

Single Machine Group Scheduling with Setups to

Minimize Total Tardiness

Samarn Chantaravarapan

Production Modeling Corporation (PMC)
Dearborn, MI 48126

schantar@pmcorp.com

Jatinder N.D. Gupta
(Corresponding Author)

College of Administrative Sciences
University of Alabama in Huntsville

Huntsville, AL 35899
Telephone: 256-824-6593

FAX: 256-824-2929
guptaj@uah.edu

June 10, 2004

ABSTRACT

This paper considers the single machine scheduling problem with independent
family (group) setup times where jobs in each family are processed together. A
sequence independent setup is required to process a job from a different family. The
objective is to minimize total tardiness. A mixed integer programming model capable
of solving small sized problems is described. Several heuristic algorithms are
proposed and empirically evaluated as to their effectiveness in finding optimal
schedules. These results show that several heuristic algorithms generate solutions that
are quite close to the optimal solutions.

Keywords: Single machine scheduling, family setups, minimizing tardiness, heuristic
algorithms, empirical results.

 1

1. INTRODUCTION

Group scheduling problems, where all jobs of the same family must be

scheduled together, have attracted numerous researchers due to their frequent real-life

occurrence. Many manufacturers have implemented the concept of group technology

(GT) in order to reduce setup costs, lead times, work-in-process inventory costs, and

material handling costs. Group technology consists of dividing the total set of jobs

into several subsets, called families, where a family is a subset of jobs that have

similar requirements in terms of tooling and setups. Since different job families

require different tooling, a setup is often necessary when a job from a new family is to

be produced. Since jobs are assigned to families based on tooling and setup

requirements, there is usually a negligible or minor setup to change from one part to

another within the same family. Because there is a major setup change between part

families, there is an advantage to processing parts belonging to the same family as a

group. This is a key difference between the group scheduling problem and the

traditional scheduling problem. In order to address this issue of major setups between

families, an optimum job sequence within each family as well as an optimal family

sequence need to be developed to optimize a given performance measure.

With current emphasis on customer service and meeting the promised delivery

dates, major thrust in scheduling research is being directed towards improving

performance with respect to due dates. Therefore, a widely used performance

measure in scheduling research is total tardiness where the tardiness of a job is

defined as the time delay in delivering a job to the customer. Under the tardiness

criterion, there is no benefit gained from completing jobs early, and a delay penalty

incurs when a job is tardy.

Reviews of recent research in solving scheduling problems with family setups

by Monma and Potts (1989), Potts and van Wassenhove (1992), Potts and Kovalyov

(2000), and Webster and Baker (1995) show that majority of studies in group

scheduling problems are involved with total (weighted) flow-time and maximum

tardiness. For example, Cheng, Gordon, and Kovalyov (1996) presented a

polynomial time algorithm with the aim of minimizing the maximum cost of a

schedule subject to minimum total weighted flow-time. To the best of our

knowledge, however, there is no published work available on the single-machine

group scheduling problem to minimize total tardiness. Therefore, this paper considers

the single machine group scheduling with sequence independent family setup times

 2

and it develops a mixed integer programming model and several heuristic algorithms

to find schedules with minimum total tardiness.

The rest of the paper is organized as follows: section 2 describes the problem,

comments on its complexity and develops a mixed integer programming model of the

problem. Several heuristic algorithms, which include extensions and modifications of

existing algorithms for the single machine total tardiness problem, are proposed and

discussed in section 3. Results of computational tests to evaluate the performance of

these heuristic algorithms are reported in section 4. Finally, section 5 discusses the

main results and describes some fruitful directions for future research.

2. PROBLEM FORMULATION AND COMPLEXITY

The single machine group scheduling problem with family setup times can be

stated as follows: A given number of families, denoted by f, and the number of jobs in

each family, represented by ni, for family i = 1, …, f is to be processed, without

interruption or preemption on a single machine. The processing time and the due date

of the jth job from family i are defined by pij and dij, respectively. Furthermore, if a job

follows the preceding job from the same family, then there is no setup time between

them; otherwise, the family setup time si is required before the next process. Note that

si is sequence independent. That is, the family setup time depends on the following

family only. Additionally, it is assumed that there is a setup prior to the first job in

any sequence. All jobs are available at time zero, and machine idle time and job

preemption are prohibited. A machine processes at most one job at a time and it

cannot process any job while a setup proceeds. All jobs in each family must be

scheduled together. In other words, there are only f setups in any feasible sequence.

Moreover, if a job is finished before or on its due date, there is no tardiness.

Otherwise, the tardiness incurred is given by Tij = Cij - dij, where Tij and Cij represent

tardiness and completion time of job j from family i, respectively. Thus, tardiness can

be defined by Tij = max {0, Cij - dij}. The total number of jobs is n = n1 + n2 +…+ nf.

With the above definitions, the single machine group scheduling problem

considered here is one of finding a schedule of n jobs such that the total tardiness of

all jobs is minimum. When each family contains only one job, the traditional single

machine total tardiness problem is known to be binary (in ordinary sense) NP-hard

(Du and Leung, 1991). Therefore, the group scheduling problem considered in this

paper is least binary NP-hard. The question as to its NP-hardness status in the unary

 3

sense remains open. In view of the NP-hard nature of the problem, a mixed integer

programming model of the problem is proposed here. To do so, we first define the

notations used in the formulation.

Notations

 Xijk =
⎩
⎨
⎧

otherwise. ,0
.position in placed is family from job if ,1 kij

 Yi,k =
⎩
⎨
⎧

otherwise. ,0
.position at job a before needed is if ,1 ksi

 f = number of families.

 ni = number of jobs in family i.

 n = total number of jobs = n1 + n2 +…+ nf.

 Ck = completion time of the job at position k.

 dij = due date of the jth job in family i.

 pij = processing time of the jth job in family i.

 Tk = tardiness of the job at position k.

 si = family setup time of family i.

Formulation

Objective Function

 Min ∑
=

=
n

k
kTZ

1

Subject to

∑ ∑
= =

=
f

i

n

j
ijk

i

X
1 1

1

nk ..., 2, 1,=

)1(

1
1

=∑
=

n

k
ijkX

finj 2,..., 1, ,..., 2, 1, i ==

)2(

1,
1

i

n

j
ijk YX

i

=∑
=

 fi ..., 2, 1,=

)3(

∑ ∑ ∑
= =

−
∈

− ≤−+
i pn

j
ki

n

j
i

fp
kpjijk YXX

1
,

1
}{

},...1{
)1(1

fink ,...,2,1,..., 3, 2, ==

)4(

∑∑∑
= ==

+=
f

i

n

j
ijij

f

i
ii

i

XpYsC
1 1

1
1

1,1 .

)5(

∑∑∑
= ==

− ++=
f

i

n

j
ijkij

f

i
kiikk

i

XpYsCC
1 11

,1 .

nk ..., 3, 2,=

)6(

 4

k

f

i

n

j
ijkijk TXdC

i

≤−∑∑
= =1 1

.

nk ..., 2, 1,=

)7(

 1
1

, =∑
=

in

k
kiY fi ,...,2,1=

)8(

1,0=ijkX

, 2,..., 1,i ,..., 2, 1, i fnj == nk ..., 2, 1,=

1,0, =kiY

fink ,...,2 ,1,..., 2, ,1 ==

,kC

0≥kT

nk ..., 2, 1,=

The objective of the model is to minimize the total tardiness of the problem.

Constraints (1) and (2) state that each position can be occupied by only one job and

each job can be processed only once. Constraint (3) controls the setup time of the first

position of the sequence, leading to the completion time of the first position in (5).

Constraint (4) checks whether or not the preceding job and the following job are from

the same family. If so, there is no setup time between them. Otherwise, a family setup

time of the job in position k exists. Constraint (6) calculates the completion time from

the 2nd position to the last position of the sequence. Constraint (7) determines the

tardiness values for all positions, while constraint (8) ensures that each family has

only one setup. Note that Xijk and Yi,k are binary (0-1) integer variables. In general,

there are n2+ (f+2) n variables, with n2 + f n binary integer variables, and (4+f) n + f

constraints in the proposed model.

The integer programming model was coded and executed under the

GAMS/CPLEX environment. The GAMS/CPLEX solver is widely accepted to be one

of the fastest solvers available today. However, the computational time for a

medium/large size problem was noted to be excessive. Therefore, the solver speed is

accelerated by attaching a heuristic solution as an upper bound of a problem. With

this upper bounding technique, the solver would overlook some iterations with total

tardiness values worse than its upper bound value. However, even with this

technique, the computational time was still huge. Table 1 shows the summary of the

number of optimal solutions found on small size problems. The values in the

“Optimal” column indicate the number of problems that could be solved optimally.

The “Feasible” column shows the number of problems for which feasible solutions

were found but failed to reach the optimal solutions within a pre-set time limit (10

minutes) on a Pentium II 400Mhz PC. The values in the “Unfound” column indicate

that CPLEX did not find a feasible solution within the 10 minute time limit. As shown

 5

in Table 1, the number of “Unfound” problems increased when the number of families

and number of jobs increased. This result supports our conclusion that increasing both

the number of families and jobs results consumes more computational time.

[Insert table 1 about here]

3. HEURISTIC ALGORTIHMS

 The proposed heuristics may be classified into two groups: sequence

construction and sequence improving heuristics. For each group, we need heuristics

to sequence the jobs within each family and also sequence the families. The

PSK/NBR heuristics (Panwalkar, Smith, and Koulamas, 1993; Holsenback and

Russell, 1992) were modified and adapted and combined to find a job sequence inside

each family. Given the sequence of jobs in each family, a GT heuristic was developed

and implemented to construct an initial sequence of families. The initial sequences

were further improved by the SWAP and simulated annealing heuristics. The details

of each of these heuristics are presented next.

The PSK/NBR Heuristic

For each family, all jobs may be sequenced using the NBR and PSK

heuristics. The NBR heuristic (Holsenback and Russell, 1992) and the PSK heuristic

(Panwalkar, Smith, and Koulamas, 1993) described in Appendix A are well

recognized to be quite effective in solving the single-family single-machine total

tardiness problems. Nevertheless, a preliminary experiment was performed to

investigate the performance of these heuristics. The results showed that neither of the

two heuristics outperforms the other. The PSK heuristic may perform better than the

NBR heuristic in one problem, while it may perform worse than the NBR heuristic in

another problem. Therefore, we used both heuristics, and then selected the better

(lower) value. Since both heuristics assume that the job assignment starts from time

zero, we modified these heuristics to accept an initial starting time C. Table 2

summarizes the experimental results of the composite PSK/NBR heuristic, compared

 6

to the optimal solutions obtained from GAMS/CPLEX solver. This comparison also

includes the C time as the additional parameter representing different start time

distribution. The sample size for each problem size was 160. Note that the “No. Opt.

Solutions” column shows the number of data sets for which the PSK/NBR heuristic

could find the optimal solutions.

As can be seen from Table 2, the results indicate that the PSK/NBR heuristic

provides near-optimal solutions. The maximum relative deviation was less than 15%,

while average relative deviation was less than 3%. Furthermore, the performance of

both heuristics improved noticeably, as an initial start time was kept sufficiently large.

Thus, it would be reasonable to use this combined PSK/NBR heuristic to sequence the

jobs inside each family.

[Insert table 2 about here]

The GT Heuristic

As mentioned above, the sole purpose of the proposed GT heuristic is to

generate an initial sequence for use in a sequence improving heuristic. Let U and S be

a set of unscheduled families and a set of scheduled jobs, respectively. In the

sequence construction phase, the GT heuristic generates an initial sequence using the

following steps.

1. Set U = {1, 2, …, f}, i = f, and S = φ.

2. Considering each family in set U, determine the sequence of all jobs in a batch

for the ith family position. Note that the starting time for family k can be

determined by ∑∑
−

+=
kUU

j pst , where p is the total processing times of

family in set U. The near-optimal sequence inside a batch is obtained by the

PSK/NBR heuristic starting from time t. Calculate the total tardiness at family

position i for each family.

3. Select the family with the lowest tardiness for family position i, and remove

that family from set U. In case of ties, select a family arbitrarily. Put the

 7

family batch in front of existing jobs in S. Set i = i –1. If i = 1, enter Step 4.

Otherwise, return to Step 2.

4. Determine the sequence of jobs of the last family in U by the PSK/NBR

heuristic with t = setup time of the last family, then put them in front of the

existing jobs in set S. Calculate the total tardiness of the final sequence in S,

and then terminate.

SWAP (SW) Heuristic

We now turn to sequence improving heuristics. The proposed SW

improvement phase consists of two switching strategies: adjacent pairwise

interchange and randomized interchange. The first interchange, S1, swaps two

consecutive families, say families at family positions i and i+1, from the first family

position of the sequence to the last family position, and then a new solution is

obtained by applying the PSK/NBR heuristic in each family. If the new solution is not

better than the current solution, those families are switched back to the original

positions, and then the next pair of adjacent families is considered. However, if the

solution is improved after switching, the initial sequence is updated and the process

starts from the family at family position i-1 to examine solution improvement when

switching a new family at position i and a family at position i-1. The process

continues until the families at positions f-1 and f are considered.

Randomized interchange is implemented as the second switching strategy

(S2). This strategy randomly chooses any two families and switches the family

positions, and then a new solution is obtained by applying the PSK/NBR heuristic in

each family. If the solution is not improved, the families are switched back to their

original positions. This randomized process helps prevent the solution getting stuck

into a local optimum resulting from swapping only two consecutive families in the

first switching strategy. The number of randomized switchings is determined by the

complexity of the first switching strategy, which is f 2. After the randomized

switching strategy is done, the updated solution is compared with the initial solution

before the first switching strategy. If the solutions are not identical, then the updated

solution is retained and the improving process is restarted from adjacent pairwise

interchange. Otherwise, the search terminates.

 8

Simulated Annealing

The SW heuristic described above may be considered one of the local search

approaches. One common technique used in such approaches is that a solution is only

updated whenever an improvement exists. Thus, it may get trapped at a local

optimum. To overcome this problem, we propose to use simulated annealing (SA)

algorithms which are similar to the random descent method in that the neighborhood

is sampled at random. The difference is that, in simulated annealing algorithm, an

inferior solution may be accepted with some probability. This approach, developed

by Kirkpatrick, Gelatt, and Vecchi (1983), has been used widely in solving

combinatorial optimization problems.

Simulated annealing allows for uphill moves (accepting an inferior solution)

with some probability, in an attempt to decrease the chance of becoming stuck in a

local optimum. In general, a simulated annealing algorithm starts by first defining the

simulated annealing parameter values. These parameters are the initial temperature

(Tmax), and final temperature (T0), temperature decay rate (r), and iterations (n). The

initial temperature is a parameter which acts like an iteration/time counter for the

algorithm. The temperature is successively reduced by means of a temperature decay

rate, r. When the temperature reaches final temperature (T0), the procedure is said to

be ‘frozen’ and is terminated. At every temperature iterations are carried out in search

for better solutions.

In our proposed algorithm, within any iteration, an insertion method was used.

SA would select any two families randomly and interchange the families in those

positions. Here, all jobs in each family are moved to a new family position, and the

PSK/NBR heuristic is applied to re-sort the jobs inside each family. The purpose of

this procedure is to introduce different incumbent family sequences for the insertion

process. In the insertion process, a family is selected at random and is inserted at

every family position to find the best solution. Once the best family sequence is

founded, a new total tardiness value is calculated. Furthermore, simulated annealing

randomizes the search procedure to allow for the occasional acceptance of an inferior

solution, in an attempt to reduce the probability of the search becoming trapped in a

locally optimal solution. SA uses the Boltzmann probability function to determine

whether to accept a change that would lead to a worsening of the objective function

value. The Boltzmann probability function is defined by its probability mass function:

 9

THe
cp /1

1)(∆+
=

where T = current temperature, ∆H = H` – H, H` = total tardiness value before the

insertion process, and H = total tardiness value after the insertion process.

The steps of the simulated annealing algorithm used here are as follows:

1. Set the control parameters: Tmax, T0, r, and n.

2. Set current temperature (Tcur) = Tmax and calculate the total tardiness of current

sequence, H.

3. While (Tcur > T0)

3.1. Perform the following procedures n times.

3.1.1. Select a random number between 1 to f.

3.1.2. Insert the selected family into every other family positions and choose

the family sequence with the lowest total tardiness value, H’.

3.1.3. Set ∆H = H’- H.

3.1.4. If ∆H ≤ 0 (downhill move), accept a new sequence. Set H = H’.

3.1.5. If ∆H > 0 (uphill move), then

3.1.5.1. Calculate the probability of accepting the new sequence using

Boltzmann probability mass function, pc.

3.1.5.2. Select a random number between 0 and 1, say h. if pc > h, accept

the new sequence and set H = H’. Otherwise, reject the new

sequence and use the previous sequence for the next iteration.

3.1.6. Return to 3.1.1.

3.2. Set Tcur = r .Tcur.

3.3. Return to 3.

4. Terminate.

The above simulated annealing algorithm terminates when Tcur ≤ T0. We

propose to use an additional simulated annealing algorithm to improve the solution.

Before simulated annealing terminates, the current solution is compared with the

initial solution from Step 2. If a difference exists, then we go back to Step 2, update

the initial solution in Step 2 with the current solution, and restart the whole algorithm

again. The algorithm keeps iterating until the there is no improvement in solution. In

this paper, the first and second simulated annealing algorithms are called the SA-NL

 10

(SA without return) and SA-L heuristics (SA with return), respectively. Further, the

parameter values used in this study for SA heuristics were: Tmax= 1000; T0 = 0.1; r =

0.90, and n = f x f.

4. COMPUTATIONAL RESULTS

We now report on the evaluation of the effectiveness of the proposed heuristic

algorithms in solving the single-machine group scheduling problem to minimize total

tardiness.

Experiment Settings

The parameter settings, such as number of jobs, number of families, the due

date range parameter and setup type, were determined following the existing literature

and experimental justification. The processing times in all experiments are randomly

assigned from a uniform distribution of integers from 1 to 100. Additionally, in

practice, when a due date is assigned to a job, the possibly earliest due date of that job

should be at least equal to the required processing time plus its family setup time. As

a result, due dates are drawn from the integral range of [sq + pqj, max(sq + pqj, rP)],

where ∑∑∑
= ==

+=
f

i

n

j
ij

f

i
i

i

pSP
1 11

.

We note that r in the above expression is the due date tightness parameter. The

smaller the value of r, the higher the number of tardy jobs is due to the due date range.

Four values starting from 0.25 to 1.00 with increment of 0.25 were used in this study.

Furthermore, a family designation of a job was assigned from a uniform distribution

with a range of [1, f]. Thus, the total number of jobs in each family would not be

equal. Moreover, to detect the effect of setup time on the performance of an

algorithm, three different types of setup time ranges were assigned with discrete

uniform distribution as follows: type 1: [1, 20]; type 2: [1,100], and type 3: [101,

150]. Setup time distributions in types 1 and 3 generated small setup time and large

setup time values, respectively, while setup time type 2 had the same distribution as

the processing times.

All heuristics and simulated annealing algorithms were coded in C++ and

were executed on a Pentium II 400Mhz PC. The experiments are categorized into two

main sections. In the first section, small problem sizes are considered. Fifteen

problem sizes considered in this part are 10 x 2, 10 x 4, 10 x 6, 10 x 8, 10 x 10, 15 x 2,

 11

15 x 4, 15 x 6, 15 x 8, 15 x 10, 20 x 2, 20 x 4, 20 x 6, 20 x 8, and 20 x 10. Note that a

problem size of 10 x 2 represents a problem with a total of 10 jobs and 2 families, and

so on. The heuristic solutions are compared with the optimal solutions obtained from

GAMS/CPLEX. The second section is involved with the large problem sizes. Twenty

five problem sizes represent the combinations of 5 job sizes (20, 40, 60, 80, and 100)

and 5 family sizes (2, 4, 6, 8, and 10). Each problem size consists of 12 combinations

of 3 setup types and 4 due date range parameters. Sample size for each combination is

5. Therefore, the total number of data sets used for experiments of small problem

sizes and large problem sizes are 900 and 1,500 data sets, respectively.

Results for Small Size Problems

In this section, small problem size experiments were performed. The solutions from

heuristics were compared with the optimal solutions from GAMS/CPLEX solvers.

Note that the GAMS/CPLEX solver was run for 10 minutes for each data set.

Therefore, a solution from the solver could be infeasible solution, feasible solution, or

optimal solution. Infeasible solution indicates that the solver could not find a feasible

solution within time limit (10 minutes). However, if the solver can find a feasible

solution within the time limit, but fails to find an optimal solution, then the solution is

a feasible solution. An optimal solution is a solution when the solver optimally solved

the problem within the time limit. In the experiment, we only consider the data sets

with feasible and optimal solutions. Let HH be the total tardiness of schedule found by

using heuristic H and HOptimal be the optimal value of total tardiness found by using

MILP model described earlier. Then, the performance heuristic H, measured by the

relative deviation percentage, is defined as:

100(%) x
H

HH
deviation

Optimal

OptimalH −
=

To compare the effectiveness of job scheduling and family scheduling

heuristics, we created another heuristic, called “Perm.”. This heuristic enumerates all

possible family sequences, and then uses the PSK/NBR heuristic to obtain job

sequences inside each family. In the following discussion, a schedule obtained by this

heuristic is called a “permutation schedule”.

Table 3 summarizes the results of Permutation (Perm.), GT, SW, SA-NL, and

SA-L heuristics, compared to the optimal solutions from GAMS/CPLEX. The results

show that the performances of SA algorithms are slightly better than the SW

heuristics. The negative values in Table 3 indicate that the heuristics provide better

 12

solutions than the GAMS/CPLEX solver does because the solver sometime provides

only feasible solutions. These experiments indicated that the permutation approach

obtains near-optimal/optimal solutions in several cases. The difference in results

between optimal solutions and permutation solutions is caused by the job sequence

inside each family. As stated earlier, the PSK/NBR heuristic demonstrated good

performance in providing near-optimal solutions for job sequence. Therefore, this

approach can be used to provide a benchmark for comparison purpose in our large

problem size experiments. We also note that this approach is not appropriate for

problems with more than 10 families, as the computational time required to enumerate

all family sequences would increase dramatically.

[Insert table 3 about here]

During the experiments, we noticed that, in most cases, the heuristics could

obtain the optimal family sequences. Thus, the difference in solution could be caused

by the job sequence inside each family. Therefore, to improve the solutions, after

applying the heuristics, we would re-sort job sequences inside each family with

another simulated annealing approach. We tested the performance of the SA, by

comparing to the optimal solutions obtained from Szwarc, Grosso, and Della Croce

(2001). This SA procedure for job sequence is similar to the SA-NL algorithm we

proposed above, except that we consider jobs, instead of families. The parameter

values used in this SA algorithm were as follows: Tmax= 10000; T0 = 0.1; r = 0.995,

and n = 100. The results in table 4 show that the SA algorithm performs slightly better

than the PSK/NBR heuristic. Therefore, it would be advisable to use this SA

algorithm to improve the job sequences inside each family.

[Insert table 4 about here]

According to Table 5, the results of heuristics with and without applying SA

for job sequences are not different at all. One possible reason is that the PSK/NBR

heuristic already provides optimal solutions, thus SA for job sequence would not

show much improvement in solutions. This conclusion is supported by the results

from Table 2. For problems with 20 jobs, out of 160 problems, 117 problems were

 13

solved for optimal solutions by the PSK/NBR heuristic. Nevertheless, we hypothesize

that the results may be different when the problem size increases.

[Insert table 5 about here]

Large Problem Size Experiments

In the case of large problem size, we compared the results of heuristics with

the permutation solutions. Let HH and Hperm be the total tardiness of schedule found

by using heuristic H and Hperm respectively. Then, the performance of heuristic H,

measured by the relative deviation percentage, is defined as:

100(%) x
H

HH
deviation

perm

permH −
=

According to tables 6-9, applying SA to job sequences after applying the SW

heuristic and both simulated annealing algorithms (SW-SA, SA-NL-SA and SA-L-

SA) hardly show improvement in solutions at all. Thus, we will only consider the

results from the SW, SA-NL and SA-L heuristics. Table 6 shows that the GT heuristic

provides good solutions with average relative deviations less than 10%. The SW and

simulated annealing heuristics perform quite well, as the average deviations are less

than 1%. When the number of jobs increases, the performance of the SW heuristic

imporves, while the performance of the simulated annealing algorithms (SA-NL and

SA-L) decreases. However, Table 7 shows different results. Grouped by the number

of families, the SW heuristic appears to perform worse when the number of families

increases, while the other two SA heuristics seem to perform consistently.

[Insert table 6 about here]

[Insert table 7 about here]

[Insert table 8 about here]

[Insert table 9 about here]

The results in Table 8 show that due date tightness parameters appear to have

no effect on the GT heuristic’s performance, while the remaining heuristics seem to

worsen as the due date parameter value increases. In addition, the SW heuristic

appears to outperform both SA heuristics when the due date tightness value is small.

However, when the due date tightness value is large, the SA-L heuristic performs

better than the SW heuristic. Furthermore, Table 9 shows that the SW heuristic

outperforms the SA-L heuristic when the family setup times are large.

 14

Next, a comparison among the SW, SA-NL, SA-L heuristics is presented.

Table 10 summarizes the basic statistical results including the 95% confidence

intervals for the differences between any two heuristics. The confidence intervals

show that the SA-NL heuristic is worsen than the SA-L heuristic, while the SW and

SA-L heuristics cannot completely outperform each other. Therefore, the SW

heuristic is recommended to solve problems with a few families, tighter due dates, or

large family setup times. In other cases, the SA-L heuristic would seem to be a better

approach. Nevertheless, all heuristics, except the GT heuristic, provide acceptable

performance with average relative deviation less than 1%.

[Insert table 10 about here]

5. CONCLUSIONS

The purpose of this research was to develop and evaluate methodologies for

solving the single machine group scheduling problem to minimize total tardiness.

Since the complexity of this problem is at least binary NP-Hard, this paper developed

and implemented effective heuristics that would provide good solutions within a

reasonable time. Computational results show that the proposed heuristics can provide

good solutions with the average relative deviation less than 1 %. It is shown that the

combined PSK/NBR heuristic delivers good performance in obtaining the near-

optimal job sequence inside a family. Furthermore, two promising heuristics, the

SWAP and SA-L heuristics, may be used in a variety of situations. The SW heuristic

is recommended for problems with a few families, tighter due dates, or large family

setup times. In other cases, the SA-L heuristic seems to be a better approach. Our

suggestion is to use both heuristics, and select the lower solution value.

Several issues are worthy of future investigation. First, recent literature

provides fast and effective optimization algorithms for traditional single machine total

tardiness problems. Replacing the PSK/NBR heuristic with these algorithms would

seem to be a good strategy in improving the solutions. Second, designing and

evaluating other meta-heuristics, such as tabu search and genetic algorithm, for

improving the proposed solution could be beneficial. Finally, extension of our

proposed approaches to more complex machine environments and other optimality

criteria, like the total weighted tardiness, would be worthwhile future research

projects.

 15

APPENDIX A
The PSK Heuristic (Panwalkar, Smith, and Koulamas, 1993)

The PSK heuristic makes n passes from left to right and in the kth pass, a job is

selected and is put in the kth position. The procedure of PSK heuristic starts with

sorting all jobs with the SPT rule (ties are broken in an EDD order) and putting all

jobs in set U. Set C = 0 and S = φ, where C is sum of processing time of jobs in S, and

S is set of scheduled jobs. Next the procedure of the PSK heuristic is presented as

follows:

1. If U contains only 1 job, schedule it in the last position in S and go to Step

9. Otherwise, label the leftmost job in U as the active job Ji.

2. If C + pi ≥ di, then go to Step 8.

3. Select the next job on the right in U as job Jj.

4. If di ≤ C + pj, then go to Step 8.

5. If di ≤ dj, go to Step 7.

6. Job Jj now becomes the active job Ji. If this is the last job in U, go to Step

8; ELSE return to Step 2.

7. If Jj is the last job in U, go to Step 8; ELSE return to Step 3.

8. Remove job Ji from U and put it in the last position in S, then update the

value of C by pi, and return to Step 1.

9. Calculate total tardiness for the sequence and terminate.

The NBR Heuristic (Holsenback, and Russell, 1992)

The NBR heuristic is implemented based on the concept of Net Benefit of

Reallocation (NBR), which is defined as:

jjj CRBRNBR −=

where ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

+=
j

k

ji
ij SpCR

1
,0max , ∑

+=

=
k

ji
jjj TpBR

1
),min(, and Sj = max(dj - Cj, 0)

Note that CRj is the Cost of Reallocating of a job from position j to position k.

Furthermore, once the job at position j is moved, the jobs after position j are moved

forward, resulting in less tardiness values of all jobs between position j and k. It is

called Benefit of gained from Reallocating (BR). Furthermore, the initial sequence for

NBR is implemented using modified due date, which is dkmod = max (dk, pk). The

NBR procedures are presented as follows:

 16

Step 1

Label all jobs. This is necessary because some due dates may have to be modified.

Adjust due dates as necessary according to the modification rule.

Order the set by non-decreasing due dates and in the case of equality, by non-

decreasing of processing times. Renumber the jobs so that this sequence is (J1,...,

JN)

Calculate the slack or tardiness of each job in the sequence.

Step 2

Beginning with the job in the last position, JN, and incrementally proceeding

toward J1, identify the first job Jk with Tk > pk. If none exists, proceed to Step 7.

Step 3

Beginning with Jk-1 and continuing forward J1, identify the first preceding job, Jj,

with property pj > pk. If none exists, proceed to Step 6.

Beginning with Jj-1 and continuing forward J1, identify the first preceding job, Jj-m,

with property pj-m > pk. Continue in this manner until J1 has been considered.

Step 4

Compute the NBRj for each job, Ji, identified in Step 3, considering that it will be

relocated to a position immediately following Jk.

Relocate that job, Ji, yielding the greatest NBRi, subject to the constraint NBRi > 0.

If no NBRi > 0, proceed to Step 6. If two or more jobs yield the same NBRi,

relocating that job with the greatest processing time. This selection method is

purely arbitrary and is chosen to reduce the number of computations necessary for

a final ordering.

Step 5

Renumber the current sequences as (J1, ..., JN) and recompute the tardiness and

slack.

Step 6

Begin with the job in position k –1 and repeat Steps 2-4, substituting k-1 for k.

Continue in this fashion until the job in position 1 has been considered.

Step 7

 Final ordering is complete.

Applying the original due dates if any were modified and compute the tardiness of the
schedule.

 17

REFERENCES

1. Cheng, T. C. E., Gordon, V. S. and Kovalyov, M. Y. (1996) “Single Machine
Scheduling with Batch Deliveries,” European Journal of Operational
Research, 94, 277-283.

2. Du, J. and Leung, J. Y. T. (1990) “Minimizing Total Tardiness on One

Machine is NP-Hard,” Mathematics of Operations Research, 15(3), 483-495.

3. Holsenback, J. E. and Russell, R. M. (1992) “A Heuristic Algorithm for

Sequencing on One Machine to Minimize Total Tardiness,” Journal of the
Operational Research Society, 43(1), 53-62.

4. Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983) “Optimization by Simulated

Annealing”, Science, 20/4598, 671-680

5. Monma, C. L. and Potts, C. N., On the complexity of scheduling with batch
setups. Operations Research, 1989, 37, 798-804.

6. Panwalkar, S. S., Smith, M. L. and Koulamas, C. P. (1993) “A Heuristic for

the Single Machine Tardiness Problem,” European Journal of Operational
Research, 70(3), 304-310.

7. Potts, C. N., and Kovalyove, M. Y., Scheduling with batching: a review.

European Journal of Operational Research, 120(3), 228-249.

8. Potts, C. N., and van Wassenhove, L. N., Integrating scheduling with batching
and lot-sizing: a review of algorithms and complexity. Journal of Operational
Research Society, 1992, 43, 395-406.

9. Szwarc, W., Grosso, A. and Della Croce, F. (2001) “Algorithmic paradoxes of

the single-machine total tardiness problem,” Journal of Scheduling, 4(2), 93-
104.

10. Webster, S. and Baker, K. R. (1995) “Scheduling Groups of Jobs on a Single

Machine,” Operations Research, 43(4), 692-703.

 18

Table 1. The number of optimal/feasible/unfound solutions
from GAMS/CPLEX: sequence independent setup case.

Problem Size Total Optimal Feasible Unfound
10 x 2 60 60 - -
10 x 4 60 55 5 -
10 x 6 60 59 1 -
10 x 8 60 60 - -
10 x 10 60 58 2 -
15 x 2 60 42 7 11
15 x 4 60 46 4 10
15 x 6 60 41 15 4
15 x 8 60 38 17 5
15 x 10 60 28 24 8
20 x 2 60 31 12 17
20 x 4 60 20 13 17
20 x 6 60 9 38 13
20 x 8 60 1 41 18
20 x 10 60 0 38 22

Table 2. Statistical summary for the PSK/NBR heuristic

Jobs

Initial C
time
dist.

No. Opt.
Solutions Mean Standard

Deviation Max

0 40 0.055 0.239 1.303
[1,25] 40 0.161 0.860 5.363

[26,50] 40 0.000 0.000 0.000 10

[51,100] 40 0.000 0.000 0.000
0 30 0.197 0.442 1.738

[1,25] 29 0.148 0.488 2.481
[26,50] 29 0.071 0.179 0.664 20

[51,100] 29 0.025 0.107 0.559
0 20 1.221 0.817 3.397

[1,25] 21 2.194 2.449 9.454
[26,50] 21 1.858 1.549 5.944 40

[51,100] 21 2.056 2.363 11.008
0 20 2.227 2.096 7.794

[1,25] 19 1.952 2.024 7.828
[26,50] 19 2.059 1.567 6.070 60

[51,100] 19 1.589 1.050 3.941
0 13 1.895 1.871 6.276

[1,25] 13 1.509 0.950 3.470
[26,50] 13 1.387 1.156 3.244 80

[51,100] 13 1.734 1.657 4.837
0 10 1.994 1.486 4.386

[1,25] 11 2.016 1.488 5.441
[26,50] 10 1.655 1.181 3.490 100

[51,100] 10 1.920 0.963 2.911

Table 3. Average relative deviation of proposed heuristics for small size problems

 19

(grouped by number of jobs and number of families)

Jobs

Fam. Perm. GT SW SA-NL SA-L

2 0.000 0.814 0.000 0.000 0.000
4 0.000 9.021 0.216 0.254 0.061
6 -0.618 12.956 0.330 -0.399 -0.493
8 1.480 15.798 1.782 1.983 1.905

10

10 -0.329 18.542 0.110 -0.120 -0.137
2 0.000 1.391 0.000 0.000 0.000
4 -1.248 5.143 -1.038 -0.764 -0.767
6 -0.695 9.617 -0.308 -0.587 -0.556
8 -3.578 10.736 -2.938 -3.261 -3.198

15

10 -6.469 10.697 -6.143 -6.411 -6.398
2 -1.163 0.230 -1.163 -1.163 -1.163
4 -5.780 0.805 -5.291 -5.643 -5.635
6 -13.998 -5.263 -13.845 -13.947 -13.953
8 -18.459 -8.074 -17.942 -18.233 -18.224

20

10 -24.234 -12.244 -23.892 -23.908 -23.967

Table 4. SA performance compared to the optimal solutions
 Relative Deviation (%)

Jobs No. Opt.
Solutions Mean Std. Dev. Maximum 95% Confidence

Interval
10 75 0.057 0.287 2.267 [0.000, 0.121]
20 53 0.258 0.541 2.904 [0.138, 0.379]
40 38 0.328 0.601 2.885 [0.195, 0.462]
60 16 0.681 1.064 6.532 [0.444, 0.917]
80 7 0.665 0.700 2.602 [0.509, 0.821]
100 4 0.608 0.766 3.633 [0.437, 0.778]

Table 5. Performance comparison of SA for job sequences

(Average relative deviation)

Jobs Fam. SW SW-SA SA-NL SA-NL-
SA SA-L SA-L-

SA
2 0.000 0.000 0.000 0.000 0.000 0.000
4 0.216 0.209 0.254 0.254 0.061 0.061
6 0.330 0.231 -0.399 -0.399 -0.493 -0.493
8 1.782 1.594 1.983 1.983 1.905 1.905

10

10 0.110 -0.324 -0.120 -0.120 -0.137 -0.137
2 0.000 0.000 0.000 0.000 0.000 0.000
4 -1.038 -1.038 -0.764 -0.764 -0.767 -0.767
6 -0.308 -0.391 -0.587 -0.587 -0.556 -0.556
8 -2.938 -3.257 -3.261 -3.261 -3.198 -3.198

15

10 -6.143 -6.496 -6.411 -6.411 -6.398 -6.398
2 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163
4 -5.291 -5.291 -5.643 -5.643 -5.635 -5.636
6 -13.845 -13.930 -13.947 -13.947 -13.953 -13.953
8 -17.942 -18.177 -18.233 -18.233 -18.224 -18.224

20

10 -23.892 -24.173 -23.908 -23.908 -23.967 -23.967

Table 6. Average relative deviation of proposed heuristics
grouped by number of jobs (large problem size)

 20

Jobs GT SW SW-SA SA-NL SA-
NL-SA SA-L SA-L-

SA
20 9.494 0.373 0.216 0.221 0.221 0.211 0.210
40 7.434 0.389 0.240 0.238 0.238 0.152 0.151
60 6.754 0.356 0.240 0.327 0.326 0.232 0.231
80 6.122 0.252 0.145 0.531 0.529 0.383 0.380
100 6.154 0.187 0.100 0.569 0.568 0.418 0.416

Table 7. Average relative deviation of proposed heuristics
grouped by number of families (large problem size)

Families GT SW SW-SA SA-NL SA-

NL-SA SA-L SA-L-
SA

2 0.784 0.000 0.000 0.000 -0.005 0.000 -0.005
4 5.960 0.284 0.269 0.386 0.386 0.352 0.351
6 8.083 0.286 0.165 0.466 0.466 0.354 0.354
8 9.735 0.564 0.341 0.512 0.512 0.391 0.391

10 11.397 0.423 0.166 0.523 0.523 0.297 0.297

Table 8. Average relative deviation of proposed heuristics
grouped by due date tightness values (large problem size)

R GT SW SW-SA SA-NL SA-
NL-SA SA-L SA-L-

SA
0.25 6.242 0.099 0.034 0.230 0.228 0.144 0.142
0.50 7.830 0.259 0.130 0.347 0.345 0.256 0.254
0.75 7.626 0.398 0.267 0.375 0.374 0.328 0.328
1.00 7.069 0.490 0.322 0.557 0.557 0.388 0.388

Table 9. Average relative deviation of proposed heuristics

grouped by family setup time type (large problem size)

Setup GT SW SW-SA SA-NL SA-
NL-SA SA-L SA-L-

SA
[10,20] 9.770 0.306 0.165 0.353 0.352 0.273 0.272
[1, 100] 7.606 0.394 0.248 0.380 0.379 0.276 0.275

[101, 150] 4.198 0.234 0.152 0.399 0.397 0.288 0.286

Table 10. Statistical summary for the heuristic comparisons

Heuristic Comparison d Std. Dev. dmax
95% Confidence

Interval for d
d = (SW) – (SA-L) 0.063 1.650 18.303 [-0.007, 0.134]

d = (SW) – (SA-NL) -0.014 1.693 18.313 [-0.087, 0.058]
d = (SA-NL) – (SA-L) 0.077 0.961 11.551 [0.036, 0.119]

