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Abstract

The relation of time indexed formulations of nonpreemptive single ma-
chine scheduling problems to the node packing problem is established and
then used to provide simple and intuitive alternate proofs of validity and
maximality for previously known results on the facial structure of the
scheduling problem. Previous work on the facial structure has focused
on describing the convex hull of the set of feasible partial schedules, i.e.
schedules in which not all jobs have to be started. The equivalence be-
tween the characteristic vectors of this set and those of the set of feasible
node packings in a graph whose structure is determined by the parame-
ters of the scheduling problem is established. The main contribution of
this paper is to show that the facet inducing inequalities for the convex
hull of the set of feasible partial schedules that have integral coefficients
and right hand side 1 or 2 are the maximal clique inequalities and the
maximally and sequentially lifted 5-hole inequalities of the convex hull of
the set of feasible node packings in this graph respectively.
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1 Introduction

In this paper the connection between two seemingly unrelated combinatorial
optimization problems, namely, the nonpreemptive single machine scheduling
problem (SMSP) and the node packing problem (NPP), is considered. More
specifically, the relation of time indexed formulations of SMSP to NPP is estab-
lished and then used to provide simple and intuitive alternate proofs of validity
and maximality for previously known results on the facial structure of time
indexed formulations of SMSPs. The dependency of the facial structure on
the input data makes the study of scheduling polyhedra difficult. Therefore,
the ability to use data independent techniques from combinatorial optimization
problems such as NPP to identify strong valid inequalities for SMISP highlights
the importance of establishing such relations.

Polyhedral approaches to machine scheduling problems have largely focused
on SMSP. Balas (1985) pioneered the study of scheduling polyhedra with his
work on the facial structure of the job shop scheduling problem on a single
machine. Since then many formulations of different variants of SMSP have
been investigated. The reader is referred to Queyranne and Schulz (1994) for a
comprehensive survey on polyhedral approaches to machine scheduling.

The time indexed formulation of SMSP considered in this paper was first in-
vestigated by Sousa and Wolsey (1992). They introduced three classes of valid
inequalities that have integral coefficients. The first class consists of facet induc-
ing inequalities that have right hand side 1. The second and third classes consist
of valid inequalities that have right hand side b € {2,...,n—1}. Van den Akker,
Van Hoesel and Savelsbergh (1999) completely characterized all of the facet in-
ducing inequalities that have integral coefficients and right hand side 1 or 2.
The work of these authors on the facial structure of a time indexed formulation
of SMSP has focused on describing the convex hull of the set of feasible partial
schedules, i.e. schedules in which not all jobs have to be started. Conditions
are given under which these facet inducing inequalities are also facet inducing
for the convex hull of the set of feasible complete schedules, i.e. schedules in
which all jobs have to be started. Crama and Spieksma (1996) studied the con-
vex hull of the set of feasible complete schedules for problems in which the jobs
have equal processing times. They independently characterized all of the facet
inducing inequalities that have right hand side 1 and presented two other classes
of facet inducing inequalities that have right hand side b € {2,...,n —1}.

The problem of finding a feasible partial schedule to SMSP is a special case
of the job interval scheduling (or selection) problem (JISP). JISP is a simple and
generally applicable scheduling model that is a natural generalization of NPP
on interval graphs. The approximability of such problems has been studied by
Spieksma (1999).

NPP is among the most studied combinatorial optimization problems. Much
of the polyhedral research related to NPP has focused on identifying facet defin-
ing graphs (see, e.g. Padberg, 1977). A fundamental class of facet defining
graphs is the class of rank minimal graphs, which includes cliques, odd holes
(Padberg, 1973), and odd antiholes (Nemhauser and Trotter, 1974). Typically,



valid inequalities for the convex hull of the set of feasible node packings in gen-
eral graphs are of low dimension and do not induce facets. The idea of lifting
valid inequalities to obtain higher dimensional valid inequalities was introduced
by Gomory (1969) in the context of the group problem and has since been gen-
eralized by many authors. Padberg (1973) and Nemhauser and Trotter (1974)
describe the lifting of valid inequalities in the context of NPP. Computationally,
node packing relaxations have been used successfully to derive cutting planes for
many integer programming (IP) problems (see, e.g. Hoffman and Padberg, 1993;
Bixby and Lee, 1998; Atamtiirk, Nemhauser and Savelsbergh, 2000; Borndorfer
and Weismantel, 2000). Many commercial IP solvers in use today derive a node
packing relaxation of the IP being solved and generate valid clique inequalities
(see, e.g. ILOG, Inc., 2001; Dash Associates, 2001).

The remainder of this paper is organized as follows. In Section 2 a time in-
dexed formulation of SMSP is presented and known results pertaining to facet
inducing inequalities for the convex hull of the set of feasible partial schedules
that have integral coefficients and right hand side 1 or 2 are reviewed. In Sec-
tion 3 rank inequalities for the convex hull of the set of feasible node packings
in a graph with right hand side 1 or 2 are introduced, sequential lifting of low
dimensional valid inequalities to higher dimensions in the context of NPP is
reviewed, and interval graphs and claw free graphs are discussed. In Section 4
the notion of the intersection graph of a JISP is defined and several impor-
tant properties are given. Section 5 contains the contributions of this paper.
The problem of finding a feasible partial schedule to SMSP is expressed as the
problem of finding a feasible node packing in the intersection graph of the cor-
responding JISP whose structure is determined by the parameters of SMSP.
The facet inducing inequalities of the convex hull of the set of feasible partial
schedules that have integral coefficients and right hand side 1 or 2 are shown
to be the maximal clique inequalities and the maximally and sequentially lifted
5-hole inequalities of the convex hull of the set of feasible node packings in this
graph respectively. It is shown that if a 5-hole exists in this graph, then there
exists a 5-hole that has one of two minimal structures. The parameters of SMISP
for which these minimal structures exist are characterized. These results fur-
ther demonstrate the value of efficient and effective techniques for deriving and
evaluating node packing relaxations in the solution of difficult IPs. In Section 6
concluding remarks are given.

2 A time indexed formulation of single machine
scheduling problems

An instance of SMSP consists of n jobs and a processing time p; for each job
je{l,...,n}. A schedule is a set of starting times, or equivalently completion
times, for the jobs. The problem is to find a schedule such that each job j
receives uninterrupted processing for a period of length p; and the machine
processes at most one job at a time.



Time indexed formulations of SMSP consider a planning horizon of length
T that is discretized into the periods 1,...,T. Period t starts at time £ — 1 and
ends at time ¢. Let J = {1,...,n} denote the index set of jobs. Let the interval
[a, b] denote the set of periods {a+1,...,b}N{1,...,T}. Note that [a,b] = 0 if
a>b. Let T; = [0, — p; + 1] for each j € J. It is assumed that the problem
data is integer, p; > 1 for all j € J, and

T>) p;
jeJ
Let
n*=> (T-pj+1).
jeJ

The time indexed formulation of SMSP is a 0-1 IP with variables indexed by
a job-period pair (j,t) where j € J and ¢ € T;. The variable z;; = 1 indicates
that job j is started in period ¢ and x;; = 0 otherwise. The 0-1 IP is the
following.

min Z Z Cit Tt (1a)

jeJteT;

sty Y wi <1, tel0,T] (1b)

JE€T selt—p;.t]

Sz =1, jeJ (1c)

teT;
zj; integer, jeJ (Le)

The formulation (1) can be used to model different variants of SMSP. All
standard minsum optimality criteria are linear in the time indexed variables
and can be formulated using an appropriate choice of objective coefficients in
the objective function (1a). The machine constraints (1b) ensure that at most
one job can be processed on the machine at a time and that each job j receives
uninterrupted processing for a period of length p;. The job constraints (1c) en-
sure that each job j is processed exactly once. Release dates and deadlines can
be modeled by restricting the set of variables. Note that (1) has a pseudo poly-
nomial number of variables as the planning horizon length 7T is not necessarily
bounded by a polynomial function in n.

Many SMSP that can be modeled by (1) are strongly AP-hard (see, e.g.
Lawler, Lenstra, Rinnooy Kan and Shmoys, 1993). Therefore, the time indexed
formulations of these SMSP are also strongly NP-hard, even if the planning
horizon length T is polynomially bounded. In fact, Crama and Spieksma (1996)
have shown that a time indexed formulation of SMSP is strongly A'P-hard, even
if the processing times p; = 2 for all j € J, the objective coefficients c;; € {0,1}
for all j € J and ¢ € T}, and the planning horizon length 7" is part of the input.



A characteristic vector z of (1) indicates a feasible complete schedule, i.e. a
schedule in which each job has to be processed exactly once. Let the set

Xcos = Pos N Zn*
denote the set of feasible complete schedules where
Pcg = {x € R’_f_* : (1b) and (1c)}.

The convex hull conv(X¢s) of X¢g is not full dimensional. If

T Z ij +pmax
jeJ

then the dimension

dim(conv(Xgs)) = nT — ij
jeJ
where prax = max{p; : j € J} (Sousa and Wolsey, 1992). To study the facial
structure of (1) the convex hull conv(Xpg) of the set Xpg of all feasible partial
schedules, i.e. schedules in which each job j can be processed at most once, is
considered. Feasible partial schedules arise when the constraint (1c), that each
job 7 is processed exactly once, is relaxed to

Sau<1, jed (1)

teT;

that each job is processed at most once. Let the set
Xps = Pps NZ"

denote the set of all feasible partial schedules where
Pps={z € Ri* : (1b) and (1c)}.

This relaxation has the advantage that conv(Xpsg) is full dimensional as it con-
tains all of the unit vectors and the origin which are affinely independent. Since
conv(Xcs) is a face of conv(Xpg), a valid inequality for conv(Xpg) is also valid
for conv(Xcs).

Before describing any facet inducing inequalities for conv(Xpg) some nota-
tion is introduced. Let the set S denote the index set of variables with nonzero
coefficients in an inequality. The set of variables with nonzero coefficients in an
inequality associated with job j € J defines a set S; = {t : (j,t) € S} of time
periods. Let [; =min{t: ¢t —p; + 1 € S;} and u; = max{t: t € S;}. If S; =0
let [; = oo and u; = —oco. If S; # () then [; is the first period in which job j
can be finished if it is started in S and u; is the last period in which job j can
be started in S. Let { = min{l; : j € J} and v = max{u; : j € J}. Finally, let
z(S) denote

PIPILT

jeJteS;



Unless otherwise indicated the remainder of this section is a summary of the
results presented in Van den Akker et al. (1999).

A result of Hammer, Johnson and Peled (1975) for down monotone 0-1
polytopes implies that all facet inducing inequalities with right hand side 0 for
conv(Xpg) have the form zj; > 0 where j € J and ¢ € T;. These inequalities
are facet inducing for conv(X¢g) if

T Z Zp] + Pmax-
jeJ
A further consequence of the result of Hammer et al. is that valid inequalities
that have integral coefficients and right hand side 1 are of the form z(S) <1

and valid inequalities that have integral coefficients and right hand side 2 are of
the form z(S') + 2z(S5?) < 2 where $ = S' U S? and S1 N S2 =0.

2.1 Facet inducing inequalities z(S) < 1 for conv(Xpg)

A facet inducing inequality z(S) < 1 for conv(Xps) is determined by one job,
which without loss of generality is called job 1, and two time periods [ and wu.
The inequality has the structure

S1 =l — p1,ul,
S;=lu—p;l], jeJ\{1}

where | = l; < u; = u. Note that if [ = u the inequalities with structure (2)
coincide with the inequalities (1b). If = p;, u =T —p; + 1 and S; = 0 for
all j € J\ {1} the inequalities with structure (2) coincide with the inequalities
(1c").

A valid inequality z(S) < 1 is maximal if there does not exist a valid in-
equality (W) < 1 with S C W where S is a proper subset of W. If

T> ij + 3pmax
jeJ

(2)

then a valid inequality z(S) < 1 with structure (2) that is maximal is a facet
inducing inequality for conv(Xcg) (Sousa and Wolsey, 1992). The number of
facet inducing inequalities with structure (2) is polynomial in the size of the
formulation.

2.2 Facet inducing inequalities x(S"')+2z(5?) < 2 for conv(Xps)

For a valid inequality z(S') + 2z(S?) < 2, at most two jobs can be started in
S =S8'US2 Ifajob j € J is started in period ¢ € S; either

(i) it is impossible to start any job in S before job j and at most one job can
be started in S after job j; or

(ii) there exists a job i € J \ {j} such that job 7 can be started in S before or
after job j and any job k € J \ {i,j} cannot be started in S; or



(iii) at most one job can be started in S before job j and it is impossible to
start any job in S after job j.

Thus, the set S can be written as S = LU M UU where L C S is the set of
variables for which case (i) holds, M C S is the set of variables for which case (ii)
holds and U C S is the set of variables for which case (iii) holds. Similarly, the
sets S; can be written as S; = L;UM;UU; although each of the intervals L;, M;
and U; may be empty. If job j is started in a period in ,S’J2 then it is impossible
to start any job in S before or after job j. Thus S’]2 C L;NUj for all j € J and
so §? C LNU. By definition L; N M; =0 and M; NU; = 0. If L; NU; # () then
M; = (. A valid inequality z(S') + 2z(5?) < 2 is nondecomposable if it cannot
be written as the sum of two valid inequalities (W) < 1 and z(W') < 1. A
valid inequality z(S) + 2z(S5?) < 2 is maximal if there does not exist a valid
inequality z(W?!) +22(W?) < 2 with §* C (WluUW?), S2 C W? and St # W1
or §% # W2,

A facet inducing inequality z(S*) +22(S?) < 2 for conv(Xps) is determined
by at most three jobs and six time periods. The inequality can be represented
by a collection of sets L;, M; and U; which are given in Table 1. Three cases
have to be considered.

(la) Let I* = min{l; : j € J\ {1,2}} and v* = max{u; : j € J\ {1,2}}. A
facet inducing inequality z(S')+22(S?) < 2 withl =1; <y <I[* and u =
uy > up > u* having the structure given in Table 1, where [ug —p;,1] C L;
and [u — pj,ls] CUj for all j € J\ {1, 2}, is nondecomposable if and only
if M; # 0 for some j € J and I* < uy or Iy < u*.

(1b) Let I* = min{l; : j € J\{1,2}} and v* = max{u; : j € J\{1,3}}. A facet
inducing inequality z(S') + 2z(5?) < 2 for conv(Xps) with [ =[; < I3 <
I*,u=wu; >ug >u" and ls < [* or uz > u* having the structure given in
Table 1 is nondecomposable if and only if M; # 0 for some j € J \ {1}.

(2) Let ! =min{l; : j € J\ {1,2}} and o' = max{u; : j € J\ {1,2}}. These
parameters differ from [* and u* as it is possible that I’ < I or v’ > u;.
A facet inducing inequality z(S') + 2z(5?%) < 2 for conv(Xps) with [ = Iy
and u = uy having the structure given in Table 1, where [I’ — p2,l] C Lo
and [u—py,u'] C Uy, is nondecomposable if and only if M; # () or My # ()
and I’ <wuqorly <u.

For conditions of maximality the reader is referred to Van den Akker (1994).
If

T Z Zp] + 5pmax
jeJ

then a valid inequality z(S') + 2z(S%) < 2 with one of the structures given in
Table 1 that is nondecomposable and maximal is facet inducing for conv(Xcg).
The number of facet inducing inequalities for conv(Xps) with one of these struc-
tures is polynomial in the size of the formulation.
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3 Node packing problems

An instance of NPP consists of a simple undirected graph G = (V, E) and a
weight function

w:V - RV

A node packing in the graph G is a set U C V of nodes that are not pairwise
adjacent. The problem is to find a node packing in G that has maximum weight.
The convex hull conv(Xyp) of the set Xyp of feasible node packings in G is full
dimensional as it contains the unit vectors and the origin which are affinely
independent. Since there is a one to one correspondence between nodes of G
and the characteristic vectors of Xnp, a distinction is not made.

Let G(S) denote the subgraph of G induced by the set S C V of nodes. If
an inequality has nonzero support S then the graph G(9) is said to produce the
inequality. If an inequality is facet inducing for conv(Xyp), then the inequality
is said to be facet inducing for G. A subgraph G(S) is facet defining if it
produces a facet inducing inequality for G(S). Although there are many facet
defining graphs for NPP, for our purposes it is sufficient to consider cliques and
odd antiholes.

A complete graph is a graph in which all of the nodes are pairwise adjacent.
A clique is a maximal complete graph. If G(S) induces a clique in G, then the
clique inequality z(S) < 1 is a facet inducing inequality for G(S). Furthermore,
z(S) < 1is facet inducing for G when S is maximal with respect to set inclusion.

A k-hole is a chordless cycle induced by a set of nodes of cardinality k, where
k > 4. A hole is odd for odd values of k. A k-antihole is the complement of a
k-hole. Note that a 5-antihole is isomorphic to a 5-hole, so 5-holes are both odd
holes and odd antiholes. If G(S) induces an odd k-antihole in G, then the odd
antihole inequality z(S) < 2 is a facet inducing inequality for G(S). However,
z(S) < 2 is unlikely to induce a facet of G. Using a technique called lifting
a higher dimensional lifted odd antihole inequality z(S!) + 2z(S52) < 2 can be
obtained where S C S! and S' N S? = 0.

The stability number a(G) is the cardinality of a maximum node packing in
G. Let a(S) denote the stability number of G(S). A graph G is rank minimal
if and only if G is a clique or the rank inequality 2(V) < a(G) is facet inducing
for G and, for each S C V the rank inequality z(S) < a(S) does not induce a
facet of G(S). A graph G(S) with «(S) = 1 is rank minimal if and only if it is a
maximal clique (Padberg, 1973). A graph G(S) with «(S) = 2 is rank minimal
if and only if it is an odd antihole (Nemhauser and Trotter, 1974). Every rank
facet producing graph contains an induced rank minimal graph with the same
stability number.

Typically, valid inequalities for the convex hull of the set of feasible node
packings in general graphs are of low dimension and do not induce facets. Se-
quential lifting can often be used to obtain higher dimensional valid inequalities.
For the NPP, an instance of the sequential lifting problem for a valid inequality
z(S*) + 22(S?) + - - + bx(S®) < b for G, consists of the sets S°,...,S% and a



node v, € V\(V(S°)U---UV(S®)) where S'NS7 = for all 0 < i < j < b. Note
that the sets S°,...,S® may be empty. The lifting problem is to determine -y
where

v = max{z(S") + 22(S?) + -+ + bz (S*) 1z, = 1,z € Xnp}-

The inequality a,z,+z(S')+22(S2)+- - -+bz(S%) < bis valid for G for any a, <
b—~. If a, = b—~ then the lifting is said to be maximum. The set S is updated
to include the index r. A lifted inequality z(S') + 22(S?) + --- + bz(S%) < b
where V(S%) U---UV(S%) = V induces a facet of G if the lifting is maximum.
The coefficients a, are dependent on the order in which the variables are lifted.
Thus, a family of lifted inequalities can be obtained by considering different
orderings of the nodes in V' \ (V(S°)U---UV(S®)). For more on lifting see, e.g.
Nemhauser and Wolsey (1988).

A graph Gy is an interval graph if there exists a family I of intervals in R
and a one to one correspondence between the nodes of G; and the intervals
in I such that two nodes of G are adjacent if and only if the corresponding
intervals have a non empty intersection. Two important properties of interval
graphs are that every induced subgraph of an interval graph is an interval graph
and that every interval graph contains a simplicial node whose neighborhood,
i.e. the set of adjacent nodes, induces a clique. For more on graph theory see,
e.g. Golumbic (1980).

A claw is a graph with the set {vq, vo,v3,v4} of nodes and the set {{vy,v2},
{v1,v3}, {v1,v4}} of edges. A graph is said to be claw free if it does not contain
a claw as an induced subgraph. A claw free graph is rank facet producing if
and only if it can be built up from rank minimal graphs by iterating sequential
lifting and complete join operations (Galluccio and Sassano, 1997). A facet
inducing graph G is said to be obtained from one of its induced subgraphs
G(S) by sequential lifting if the rank inequality z(V) < «(G) is obtained by
sequential lifting from the rank inequality x(S) < «(S) where a(S) = a(G).
The complete join of two graphs Gy = (Vi, Ey) and G2 = (Vs, E») is the graph
G=WV,E)withV =V UV; and E = E; U Ey U{{v1,v2} :v1 € V1,03 € Va}.
To characterize all of the rank facet inducing inequalities of a claw free graph
it is sufficient to characterize all of the rank minimal claw free graphs. Thus, a
graph G(S) with a(S) = 2 is rank facet inducing if and only if it can be built up
from odd antiholes by iterating sequential lifting and complete join operations.

4 Job interval scheduling problems

An instance of JISP consists of n jobs and a set I; of intervals in R for each
job j € {1,...,n}. A schedule is a set of intervals. The problem is to find a
schedule such that at most one interval is selected for each job j and no two
selected intervals intersect. This problem can be formulated as a NPP on a
graph G. The graph G is constructed by associating a node with each interval.
Two nodes in G are connected if the corresponding intervals are associated with

10



the same job or if the corresponding intervals intersect. A schedule is a node
packing in G. Thus, a feasible node packing in G is a feasible schedule to JISP.

The exact structure of G is determined by the parameters of JISP. Neverthe-
less, G has an important basic property, namely, that the set E of edges can be
decomposed as follows. Let Fx C E denote those edges of G that correspond
to two intervals of the same job in the JISP. Let E; C E denote those edges
of G that correspond to the intersection of two intervals of the JISP. Note that
E = Ex U E; but that Ex N Er # 0. The graph Gk = (V, Fg) is composed
of disjoint cliques. The graph G; = (V, Ey) is an interval graph. Any graph
with the above structure is the intersection graph of a JISP. Let such a graph
be called a JISP graph.

The following claim identifies some important properties of a JISP graph.

Lemma 1. A JISP graph has the following properties.
1. Every induced subgraph of a JISP graph is a JISP graph.

2. Every JISP graph contains a node whose neighborhood induces the union of
at most two cliques.

3. A 5-hole is the only odd antihole that is a JISP graph.
4. The complete join of two 5-holes is not a JISP graph.

Proof. Properties 1 and 2 follow from the definition of a JISP graph and the
properties of interval graphs. Properties 3 and 4 are a consequence of property
2. |

5 A node packing relaxation of single machine
scheduling problems

The problem of finding a feasible partial schedule to SMSP is a special case of
JISP. With each potential starting time ¢ € T} of each job j € J we simply
associate the interval [t,¢ 4+ p; — 1]. The problem can then be formulated as
a NPP on the corresponding JISP graph G. Recall that G is constructed by
associating a node with each interval. Two nodes in G are connected if the
corresponding intervals are associated with the same job or if the corresponding
intervals intersect. The exact structure of G is determined by the parameters
of SMSP. A schedule to JISP is a node packing in G. Similarly, a feasible node
packing in G is a feasible schedule to JISP and, therefore, a feasible partial
schedule to SMSP.

The remainder of this text contains the contributions of this paper. Let the
graph G = (V, E) denote the JISP graph arising from the problem of finding a
feasible partial schedule to SMSP. Note that G is simply the column intersection
graph of the (0, 1) clique-node incidence matrix arising from the constraints (1b)
and (1c’) of SMSP (see, e.g. Nemhauser and Wolsey, 1988). The interval graph
G is the column intersection graph of the (0, 1) clique-node matrix arising from

11



the constraints (1b). The graph Gk of disjoint cliques is the column intersection
graph of the (0, 1) clique-node matrix arising from the constraints (1c’). Since
there is a one to one correspondence between job-period pairs, the variables of
(1) and the nodes of G, a distinction is not made. For convenience, let V; denote
the set V({(j,t) : t € T;}) of nodes associated with the job j € J.

In Section 5.1 it is shown that the facet inducing inequalities for G that have
integral coefficients and right hand side 1 or 2 are the maximal clique inequal-
ities and the maximally and sequentially lifted 5-hole inequalities respectively.
The characterization of these facet inducing inequalities in terms of rank min-
imal claw free subgraphs of GG is not as explicit a characterization as that of
Van den Akker et al. (1999) but provides simpler and intuitive alternate proofs
of validity and maximality. Furthermore, this characterization holds for JISP.
In Section 5.2 it is shown that if a 5-hole exists in GG, then there exists a 5-hole
which has one of two minimal structures. The parameters of SMSP for which
these structures exist are characterized. The characterization of the 5-holes is
specific to SMSP.

Before proceeding, it is appropriate to comment on an important computa-
tional aspect of polyhedral approaches to solving IPs, namely, the problem of
separation. The problem of separation is the problem of identifying a violated
inequality in a class of valid inequalities for an IP, that separates the current
solution from the set of feasible solutions, or proving that no such inequality
exists. Van den Akker (1994) describes heuristic separation algorithms based
on clever enumeration of potentially violated facet inducing inequalities for G
that have integer coefficients and right hand side 1 or 2. The algorithms run
in time polynomial in the number of fractional variables in the solution of the
current linear program and guarantee the identification of a violated inequality
should one exist. Separation algorithms that exploit the relation of time indexed
formulations of SMSP to NPP have not been investigated.

5.1 Facet inducing inequalities for G

In this section it is shown that the facet inducing inequalities for the graph
G with integral coefficients and right hand side 1 or 2 are the maximal clique
inequalities and the maximally and sequentially lifted 5-hole inequalities respec-
tively.

Consider a facet inducing inequality z(S) < 1 for G. Recall that a graph
G(S) produces a rank facet inducing inequality of G with right hand side 1 if
and only if it is a clique. This proves the following claim.

Theorem 2. A facet inducing inequality x(S) < 1 for the graph G is a mazimal
clique inequality. O

Consider a facet inducing inequality z(S!) + 2z(S?) < 2 for G. Let S =
St U S%. Since z(S!) + 2z(S?) < 2 is valid, G(S?) must be a clique. Since
z(S1) + 22(S5?%) < 2 induces a facet, a(S) = 2 and G(S) is, necessarily, claw
free. Thus, it must be the case that the graph G(S!) is rank facet producing.
Therefore, the facet inducing inequality z(S') + 2z(S5?) < 2 for the graph G
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can be obtained from the rank facet inducing inequality z(S!) < 2 for G(S?!)
by sequential lifting in any order.

Recall that a claw free graph is rank facet producing if and only if it can be
built up from rank minimal graphs by iterating sequential lifting and complete
join operations. However, a graph G(W') with a(WW) = 2 is rank minimal if and
only if it is an odd antihole. Thus, G(S*) is rank facet producing if and only
if it can be built up from an odd antihole. Therefore, by properties 3 and 4
of Lemma 1, G(S') must be built up from a 5-hole by sequential lifting. This
proves the main result of this section.

Theorem 3. A facet inducing inequality x(S*) + 2x(S?) < 2 for the graph G
1s a mazimally and sequentially lifted 5-hole inequality. O

To conclude, the following claim proves that, for a fixed S*, the set S? is the
unique set of nodes that are adjacent to all of the nodes in S?.

Proposition 4. There do not exist two facet inducing inequalities x(S*) +
22(52) < 2 and z(S*) + 22(W?) < 2 for the graph G where W2 # S2.

Proof. Tt suffices to show that, for a fixed S', there is a unique set of nodes S?
such that the inequality z(S') + 22(S?) < 2 is facet inducing for G. Let H>
denote those nodes that are adjacent to all of the nodes in S'. Thus, S C H?,
W?2 C H? and H? is unique. Suppose that there exist two nodes vy, v € H? that
are non adjacent. Consider the graph G(W) where the set W = S U {v, va}.
Property 1 of Lemma 1 implies that G(W) is a JISP graph. However, no node in
W satisfies Property 2 of Lemma 1 which is a contradiction. Thus, it must be the
case that G(H?) is a clique. Therefore, it must be the case that S = W? = H>
and so, for a fixed S', S? is the unique set of nodes that are adjacent to all of
the nodes in S'. O

5.2 Characterization of 5-holes in GG

In this section it is shown that if a 5-hole exists in the graph G, then there exists
a 5-hole which has one of the following two minimal structures. The parameters
of SMSP for which these minimal structures exist are characterized.

Structure 1 Structure 2

A 5-hole G(H) where H = {(j1,t1), ..., (Js,t5)} is determined by jobs j; € J
and time periods t; € Tj, for i € {1,...,5}. The following claim shows that H
is determined by at least three, but no more than four, unique jobs.
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Lemma 5. If the graph G(H) is a 5-hole, then 3 < |{] eJ:VH)NV; #
0} < 4.

Proof. It is shown that unless 3 < |{j € J : V(H) NV; # 0} < 4 the cycle
underlying G(H) has a chord and therefore cannot be a 5-hole. Let G(H) be a 5-
hole were H = {(j1,t1),---,(Js,t5)} and vj,¢, —. .. —Vj 45 —Vj, 4, is the underlying
cycle. Suppose that [{j € J: V(H)NV; # 0}| < 2. Then, |V(H) NV;| > 3 for
some j € J. Without loss of generality, assume that j; = j3 = j. Since G; is a
clique, G(H) has the chord {vjs,,vjs, }.

Suppose that |{j € J : V(H)NV; # 0}| = 5. Then |V(H)NV;,| = 1 for each
i€ {1,...,5}. Without loss of generality, assume that ¢t; = min{t : (j,t) € H}.
Suppose that to = max{t : (j,t) € H}. Since t; < t3 < to < t1 +pj, — 1,
G(H) has the chord {vj, s, ,vj,t, }. Similarly, if ¢t5 = max{¢ : (j,t) € H}, then
G(H) has the chord {vj,¢,,v),t, }. Suppose that t3 = max{t: (j,t) € H}. Then
ty <tz <to+pj, —land ty <tz <ty+p;, —1. Thus, 1 —p;, <ty—ts <pj, —1
and G(H) has the chord {vj,s,,vj,s, }. Similarly, if t4 = max{¢: v;; € H}, then
G(H) has the chord {vj,¢,, Vjsts }- O

It follows from Lemma 5 that for some permutation of J, H is determined
by jobs 1,...,4. Without loss of generality, the following claim characterizes H.

Proposition 6. If the graph G(H) is a 5-hole, then the set H = {(1,t1), (2, t2),
(Jst3), (3:ta), (1, t5) } where j € {2,3,4} and vig, —vat, —Vjty —V3t, —Vit, — Vit 08
the underlying cycle. Furthermore, ts < t; and max{ty+ps—1,t5+p1 —1} < ta.

Proof. Without loss of generality, assume that j5 = j; = 1 and that t5 < t;.
Furthermore, ja,j4 € J\{1} such that js # j4 else G(H) contains one or more of
the chords {vis,, vie, }, {Vitss V1ts } and {vjy4,, V)¢, }- Thus, assume that jo = 2
and j4 = 3.

Suppose that to < t4. Then t2 + ps — 1 < min{t4,t5} else G(H) contains
one or more of the chords {vay,, vss, } and {vas,, vis, }. But t5 <t1 <ta+py—1
which is a contradiction. Thus, max{ty + ps — 1,t5 + p1 — 1} < ta. |

The following claim shows that if H is determined by four jobs, then there
also exist 5-holes in G with structure 1 and 2.

Lemma 7. If there exists a 5-hole G(H), where the set H is determined by four
jobs, then there also exist 5-holes G(Hy) with structure k where k € {1,2}.

Proof. If G(H) is a 5-hole, then it follows from Proposition 6 that H = {(1,%),
(2,t2), (4,t3), (3,t4), (1,t5)} and v1g, —v2t, —Var, —Vse, — U1, — U1, is the underly-
ing cycle. The graph G(H;) where Hy = {(1,t1), (4,t), (4,t3),(3,t4), (1,t5)} isa
5-hole with structure 1 if max{t; —ps+1,t4+ps, ts+p1} <t < t;1+p;—1. Suppose
not. Since py,ps > 1,t1—pa+1 < ti+p;1—1. Ift;1+p1—1 < t5+p1, then t; < t5
which is a contradiction. If ¢ +p; — 1 < t4+ p3, then t4 +p3 <ty <t;1+p1 —1
which is a contradiction. Thus, max{t; — ps + 1,t4 + p3,t5 + p1} < t1 +p1 — 1
and G(H,) is a 5-hole with structure 1.
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Similarly, G(Hz) where Hy = {(1,t1), (2,¢2), (4,¢3), (4,¢), (1,¢5)} is a 5-hole
with structure 2 if t5 — ps + 1 < ¢ < min{ts + p1 — 1,1 — ps, t2 — pa}. Suppose
not. Since p1,ps > 1, t5 —psa+1 <t5+p — 1. If t{ — ps < t5 —ps+ 1, then
t1 < t5 which is a contradiction. If to —ps < t5 —ps+1, then to < t5 < ts+p;—1
which is a contradiction. Thus, t5 — ps + 1 < min{ts +p1 — 1,t1 — pa,ta — pa}
and G(H>) is a 5-hole with structure 2 in G. O

The following claim shows that if H is determined by three jobs, then G(H)
has one of the structures 1 or 2.

Lemma 8. A 5-hole G(H) where the set H is determined by three jobs has one
of the structures 1 or 2.

Proof. Tt follows from Proposition 6 that H = {(1,t1), (2,t2), (J,t3), (3,t4), (1,t5)}
where j € {2,3} and viy, — vor, — Vi, — Use, — Vi — U1y, 1S the underlying cy-
cle of G(H). Suppose that t3 < ts. Then t3 < t4 < t3+p; —1 < t5 or else
G(H) contains the chord {vjs,,v1s;}. If j = 3, then t5 < t3 + p; — 1 since
ts <t5+p1 — 1<ty <t3+ p; — 1 which is a contradiction. Thus, if t3 < t4,
then j = 2 and t3 < t5 — pa + 1. Therefore, G(H) is a 5-hole with structure 1.

Suppose that t2 < t3. Then ty <t;+p; —1 <tz <ta+p2—1orelse G(H)
contains the chord {vi¢,,vji, }. If j = 2, then to < t4+p3—1since t3 < ta+pz—1
which is a contradiction. Thus, if ¢t < t3, then j = 3 and t; +p; — 1 < t3.
Therefore, G(H) is a 5-hole with structure 2.

Suppose that ¢4 < t3 <ty. Then max{ty — p;,t5 +p1 — 1} < t3 < min{t; —
pj,ta+ps —1}. If j =2, then G(H) is a 5-hole with structure 1. If j = 3, then
G(H) is a 5-hole with structure 2. O

The following claim follows from Proposition 6 and Lemmas 7 and 8.

Theorem 9. If the graph G contains a 5-hole, then for some permutation of
the index set J there exists a 5-hole with either structure 1 or 2. L]

In the remainder of this section the parameters of SMISP for which 5-holes
with structure 1 or 2 exist are characterized. Consider the assumptions

T_pjl —Pj> = Pjs 2 0, (3a
Dy Z ]-a ] € {j17j27j3} (3b

on a reduced set p = (T, pj,, Pj,,Pj,) of parameters of SMSP where {j1, j2, 3} C
J. Let the set

X=Pnz

)
)

denote the set of parameters satisfying the assumptions where
P={pecR:(3)}

Let the vector t = (t1,t2,t3,t4,t5) denote the time periods determining a 5-hole
in G. The necessary conditions on the parameters p and time periods ¢ for a
5-hole with structure £ to exist in G are described by the system of inequalities

AFp + Nt < bk
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where the matrices A¥, N and b* are given in Table 2 for & € {1,2}. These
necessary conditions are a system of difference constraints in the variables ¢ and
can be represented as a digraph D with parametric arc costs cf(p) = b¥ — Akp
for k € {1,2} (see, e.g. Ahuja, Magnanti and Orlin, 1993). The digraph D has a
source node s and five additional nodes 1,...,5 corresponding to the variables
t1,...,ts respectively. For clarity the source node s has been omitted from the
following diagram of D.

k
C14

k
- (=)
k k
€11 cr
k k
C1o Ce

The following claim shows that a 5-hole with structure k can exist in G if
and only if there are no negative cost directed cycles in D with the costs c*(p)
where k € {1,2}. The proof is adapted from Ahuja et al. (1993).

Proposition 10. There exists a 5-hole G(H) with structure k if and only if
there are no negative cost directed cycles in the digraph D with parametric arc
costs cF(p) where k € {1,2}.

Proof. The necessary conditions for the existence of a 5-hole with structure &
are identical to the optimality conditions for the shortest path problem on D
with costs c*(p) where k € {1,2}. For each j € {1,...,5} the variable ¢; denotes
the length of some directed path from the source node s to node j. Necessary
and sufficient conditions for the variables to represent shortest path distances
are that t; —t; < c¥(p) for each arc a = (4, j) in D. These conditions are satisfied
if and only if D does not contain a negative cost directed cycle. ]

The necessary conditions on the parameters of SMSP for a 5-hole with struc-
ture k € {1, 2} to exist in G correspond to inequalities that constrain the sum of
the costs on each simple directed cycle in D with costs c¥(p) to be nonnegative.
Let the set XH denote the set of parameters p € X for which there exists a
5-hole G(H) with structure & € {1,2}. A complete description of the set of
parameters p for which a 5-hole with structure 1 or 2 exists in G is given in the
following remark. These results were determined using PORTA v1.3.2 (Christof
and Lobel, 1997). PORTA is a collection of routines for analyzing polytopes
and polyhedra.
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Remark 11. The convex hull conv(X#) of X# is given by
PP ={peP:(4)}
where

T_2p]1 _p]3 Z 07 (4&)

The polyhedron P is unbounded and has integer vertices (4, 1,2,1) and (5,2,2, 1).

There exists a 5-hole in G if p € X for some {ji, jo,53} C J. Therefore,
to establish that there are no 5-holes in G it is necessary to verify that p ¢ X

for every {j1,j2,J3} C J.

6 Concluding Remarks

Even under mild assumptions on the parameters of SMSP, the graph G contains
a claw. Consequently, the approach taken in Section 5.1, using the characteriza-
tion of rank minimal claw free graphs of Galluccio and Sassano (1997), cannot
be generalized for characterizing facet inducing inequalities for G with integral
coefficients and right hand side greater than 2. However, it seems likely that
the results of Section 5.2 can be extended to k-holes for all odd & > 5. The
claim of Lemma 5 can be generalized.

Lemma 12. If the graph G(H) is a k-hole, then % <HjeJ:VH)NV; #
0} <k -—1.

Proof. The proof is similar to that of Lemma 5. O

The claim of Theorem 9 can be extended, assuming that necessary intermediary
claims, similar to Proposition 6 and Lemmas 7 and 8, can be proven. The
parameters of SMSP for which these structures exist could also be characterized.

It is evident from Lemma 12 that the number of possible k-hole structures in
G is a function of k. Without loss of generality, it can be assumed that a k-hole
G(H) where H is determined by [ € {%, ...,k — 1} unique jobs is such that
[V(H)NV;,| =2and |V(H)NV},| > 1forie {2,...,l}. Since |[V(H)NVj,| <2
fori € {2,...,1}, the remaining k— —1 nodes of V(H) are distributed amongst
the sets Vj; in one of (kl:lil) different ways. Consequently, there are

> (L)

le{®r . k—1}

different k-hole structures in G for each odd k > 5.

Other facet defining graphs discussed in the NPP literature could be in-
vestigated. The valid inequalities of Sousa and Wolsey (1992) and Crama and
Spieksma (1996) for G that have integral coefficients and right hand side greater
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than 2 must be obtainable, or are otherwise dominated, by lifting valid in-
equalities for facet defining subgraphs of G. Many of the facet defining graphs
discussed in the NPP literature do not exist due to the structure of G. This ap-
proach seems a promising direction for further research into the facial structure
of SMSP.
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