candidate

sequences (at the branching stage) for each of the
120 randomly generated test problems.

More recently, several excellent papers on
optimizing methods for the TT problem have
appeared in the literature. One of these was by
Chang et al. (1995). After noting that Potts and
Van Wassenhove (1982) had presented some
conditions on decomposition positions to improve
the efficiency of Lawler’s (1977) decomposition
algorithm, Chang et al. (1995) obtained some new
conditions on the left-most decomposition posi-
tions. Another excellent paper was due to Yu
(1996), who showed that if a procedure of proper
augmentation beginning from ‘‘null’’ were used,
augmentation of a consistent partial order would
produce a partial order which is itself consistent.
Given his findings, Yu (1996) claimed to reduce
the gap between Emmons’ dominance theorems
and the normal procedure of augmentation
of partial orders. Szwarc and Mukhopadhyay
(1996) obtained a new decomposition rule for
the TT problem and used a pure decomposition
approach to devise a fast branch-and-bound
algorithm.

An altogether different approach to the single-
machine TT problem was taken by Tansel and
Sabuncuoglu (1997). The authors examine
Emmons’ (1969) theorems about precedence re-
lationships between job pairs from a geometric
perspective. They generated fresh insight into
dominance properties among jobs so that certain
classes of easy and hard instances could be more
readily distinguished from each other.

In 1993, Koulamas reviewed a small subset of
the single-machine TT problems, which are poly-
nomially solvable. He also suggested extensions to
some of these problems.

In the past few years, a good number of papers
on dual criteria of which one is the single-machine
TT problem have appeared in the literature. These
include Davis and Kanet (1993), Ibaraki and
Nakamura (1994), Vairaktarakis and Lee (1995),
Ben-Daya et al. (1996), and Federgruen and
Mosheiov (1997). The second criterion they
considered include number of tardy jobs and
earliness penalty.

All in all, the TT problem has been optimally
solved by several researchers in an efficient
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manner, but there is still a possibility that more
relationships among the job variables can be found
and hence more efficient solution techniques for
the TT problem may be developed by some future
researchers.

Table 1 provides a brief summary of the
important advancements in research towards
solving the TT problem to optimality.

4. Optimizing techniques: Single-machine TWT

problems

For the TWT problem, the objective function to
be minimized is of the form

Xn

j¼1

wjTj :

Most of the research that has been done thus far
for the TT problem has been extended to the TWT

problem. Noteworthy papers include Elmaghraby
(1968), Emmons (1969), Picard and Queyranne
(1978), and Schrage and Baker (1978). For a
special case of the problem, when the weighting of
jobs is agreeable, i.e., when piopj implies wi > wj ;
Lawler (1977) developed a ‘‘pseudo-polynomial’’
time dynamic programming algorithm for the
TWT problem. This approach also solves the TT
problem, which is a special case of the TWT
problem with wi ¼ 1: Lawler’s algorithm for the
TWT problem has the worst case running time of
Oðn4PÞ where P ¼

P
pj : Lawler (1982) later devel-

oped another algorithm for the TT problem and
called it a ‘‘fully polynomial approximation
scheme’’ which is a modification on the ‘‘pseudo-
polynomial’’ time algorithm mentioned above.
The worst case running time for this method is
Oðn7=eÞ where e > 0 is a constant.

One paper that primarily dealt with the TWT
problem is by Potts and Van Wassenhove (1991)
who presented a branch-and-bound algorithm for

Table 1

Optimizing techniques for TT problems

Year Method Complexity TWT Reference

1961 BBa Schild and Fredman (1961)

1962 DPb Held and Karp (1962)

1964 DP Oðn2nÞ Lawler (1964)

1968 Network model Yes Elmaghraby (1968)

1969 Dominance rules Yes Emmons (1969)

1971 DP-based hybrid Srinivasan (1971)

1972 BB 30 Jobs, p4.13 s Shwimer (1972)

1975 BB 20 jobs, >300 s Yes Rinnooy Kan et al. (1975)

1976 BB/Lagrangian relaxation Fisher (1976)

1977 Decomposition/DP Oðn4
P

piÞ Yes Lawler (1977)

1978 Decomposition/DP 50 jobs Baker and Schrage (1978)

BB 20 jobs, p12.8 s Yes Picard and Queyranne (1978)

DP 50 jobs, 0.844 s Schrage and Baker (1978)

1979

1982 Decomposition/DP O(n7/e) Lawler (1982)

Lawler decomposition extension Potts and Van Wassenhove (1982)

1983 MINIT Sen et al. (1983)

1987 DP p100 jobs Potts and Van Wassenhove (1987)

1991 DP Sen and Borah (1991)

1995 Decomposition extension Chang et al. (1995)

1996 Extension of Emmons’ dominance Yu (1996)

Decomposition/BB 100–150 jobs Szwarc and Mukhopadhyay (1996)

1997 Decomposition Tansel and Sabuncuoglu (1997)

a BB=Branch-and-bound.
b DP=Dynamic programming.
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the problem. This method used a Lagrangian
relaxation approach to generate sharp lower
bounds for the TWT problem and the associated
sub-problem of minimizing total weighted com-
pletion time. Although the method was branch-
and-bound, it used dynamic programming for
checking dominance relationships among jobs in
the search tree. Also, the method contradicted the
popular idea that one should restrict the size of
the search tree as much as possible by using the
sharpest possible bounds. (Rinnooy Kan et al.
(1975) had a similar observation more than a
decade ago.) The so-called ‘‘curse of dimension-
ality’’ is somewhat avoided in this method since it
does not need to store all the results generated in
the process permanently.

Another paper that deals with the TWT
problem is by Rachamadugu (1987) who identified
a condition characterizing the location of two
adjacent jobs in an optimal sequence of the TWT
problem. No implicit enumeration scheme was
presented nor was any computational experimen-
tation conducted. The author proved that the
condition mentioned above can be utilized in
reducing the branching effort for a branch-and-
bound technique. The author claimed that his rule
has the potential to identify the situations where
the first job in an optimal sequence of the TWT
problem is known even before the problem is fully
solved.

Szwarc and Liu (1993) considered Arkin and
Roundy’s (1991) (discussed in the next section)
weighted TT problem where tardiness penalties are
proportional to the processing times. They pre-
sented a decomposition mechanism, which either
solves the problem completely or decomposes the
problem into smaller sub-problems.

Recently, a new lower bounding scheme for the
single-machine TWT problem was developed by
Akturk and Yildirim (1998). They introduced a
dominance rule, which guarantees a sufficient
condition for a local optimum for the TWT
problem. They claimed that if the proposed rule
is violated by any sequence, then exchanging the
violating jobs will either reduce TWT or leave it
unaffected. Thus, the proposed rule can be used in
decreasing the number of alternatives to be
evaluated to find the optimal sequence. A brief

summary of the research with TWT problems is
given in Table 2.

5. Extensions to multi-machine systems

We have already reviewed the research in the TT
and the TWT problems in the single-machine
environment fairly extensively. Now, let us briefly
look at a few papers on the TT and TWT problems
for multi-machine environments. Both optimal
and heuristic approaches are considered here.
One technique was devised by Baker and Kanet
(1983) who utilized a different definition of due
date, called the modified due date (MOD), which
is used in a dispatching rule for the TT problem in
a multi-machine job shop system. The authors
claimed that the MOD rule compares very
favorably with other well-known dispatching rules
that are used to solve the mean tardiness problem.
Raman and Talbot (1993) presented an integer
programming formulation of the TT problem in
the job shop environment. The authors used the
concept of MOD introduced in Baker and Kanet
(1983) to develop a heuristic solution for the job
shop TT problem.

Another paper considering minimizing TT in the
two-machine flowshop was due to Sen et al.
(1989). They developed a branch-and-bound solu-
tion procedure to reach the optimal solution.

Table 2

TWT problem

Year Method Reference

1968 Network model/BBa Elmaghraby (1968)

1969 Dominance rules Emmons (1969)

1975 BB Rinnooy Kan et al. (1975)

1977 DPb Lawler (1977)

1978 Branch-and-bound Picard and Queyranne

(1978)

1985 BB/Lagrangian

relaxation

Potts and Van Wassenhove

(1985)

1987 Dominance rules Rachamadugu (1987)

1993 Decomposition Szwarc and Liu (1993)

1998 Dominance rules Akturk and Yildirim (1998)

a BB=Branch-and-bound.
b DP=Dynamic programming.
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Three well-known heuristic methods, viz., the SPT
rule, the EDD rule and the minimum slack time
rule (MST) were tested and it was found that the
SPT rule, with a little modification, performed the
best among the heuristics. An optimizing algo-
rithm due to branch-and-bound and the modified
SPT heuristic were compared on a set of randomly
generated problems.

Gelders and Sambandam (1978) presented four
heuristics to minimize the sum of weighted
tardiness and flowtime which is actually a bicriter-
ion problem in the flowshop environment. Ow
(1985) introduced a scheduling technique for the
TWT problem for the proportionate flowshop
system. In another paper Kim (1993) presented
several heuristics for the flowshop scheduling
problem with the objective of minimizing mean
tardiness.

Koulamas (1996) examined a special case of the
TT problem for the two-machine flowshop where
he assumed that the first machine handles pre-
processing while the second machine is dedicated
to the main operation. It was also assumed that
pre-processing time exceeds time spent on the
main operation for each job. Some dominance
conditions on jobs were presented and a poly-
nomial-time heuristic for the problems was
developed.

Arkin and Roundy (1991) developed a pseudo-
polynomial-time algorithm similar to Lawler
(1977) to solve the weighted tardiness problem in
the parallel machine environment under the
assumption that the weight of the specific job is
proportional to its processing time. Recently, a
polynomial decomposition heuristic was obtained
by Koulamas (1997a, b) for the parallel machine
TT problem. The proposed approach represented
an extension of the decomposition principle
embedded in the single-machine problem. The
subproblems that were produced by the decom-
position method were solved by a heuristic. A
hybrid simulated annealing heuristic was also
discussed.

Azizoglu and Kirca (1998) proposed a branch-
and-bound algorithm for the NP-hard problem
minimizing TT for identical parallel machines.
Computational experimentation indicated that
optimal solutions were found within a reasonable

length of time for problems up to 15 jobs. The
authors extended properties characteristic of the
optimal schedule’s structure to the uniform paral-
lel machine environment.

Alidaee and Rosa (1997) presented a modified
due date algorithm for scheduling a set of n jobs
on m parallel machines to minimize total weighted
and unweighted tardiness. Li and Cheng (1994)
developed a method to determine an optimal job
schedule to minimize maximum weighted absolute
tardiness for parallel machine settings. The
authors proved that this problem is NP-complete
for the single-machine case and strongly NP-
complete for the general case. They also discussed
a polynomial-time heuristic for the problem.

Bernardo and Lin (1994) proposed an inter-
active procedure for a bicriterion problem on non-
identical parallel machines of which one criterion
was TT (and the other was set-up costs). Since it
did not utilize a weighted objective function, the
procedure allowed the evaluation of job assign-
ments in view of the current situation—without
pre-emption due to previously assigned criterion
weights.

A more recent paper is due to Barman (1998)
who investigated the impact of a few combinations
of some priority rules on lateness and tardiness for
the three-stage flowshop. The performance criteria
included: mean tardiness, maximum tardiness,
mean lateness and percent of tardy jobs. Of the
priority rules considered in this paper, the most
effective were the Modified Shortest Processing
Time, Shortest Processing Time and Earliest Due
Date rules.

Another recent paper is due to Singer and
Pinedo (1998) who studied a number of branch-
and-bound algorithms to minimize TWT in job
shops. An analysis of precedence constraints
provided the basis for the bounding schemes.
The authors obtained optimal solutions for all the
cases where ten jobs and ten machines are
considered.

6. Heuristics

Although the initial attempts at solving the TT
and TWT problems used optimizing methods

T. Sen et al. / Int. J. Production Economics 83 (2003) 1–12 7



based on implicit enumeration techniques, a
variety of heuristics have also been reported in
the literature. One of these is the shortest proces-
sing time (SPT) rule which sequences the jobs in
non-decreasing order of pj ; with ties broken in the
non-decreasing order of dj : This rule provides an
optimal solution, if it is impossible for any job to
be on time in any sequence (1974). Another
heuristic is the well known earliest due date
(EDD) rule which schedules all the jobs in the
non-decreasing order of dj (with ties broken in the
SPT order). This rule is also optimal, if the EDD
sequence produces no more than one tardy job
(Baker, 1974).

The algorithm that was developed by Wilkerson
and Irwin (1971) for the TT problem, was the first
heuristic that tried to utilize relationships between
the job variables pj and dj : Baker and Martin
(1994) later compared the performance of several
algorithms for the TT problem and discussed
conditions under which the Wilkerson–Irwin
(W–I) heuristic is able to provide optimal solutions.

Another efficient heuristic method was
developed by Fry et al. (1989). This method
utilized the adjacent pairwise interchange (API)
method to minimize mean tardiness. Fry et al.
(1989) considered 192 randomly generated pro-
blems and compared their API method with the
W–I method. Their results indicated that the
performance of the API method was much super-
ior to the W–I method in terms of solution
quality.

Potts and Van Wassenhove (1991) noted that
the optimizing algorithms based on implicit
enumeration require considerable computer re-
sources in terms of both CPU time and storage
requirements. In some situations, these huge
computer resources may be neither available nor
warranted. With this in mind, they tested a
number of quick and effective heuristics (like
SPT, EDD and some variations and combinations
of these) against each other and against the
optimal solutions for the problems tested. They
concluded that the W–I heuristic (1971) out-
performed the rest. Although the heuristic of Fry
et al. (1989) was published earlier, it was not tested
by Potts and Van Wassenhove against W–I or
other heuristics.

A more recent heuristic for the TT problem was
developed by Holsenback and Russell (1992). It
utilized the dominance criteria of Emmons (1969)
along with a heuristic developed by them. This
heuristic used net benefit of relocation (NBR)
analysis to determine which job must be placed
last in a sequence to reduce TT. They conducted
computational experimentation which indicated
that the NBR heuristic was superior to the API
method of Fry et al. (1989) both in solution quality
and in CPU time. They also compared their
heuristic with the optimizing algorithm of Potts
and Van Wassenhove (1987) and claimed that
NBR performs well compared to the Potts–Van
Wassenhove algorithm, especially for large
problems.

Another recent heuristic to minimize mean
tardiness in the single-machine system was devel-
oped by Panwalkar et al. (1993). Their algorithm
(PSK) was compared with the W–I (Wilkerson and
Irwin, 1971), API (Fry et al., 1989), and the HR
(Holsenback and Russell, 1992) heuristics for a
wide range of problems and was found to be
superior to each of them.

More recently, Fadlalla et al. (1994) developed a
simple heuristic in which the most promising job to
sequence in the last position is found recursively.
This heuristic was tested on classes of problems
known to be difficult to solve. Fadlalla et al. (1994)
claimed that their heuristic outperformed the W–I
heuristic. They also demonstrated that their
heuristic’s performance improved as problem size
increased.

Ben-Daya and Al-Fawzan (1996) developed a
simulated annealing approach to solve the single-
machine mean tardiness problem. They claimed
that their heuristic produced much better solutions
than the heuristics of Fry et al. (1989) and
Holsenback and Russell (1992).

The modified due date rule (MDD) is known to
be an efficient heuristic that can minimize TT in
the single-machine environment. Alidaee and
Gopalan (1997) showed that the PSK rule of
Panwalkar et al. (1993) is nothing but an
implementation of the MDD rule. They also
offered some new insight on the relationship
between the MDD rule and the heuristic of
Wilkerson and Irwin (1971).
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In an earlier paper, Panwalker et al. disputed the
experimental results of Holsenback and Russell
(1992) who claimed that their NBR heuristic for
the single-machine TT problem had better solution
quality than the API routine of Fry et al. (1989).
Panwalkar et al. (1993) claimed that their PSK
heuristic outperformed the HR heuristic. Russell
and Holsenback (1997a, b) contradicted that find-
ing and presented experimental results which
showed that, in general, the PSK heuristic was
inferior to the NBR heuristic. Also, in another
paper, Russell and Holsenback (1997a, b) im-
proved on their earlier NBR heuristic with a
modified version which they called the M-NBR
heuristic. In comparison with the NBR heuristic,
the M-NBR heuristic provided better solution
quality without any increase in computational
effort.

Rachamadugu (1987) supplemented the dom-
inance tests developed by Rinnooy Kan et al.
(1975) by obtaining a local precedence relationship
among adjacent jobs in an optimal sequence for
the TWT problem. The author also described a
sufficiency condition for identifying the initial job
in an optimal sequence without solving the entire
problem.

More recent heuristics for the TWT problem
were obtained by Crauwels et al. (1998) who
compared such local search techniques as tabu
search, simulated annealing, descent, threshold
search and genetic algorithms by utilizing both
permutation and binary representations of
actual sequences for a large set of test problems.
It was found that permutation methods were
more likely to produce an optimal solution than
binary-based methods, but binary-based methods
consistently generated good quality solutions
whereas permutation-based methods did not. Of
the search methods that were tested, tabu search
was found to be superior to the others.

Recently, a good number of heuristics have been
presented in the literature which dealt with dual
criteria of which one was the total (or mean)
tardiness problem. Some of these papers include
Fadlalla (1994), Federgruen and Mosheiov (1994),
Sabuncuoglu and Gurgun (1996), Sridharan and
Zhou (1996), Li (1997), and James and Buchanan
(1998).

7. The complexity theory

It is well known that scheduling problems may
be classified into two different groups according to
the theory of computational complexity of the
combinatorial optimization problems (Lenstra and
Rinnooy Kan, 1980). Complexity theory identifies
a class of problems called NP-complete problems
with two important properties:

(i) No NP-complete problem can be solved by an
algorithm whose running time is a polynomial
function of problem size.

(ii) If two problems are categorized as NP-
complete, and if for one of them, it is found
that the running time is a polynomially
bounded function of the problem size, it will
be found for the second problem also.

In addition, the combinatorial optimization
problems that are found to be at least as difficult
as a known NP-complete problem are called NP-
hard. If a problem is not NP, it is a polynomially
bounded or P problem. It is well known that the
single-machine TWT problem is NP hard (Lenstra
and Rinnooy Kan, 1980). For the TT problem, the
question of computational complexity was open
for a fairly long time (more than two decades), and
only a few years ago, Du and Leung (1990) showed
that the TT problem in the single-machine
environment is also NP-hard. Consequently, large
problems (n > 100) cannot be solved readily to
arrive at the optimal solution due to the exponen-
tial or factorial growth in CPU time and storage
requirements with increases in problem size.

8. Conclusion

It has been almost five decades since research on
machine scheduling first appeared in the literature.
The initial emphasis was on minimizing total
flowtime (Smith, 1956), tardiness penalties (El-
maghraby, 1968; Emmons, 1969; Fisher, 1976) or
variance of completion times (Eilon and Chowdh-
ury, 1977). A good discussion of different aspects
of production scheduling is available in Eilon
(1979). It has been almost as long since the first
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papers on the TT problem (minimizing total
tardiness on a single machine) were published.
While the earliest research described optimizing
techniques for solving the TT problem, heuristic
methods, which afforded quick, efficient and near
optimal solutions, eventually became a topic of
intense investigation by late 1960s.

From complexity theory, it is known that for
either the TT or TWT problem, solution time will
increase exponentially—and, in most cases, facto-
rially—as the problem size increases. Research
done by Lenstra and Rinnooy Kan (1980) and Du
and Leung (1990) proved that optimizing techni-
ques for the TT and TWT problems are NP
complete. It is therefore not surprising that recent
research on these problems has placed greater
emphasis on heuristics than on optimizing techni-
ques. Future research should continue this trend; if
good heuristics can be used to generate efficient
initial solutions, then enormous improvement on
the total solution time for the TT or TWT problem
can be achieved.

Extension to multiple machines have been
considered in jobshop, flowshop, and parallel
machine environments. Due to computational
complexity, only heuristics are presented as
practical methods for finding acceptable solutions
for these problems.
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