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ABSTRACT 

This paper considers the single machine scheduling problem with independent 
family (group) setup times where jobs in each family are processed together.  A 
sequence independent setup is required to process a job from a different family.  The 
objective is to minimize total tardiness.  A mixed integer programming model capable 
of solving small sized problems is described.  Several heuristic algorithms are 
proposed and empirically evaluated as to their effectiveness in finding optimal 
schedules.  These results show that several heuristic algorithms generate solutions that 
are quite close to the optimal solutions. 
 
Keywords: Single machine scheduling, family setups, minimizing tardiness, heuristic 
algorithms, empirical results. 
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1. INTRODUCTION 

Group scheduling problems, where all jobs of the same family must be 

scheduled together, have attracted numerous researchers due to their frequent real-life 

occurrence.  Many manufacturers have implemented the concept of group technology 

(GT) in order to reduce setup costs, lead times, work-in-process inventory costs, and 

material handling costs.  Group technology consists of dividing the total set of jobs 

into several subsets, called families, where a family is a subset of jobs that have 

similar requirements in terms of tooling and setups. Since different job families 

require different tooling, a setup is often necessary when a job from a new family is to 

be produced.  Since jobs are assigned to families based on tooling and setup 

requirements, there is usually a negligible or minor setup to change from one part to 

another within the same family. Because there is a major setup change between part 

families, there is an advantage to processing parts belonging to the same family as a 

group.  This is a key difference between the group scheduling problem and the 

traditional scheduling problem. In order to address this issue of major setups between 

families, an optimum job sequence within each family as well as an optimal family 

sequence need to be developed to optimize a given performance measure. 

With current emphasis on customer service and meeting the promised delivery 

dates, major thrust in scheduling research is being directed towards improving 

performance with respect to due dates.  Therefore, a widely used performance 

measure in scheduling research is total tardiness where the tardiness of a job is 

defined as the time delay in delivering a job to the customer.  Under the tardiness 

criterion, there is no benefit gained from completing jobs early, and a delay penalty 

incurs when a job is tardy.  

Reviews of recent research in solving scheduling problems with family setups 

by Monma and Potts (1989), Potts and van Wassenhove (1992), Potts and Kovalyov 

(2000), and Webster and Baker (1995) show that majority of studies in group 

scheduling problems are involved with total (weighted) flow-time and maximum 

tardiness.   For example, Cheng, Gordon, and Kovalyov (1996) presented a 

polynomial time algorithm with the aim of minimizing the maximum cost of a 

schedule subject to minimum total weighted flow-time.  To the best of our 

knowledge, however, there is no published work available on the single-machine 

group scheduling problem to minimize total tardiness.  Therefore, this paper considers 

the single machine group scheduling with sequence independent family setup times 
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and it develops a mixed integer programming model and several heuristic algorithms 

to find schedules with minimum total tardiness. 

The rest of the paper is organized as follows: section 2 describes the problem, 

comments on its complexity and develops a mixed integer programming model of the 

problem.  Several heuristic algorithms, which include extensions and modifications of 

existing algorithms for the single machine total tardiness problem, are proposed and 

discussed in section 3.  Results of computational tests to evaluate the performance of 

these heuristic algorithms are reported in section 4.  Finally, section 5 discusses the 

main results and describes some fruitful directions for future research. 

 

2. PROBLEM FORMULATION AND COMPLEXITY 

The single machine group scheduling problem with family setup times can be 

stated as follows: A given number of families, denoted by f, and the number of jobs in 

each family, represented by ni, for family i = 1, …, f is to be processed, without 

interruption or preemption on a single machine.  The processing time and the due date 

of the jth job from family i are defined by pij and dij, respectively. Furthermore, if a job 

follows the preceding job from the same family, then there is no setup time between 

them; otherwise, the family setup time si is required before the next process. Note that 

si is sequence independent. That is, the family setup time depends on the following 

family only. Additionally, it is assumed that there is a setup prior to the first job in 

any sequence. All jobs are available at time zero, and machine idle time and job 

preemption are prohibited. A machine processes at most one job at a time and it 

cannot process any job while a setup proceeds. All jobs in each family must be 

scheduled together. In other words, there are only f setups in any feasible sequence. 

Moreover, if a job is finished before or on its due date, there is no tardiness. 

Otherwise, the tardiness incurred is given by Tij = Cij - dij, where Tij and Cij represent 

tardiness and completion time of job j from family i, respectively. Thus, tardiness can 

be defined by Tij = max {0, Cij - dij}.  The total number of jobs is n = n1 + n2 +…+ nf.  

With the above definitions, the single machine group scheduling problem 

considered here is one of finding a schedule of n jobs such that the total tardiness of 

all jobs is minimum.  When each family contains only one job, the traditional single 

machine total tardiness problem is known to be binary (in ordinary sense) NP-hard 

(Du and Leung, 1991). Therefore, the group scheduling problem considered in this 

paper is least binary NP-hard.  The question as to its NP-hardness status in the unary 
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sense remains open. In view of the NP-hard nature of the problem, a mixed integer 

programming model of the problem is proposed here.  To do so, we first define the 

notations used in the formulation. 

Notations 

  Xijk = 
⎩
⎨
⎧

otherwise.     ,0
.position in  placed is family  from  job if     ,1 kij
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.position at  job a before needed is  if     ,1 ksi  

  f = number of families. 

  ni = number of jobs in family i. 

  n = total number of jobs = n1 + n2 +…+ nf. 

  Ck = completion time of the job at position k. 

  dij  = due date of the jth job in family i. 

  pij = processing time of the jth job in family i. 

  Tk = tardiness of the job at position k. 

  si = family setup time of family i. 
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The objective of the model is to minimize the total tardiness of the problem. 

Constraints (1) and (2) state that each position can be occupied by only one job and 

each job can be processed only once. Constraint (3) controls the setup time of the first 

position of the sequence, leading to the completion time of the first position in (5). 

Constraint (4) checks whether or not the preceding job and the following job are from 

the same family. If so, there is no setup time between them. Otherwise, a family setup 

time of the job in position k exists. Constraint (6) calculates the completion time from 

the 2nd position to the last position of the sequence. Constraint (7) determines the 

tardiness values for all positions, while constraint (8) ensures that each family has 

only one setup. Note that Xijk and Yi,k are binary (0-1) integer variables. In general, 

there are n2+ (f+2) n variables, with n2 + f n binary integer variables, and (4+f) n + f 

constraints in the proposed model.  

The integer programming model was coded and executed under the 

GAMS/CPLEX environment. The GAMS/CPLEX solver is widely accepted to be one 

of the fastest solvers available today. However, the computational time for a 

medium/large size problem was noted to be excessive. Therefore, the solver speed is 

accelerated by attaching a heuristic solution as an upper bound of a problem. With 

this upper bounding technique, the solver would overlook some iterations with total 

tardiness values worse than its upper bound value.  However, even with this 

technique, the computational time was still huge. Table 1 shows the summary of the 

number of optimal solutions found on small size problems. The values in the 

“Optimal” column indicate the number of problems that could be solved optimally. 

The “Feasible” column shows the number of problems for which feasible solutions 

were found but failed to reach the optimal solutions within a pre-set time limit (10 

minutes) on a Pentium II 400Mhz PC. The values in the “Unfound” column indicate 

that CPLEX did not find a feasible solution within the 10 minute time limit. As shown 
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in Table 1, the number of “Unfound” problems increased when the number of families 

and number of jobs increased. This result supports our conclusion that increasing both 

the number of families and jobs results consumes more computational time.  

 

[Insert table 1 about here] 

 

3. HEURISTIC ALGORTIHMS 

  The proposed heuristics may be classified into two groups: sequence 

construction and sequence improving heuristics.  For each group, we need heuristics 

to sequence the jobs within each family and also sequence the families.  The 

PSK/NBR heuristics (Panwalkar, Smith, and Koulamas, 1993; Holsenback and 

Russell, 1992) were modified and adapted and combined to find a job sequence inside 

each family. Given the sequence of jobs in each family, a GT heuristic was developed 

and implemented to construct an initial sequence of families. The initial sequences 

were further improved by the SWAP and simulated annealing heuristics. The details 

of each of these heuristics are presented next. 

 
The PSK/NBR Heuristic 

For each family, all jobs may be sequenced using the NBR and PSK 

heuristics.  The NBR heuristic (Holsenback and Russell, 1992) and the PSK heuristic 

(Panwalkar, Smith, and Koulamas, 1993) described in Appendix A are well 

recognized to be quite effective in solving the single-family single-machine total 

tardiness problems. Nevertheless, a preliminary experiment was performed to 

investigate the performance of these heuristics. The results showed that neither of the 

two heuristics outperforms the other. The PSK heuristic may perform better than the 

NBR heuristic in one problem, while it may perform worse than the NBR heuristic in 

another problem. Therefore, we used both heuristics, and then selected the better 

(lower) value.  Since both heuristics assume that the job assignment starts from time 

zero, we modified these heuristics to accept an initial starting time C.  Table 2 

summarizes the experimental results of the composite PSK/NBR heuristic, compared 
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to the optimal solutions obtained from GAMS/CPLEX solver. This comparison also 

includes the C time as the additional parameter representing different start time 

distribution. The sample size for each problem size was 160.  Note that the “No. Opt. 

Solutions” column shows the number of data sets for which the PSK/NBR heuristic 

could find the optimal solutions.  

As can be seen from Table 2, the results indicate that the PSK/NBR heuristic 

provides near-optimal solutions. The maximum relative deviation was less than 15%, 

while average relative deviation was less than 3%. Furthermore, the performance of 

both heuristics improved noticeably, as an initial start time was kept sufficiently large. 

Thus, it would be reasonable to use this combined PSK/NBR heuristic to sequence the 

jobs inside each family. 

[Insert table 2 about here] 

 

The GT Heuristic 

As mentioned above, the sole purpose of the proposed GT heuristic is to 

generate an initial sequence for use in a sequence improving heuristic. Let U and S be 

a set of unscheduled families and a set of scheduled jobs, respectively. In the 

sequence construction phase, the GT heuristic generates an initial sequence using the 

following steps. 

1. Set U = {1, 2, …, f}, i = f, and S = φ. 

2. Considering each family in set U, determine the sequence of all jobs in a batch 

for the ith family position. Note that the starting time for family k can be 

determined by ∑∑
−

+=
kUU

j pst , where p is the total processing times of 

family in set U. The near-optimal sequence inside a batch is obtained by the 

PSK/NBR heuristic starting from time t. Calculate the total tardiness at family 

position i for each family.  

3. Select the family with the lowest tardiness for family position i, and remove 

that family from set U. In case of ties, select a family arbitrarily. Put the 
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family batch in front of existing jobs in S. Set i = i –1. If i = 1, enter Step 4. 

Otherwise, return to Step 2.  

4. Determine the sequence of jobs of the last family in U by the PSK/NBR 

heuristic with t = setup time of the last family, then put them in front of the 

existing jobs in set S. Calculate the total tardiness of the final sequence in S, 

and then terminate. 

 

SWAP (SW) Heuristic  

We now turn to sequence improving heuristics.  The proposed SW 

improvement phase consists of two switching strategies: adjacent pairwise 

interchange and randomized interchange. The first interchange, S1, swaps two 

consecutive families, say families at family positions i and i+1, from the first family 

position of the sequence to the last family position, and then a new solution is 

obtained by applying the PSK/NBR heuristic in each family. If the new solution is not 

better than the current solution, those families are switched back to the original 

positions, and then the next pair of adjacent families is considered. However, if the 

solution is improved after switching, the initial sequence is updated and the process 

starts from the family at family position i-1 to examine solution improvement when 

switching a new family at position i and a family at position i-1. The process 

continues until the families at positions f-1 and f are considered. 

Randomized interchange is implemented as the second switching strategy 

(S2). This strategy randomly chooses any two families and switches the family 

positions, and then a new solution is obtained by applying the PSK/NBR heuristic in 

each family. If the solution is not improved, the families are switched back to their 

original positions. This randomized process helps prevent the solution getting stuck 

into a local optimum resulting from swapping only two consecutive families in the 

first switching strategy. The number of randomized switchings is determined by the 

complexity of the first switching strategy, which is f 2. After the randomized 

switching strategy is done, the updated solution is compared with the initial solution 

before the first switching strategy. If the solutions are not identical, then the updated 

solution is retained and the improving process is restarted from adjacent pairwise 

interchange. Otherwise, the search terminates.  
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Simulated Annealing 

The SW heuristic described above may be considered one of the local search 

approaches. One common technique used in such approaches is that a solution is only 

updated whenever an improvement exists. Thus, it may get trapped at a local 

optimum. To overcome this problem, we propose to use simulated annealing (SA) 

algorithms which are similar to the random descent method in that the neighborhood 

is sampled at random. The difference is that, in simulated annealing algorithm, an 

inferior solution may be accepted with some probability.  This approach, developed 

by Kirkpatrick, Gelatt, and Vecchi (1983), has been used widely in solving 

combinatorial optimization problems.  

Simulated annealing allows for uphill moves (accepting an inferior solution) 

with some probability, in an attempt to decrease the chance of becoming stuck in a 

local optimum. In general, a simulated annealing algorithm starts by first defining the 

simulated annealing parameter values. These parameters are the initial temperature 

(Tmax), and final temperature (T0), temperature decay rate (r), and iterations (n). The 

initial temperature is a parameter which acts like an iteration/time counter for the 

algorithm. The temperature is successively reduced by means of a temperature decay 

rate, r. When the temperature reaches final temperature (T0), the procedure is said to 

be ‘frozen’ and is terminated. At every temperature iterations are carried out in search 

for better solutions.  

In our proposed algorithm, within any iteration, an insertion method was used. 

SA would select any two families randomly and interchange the families in those 

positions. Here, all jobs in each family are moved to a new family position, and the 

PSK/NBR heuristic is applied to re-sort the jobs inside each family. The purpose of 

this procedure is to introduce different incumbent family sequences for the insertion 

process. In the insertion process, a family is selected at random and is inserted at 

every family position to find the best solution. Once the best family sequence is 

founded, a new total tardiness value is calculated. Furthermore, simulated annealing 

randomizes the search procedure to allow for the occasional acceptance of an inferior 

solution, in an attempt to reduce the probability of the search becoming trapped in a 

locally optimal solution. SA uses the Boltzmann probability function to determine 

whether to accept a change that would lead to a worsening of the objective function 

value. The Boltzmann probability function is defined by its probability mass function: 
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THe
cp /1

1)( ∆+
=  

where T = current temperature, ∆H = H` – H, H` = total tardiness value before the 

insertion process, and H = total tardiness value after the insertion process.  

 

The steps of the simulated annealing algorithm used here are as follows: 

1. Set the control parameters: Tmax, T0, r, and n. 

2. Set current temperature (Tcur) = Tmax and calculate the total tardiness of current 

sequence, H. 

3. While (Tcur > T0) 

3.1. Perform the following procedures n times. 

3.1.1. Select a random number between 1 to f.  

3.1.2. Insert the selected family into every other family positions and choose 

the family sequence with the lowest total tardiness value, H’. 

3.1.3. Set ∆H = H’- H. 

3.1.4. If ∆H ≤ 0 (downhill move), accept a new sequence. Set H = H’. 

3.1.5. If ∆H > 0 (uphill move), then 

3.1.5.1. Calculate the probability of accepting the new sequence using 

Boltzmann probability mass function, pc. 

3.1.5.2. Select a random number between 0 and 1, say h. if pc > h, accept 

the new sequence and set H = H’. Otherwise, reject the new 

sequence and use the previous sequence for the next iteration. 

3.1.6. Return to 3.1.1. 

3.2. Set Tcur = r .Tcur.  

3.3. Return to 3. 

4. Terminate. 

 

The above simulated annealing algorithm terminates when Tcur ≤ T0. We 

propose to use an additional simulated annealing algorithm to improve the solution. 

Before simulated annealing terminates, the current solution is compared with the 

initial solution from Step 2. If a difference exists, then we go back to Step 2, update 

the initial solution in Step 2 with the current solution, and restart the whole algorithm 

again. The algorithm keeps iterating until the there is no improvement in solution. In 

this paper, the first and second simulated annealing algorithms are called the SA-NL 
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(SA without return) and SA-L heuristics (SA with return), respectively. Further, the 

parameter values used in this study for SA heuristics were: Tmax= 1000; T0  = 0.1; r = 

0.90, and n = f x f.  

 

4. COMPUTATIONAL RESULTS 

 
We now report on the evaluation of the effectiveness of the proposed heuristic 

algorithms in solving the single-machine group scheduling problem to minimize total 

tardiness. 

Experiment Settings 

The parameter settings, such as number of jobs, number of families, the due 

date range parameter and setup type, were determined following the existing literature 

and experimental justification. The processing times in all experiments are randomly 

assigned from a uniform distribution of integers from 1 to 100. Additionally, in 

practice, when a due date is assigned to a job, the possibly earliest due date of that job 

should be at least equal to the required processing time plus its family setup time. As 

a result, due dates are drawn from the integral range of [sq + pqj, max(sq + pqj, rP)],  

where ∑∑∑
= ==

+=
f

i

n
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ij

f

i
i

i

pSP
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. 

We note that r in the above expression is the due date tightness parameter. The 

smaller the value of r, the higher the number of tardy jobs is due to the due date range. 

Four values starting from 0.25 to 1.00 with increment of 0.25 were used in this study. 

Furthermore, a family designation of a job was assigned from a uniform distribution 

with a range of [1, f]. Thus, the total number of jobs in each family would not be 

equal. Moreover, to detect the effect of setup time on the performance of an 

algorithm, three different types of setup time ranges were assigned with discrete 

uniform distribution as follows: type 1: [1, 20]; type 2: [1,100], and type 3: [101, 

150]. Setup time distributions in types 1 and 3 generated small setup time and large 

setup time values, respectively, while setup time type 2 had the same distribution as 

the processing times.  

All heuristics and simulated annealing algorithms were coded in C++ and 

were executed on a Pentium II 400Mhz PC. The experiments are categorized into two 

main sections. In the first section, small problem sizes are considered. Fifteen 

problem sizes considered in this part are 10 x 2, 10 x 4, 10 x 6, 10 x 8, 10 x 10, 15 x 2, 
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15 x 4, 15 x 6, 15 x 8, 15 x 10, 20 x 2, 20 x 4, 20 x 6, 20 x 8, and 20 x 10. Note that a 

problem size of 10 x 2 represents a problem with a total of 10 jobs and 2 families, and 

so on. The heuristic solutions are compared with the optimal solutions obtained from 

GAMS/CPLEX. The second section is involved with the large problem sizes. Twenty 

five problem sizes represent the combinations of 5 job sizes (20, 40, 60, 80, and 100) 

and 5 family sizes (2, 4, 6, 8, and 10). Each problem size consists of 12 combinations 

of 3 setup types and 4 due date range parameters. Sample size for each combination is 

5. Therefore, the total number of data sets used for experiments of small problem 

sizes and large problem sizes are 900 and 1,500 data sets, respectively.  

Results for Small Size Problems 

In this section, small problem size experiments were performed. The solutions from 

heuristics were compared with the optimal solutions from GAMS/CPLEX solvers. 

Note that the GAMS/CPLEX solver was run for 10 minutes for each data set. 

Therefore, a solution from the solver could be infeasible solution, feasible solution, or 

optimal solution. Infeasible solution indicates that the solver could not find a feasible 

solution within time limit (10 minutes). However, if the solver can find a feasible 

solution within the time limit, but fails to find an optimal solution, then the solution is 

a feasible solution. An optimal solution is a solution when the solver optimally solved 

the problem within the time limit. In the experiment, we only consider the data sets 

with feasible and optimal solutions. Let HH be the total tardiness of schedule found by 

using heuristic H and HOptimal be the optimal value of total tardiness found by using 

MILP model described earlier. Then, the performance heuristic H, measured by the 

relative deviation percentage, is defined as:  

100(%) x
H

HH
deviation

Optimal

OptimalH −
=  

To compare the effectiveness of job scheduling and family scheduling 

heuristics, we created another heuristic, called “Perm.”.  This heuristic enumerates all 

possible family sequences, and then uses the PSK/NBR heuristic to obtain job 

sequences inside each family.  In the following discussion, a schedule obtained by this 

heuristic is called a “permutation schedule”. 

Table 3 summarizes the results of Permutation (Perm.), GT, SW, SA-NL, and 

SA-L heuristics, compared to the optimal solutions from GAMS/CPLEX. The results 

show that the performances of SA algorithms are slightly better than the SW 

heuristics. The negative values in Table 3 indicate that the heuristics provide better 
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solutions than the GAMS/CPLEX solver does because the solver sometime provides 

only feasible solutions. These experiments indicated that the permutation approach 

obtains near-optimal/optimal solutions in several cases. The difference in results 

between optimal solutions and permutation solutions is caused by the job sequence 

inside each family. As stated earlier, the PSK/NBR heuristic demonstrated good 

performance in providing near-optimal solutions for job sequence. Therefore, this 

approach can be used to provide a benchmark for comparison purpose in our large 

problem size experiments. We also note that this approach is not appropriate for 

problems with more than 10 families, as the computational time required to enumerate 

all family sequences would increase dramatically. 

 

[Insert table 3 about here] 

 

During the experiments, we noticed that, in most cases, the heuristics could 

obtain the optimal family sequences. Thus, the difference in solution could be caused 

by the job sequence inside each family. Therefore, to improve the solutions, after 

applying the heuristics, we would re-sort job sequences inside each family with 

another simulated annealing approach. We tested the performance of the SA, by 

comparing to the optimal solutions obtained from Szwarc, Grosso, and Della Croce 

(2001). This SA procedure for job sequence is similar to the SA-NL algorithm we 

proposed above, except that we consider jobs, instead of families. The parameter 

values used in this SA algorithm were as follows: Tmax= 10000; T0  = 0.1; r = 0.995, 

and n = 100. The results in table 4 show that the SA algorithm performs slightly better 

than the PSK/NBR heuristic. Therefore, it would be advisable to use this SA 

algorithm to improve the job sequences inside each family. 

 

[Insert table 4 about here] 

 

According to Table 5, the results of heuristics with and without applying SA 

for job sequences are not different at all. One possible reason is that the PSK/NBR 

heuristic already provides optimal solutions, thus SA for job sequence would not 

show much improvement in solutions. This conclusion is supported by the results 

from Table 2. For problems with 20 jobs, out of 160 problems, 117 problems were 
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solved for optimal solutions by the PSK/NBR heuristic. Nevertheless, we hypothesize 

that the results may be different when the problem size increases. 

 
[Insert table 5 about here] 

Large Problem Size Experiments 

In the case of large problem size, we compared the results of heuristics with 

the permutation solutions. Let HH and Hperm  be the total tardiness of schedule found 

by using heuristic H  and Hperm respectively.  Then, the performance of heuristic H, 

measured by the relative deviation percentage, is defined as:  

100(%) x
H

HH
deviation

perm

permH −
=  

According to tables 6-9, applying SA to job sequences after applying the SW 

heuristic and both simulated annealing algorithms (SW-SA, SA-NL-SA and SA-L-

SA) hardly show improvement in solutions at all. Thus, we will only consider the 

results from the SW, SA-NL and SA-L heuristics. Table 6 shows that the GT heuristic 

provides good solutions with average relative deviations less than 10%. The SW and 

simulated annealing heuristics perform quite well, as the average deviations are less 

than 1%. When the number of jobs increases, the performance of the SW heuristic 

imporves, while the performance of the simulated annealing algorithms (SA-NL and 

SA-L) decreases. However, Table 7 shows different results. Grouped by the number 

of families, the SW heuristic appears to perform worse when the number of families 

increases, while the other two SA heuristics seem to perform consistently.  

 
[Insert table 6 about here] 

[Insert table 7 about here] 

[Insert table 8 about here] 

[Insert table 9 about here] 

 

The results in Table 8 show that due date tightness parameters appear to have 

no effect on the GT heuristic’s performance, while the remaining heuristics seem to 

worsen as the due date parameter value increases. In addition, the SW heuristic 

appears to outperform both SA heuristics when the due date tightness value is small. 

However, when the due date tightness value is large, the SA-L heuristic performs 

better than the SW heuristic. Furthermore, Table 9 shows that the SW heuristic 

outperforms the SA-L heuristic when the family setup times are large. 
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Next, a comparison among the SW, SA-NL, SA-L heuristics is presented. 

Table 10 summarizes the basic statistical results including the 95% confidence 

intervals for the differences between any two heuristics. The confidence intervals 

show that the SA-NL heuristic is worsen than the SA-L heuristic, while the SW and 

SA-L heuristics cannot completely outperform each other. Therefore, the SW 

heuristic is recommended to solve problems with a few families, tighter due dates, or 

large family setup times. In other cases, the SA-L heuristic would seem to be a better 

approach. Nevertheless, all heuristics, except the GT heuristic, provide acceptable 

performance with average relative deviation less than 1%. 

 

[Insert table 10 about here] 

 

5. CONCLUSIONS 

The purpose of this research was to develop and evaluate methodologies for 

solving the single machine group scheduling problem to minimize total tardiness. 

Since the complexity of this problem is at least binary NP-Hard, this paper developed 

and implemented effective heuristics that would provide good solutions within a 

reasonable time. Computational results show that the proposed heuristics can provide 

good solutions with the average relative deviation less than 1 %. It is shown that the 

combined PSK/NBR heuristic delivers good performance in obtaining the near-

optimal job sequence inside a family. Furthermore, two promising heuristics, the 

SWAP and SA-L heuristics, may be used in a variety of situations. The SW heuristic 

is recommended for problems with a few families, tighter due dates, or large family 

setup times. In other cases, the SA-L heuristic seems to be a better approach. Our 

suggestion is to use both heuristics, and select the lower solution value.  

Several issues are worthy of future investigation.  First, recent literature 

provides fast and effective optimization algorithms for traditional single machine total 

tardiness problems. Replacing the PSK/NBR heuristic with these algorithms would 

seem to be a good strategy in improving the solutions. Second, designing and 

evaluating other meta-heuristics, such as tabu search and genetic algorithm, for 

improving the proposed solution could be beneficial. Finally, extension of our 

proposed approaches to more complex machine environments and other optimality 

criteria, like the total weighted tardiness, would be worthwhile future research 

projects. 



 15

APPENDIX A 
The PSK Heuristic (Panwalkar, Smith, and Koulamas, 1993) 

 
The PSK heuristic makes n passes from left to right and in the kth pass, a job is 

selected and is put in the kth position. The procedure of PSK heuristic starts with 

sorting all jobs with the SPT rule (ties are broken in an EDD order) and putting all 

jobs in set U. Set C = 0 and S = φ, where C is sum of processing time of jobs in S, and 

S is set of scheduled jobs. Next the procedure of the PSK heuristic is presented as 

follows: 

1. If U contains only 1 job, schedule it in the last position in S and go to Step 

9. Otherwise, label the leftmost job in U as the active job Ji. 

2. If C +  pi ≥ di, then go to Step 8. 

3. Select the next job on the right in U as job Jj. 

4. If di ≤ C + pj, then go to Step 8. 

5. If di ≤ dj, go to Step 7. 

6. Job Jj now becomes the active job Ji. If this is the last job in U, go to Step 

8; ELSE return to Step 2. 

7. If Jj is the last job in U, go to Step 8; ELSE return to Step 3. 

8. Remove job Ji from U and put it in the last position in S, then update the 

value of C by pi, and return to Step 1. 

9. Calculate total tardiness for the sequence and terminate. 

 

The NBR Heuristic (Holsenback, and Russell, 1992) 

 
The NBR heuristic is implemented based on the concept of Net Benefit of 

Reallocation (NBR), which is defined as: 

jjj CRBRNBR −=  

where ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

+=
j

k

ji
ij SpCR

1
,0max , ∑

+=

=
k

ji
jjj TpBR

1
),min( , and Sj = max(dj - Cj, 0) 

Note that CRj is the Cost of Reallocating of a job from position j to position k. 

Furthermore, once the job at position j is moved, the jobs after position j are moved 

forward, resulting in less tardiness values of all jobs between position j and k. It is 

called Benefit of gained from Reallocating (BR). Furthermore, the initial sequence for 

NBR is implemented using modified due date, which is dkmod = max (dk, pk). The 

NBR procedures are presented as follows: 
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Step 1 

Label all jobs. This is necessary because some due dates may have to be modified. 

Adjust due dates as necessary according to the modification rule. 

Order the set by non-decreasing due dates and in the case of equality, by non-

decreasing of processing times. Renumber the jobs so that this sequence is (J1,..., 

JN) 

Calculate the slack or tardiness of each job in the sequence. 

Step 2 

Beginning with the job in the last position, JN, and incrementally proceeding 

toward J1, identify the first job Jk with Tk > pk. If none exists, proceed to Step 7. 

Step 3 

Beginning with Jk-1 and continuing forward J1, identify the first preceding job, Jj, 

with property pj > pk. If none exists, proceed to Step 6.  

Beginning with Jj-1 and continuing forward J1, identify the first preceding job, Jj-m, 

with property pj-m > pk. Continue in this manner until J1 has been considered.  

Step 4 

Compute the NBRj for each job, Ji, identified in Step 3, considering that it will be 

relocated to a position immediately following Jk. 

Relocate that job, Ji, yielding the greatest NBRi, subject to the constraint NBRi > 0. 

If no NBRi > 0, proceed to Step 6. If two or more jobs yield the same NBRi, 

relocating that job with the greatest processing time. This selection method is 

purely arbitrary and is chosen to reduce the number of computations necessary for 

a final ordering. 

Step 5 

Renumber the current sequences as (J1, ..., JN) and recompute the tardiness and   

slack. 

Step 6 

Begin with the job in position k –1 and repeat Steps 2-4, substituting k-1 for k. 

Continue in this fashion until the job in position 1 has been considered.  

Step 7 

      Final ordering is complete. 

Applying the original due dates if any were modified and compute the tardiness of the 
schedule. 
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Table 1. The number of optimal/feasible/unfound solutions 
from GAMS/CPLEX: sequence independent setup case. 

Problem Size Total Optimal Feasible Unfound 
10 x 2 60 60 - - 
10 x 4 60 55 5 - 
10 x 6 60 59 1 - 
10 x 8 60 60 - - 
10 x 10 60 58 2 - 
15 x 2 60 42 7 11 
15 x 4 60 46 4 10 
15 x 6 60 41 15 4 
15 x 8 60 38 17 5 
15 x 10 60 28 24 8 
20 x 2 60 31 12 17 
20 x 4 60 20 13 17 
20 x 6 60 9 38 13 
20 x 8 60 1 41 18 
20 x 10 60 0 38 22 

 
Table 2. Statistical summary for the PSK/NBR heuristic 

 

# 
Jobs  

Initial C 
time 
dist. 

No. Opt. 
Solutions Mean Standard 

Deviation Max 

0 40 0.055 0.239 1.303 
[1,25] 40 0.161 0.860 5.363 

[26,50] 40 0.000 0.000 0.000 10 

[51,100] 40 0.000 0.000 0.000 
0 30 0.197 0.442 1.738 

[1,25] 29 0.148 0.488 2.481 
[26,50] 29 0.071 0.179 0.664 20 

[51,100] 29 0.025 0.107 0.559 
0 20 1.221 0.817 3.397 

[1,25] 21 2.194 2.449 9.454 
[26,50] 21 1.858 1.549 5.944 40 

[51,100] 21 2.056 2.363 11.008 
0 20 2.227 2.096 7.794 

[1,25] 19 1.952 2.024 7.828 
[26,50] 19 2.059 1.567 6.070 60 

[51,100] 19 1.589 1.050 3.941 
0 13 1.895 1.871 6.276 

[1,25] 13 1.509 0.950 3.470 
[26,50] 13 1.387 1.156 3.244 80 

[51,100] 13 1.734 1.657 4.837 
0 10 1.994 1.486 4.386 

[1,25] 11 2.016 1.488 5.441 
[26,50] 10 1.655 1.181 3.490 100 

[51,100] 10 1.920 0.963 2.911  
 
 
 
 
 

Table 3. Average relative deviation of proposed heuristics for small size problems 
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(grouped by number of jobs and number of families ) 
# 

Jobs 
# 

Fam. Perm. GT SW SA-NL SA-L 

2 0.000 0.814 0.000 0.000 0.000 
4 0.000 9.021 0.216 0.254 0.061 
6 -0.618 12.956 0.330 -0.399 -0.493 
8 1.480 15.798 1.782 1.983 1.905 

10 

10 -0.329 18.542 0.110 -0.120 -0.137 
2 0.000 1.391 0.000 0.000 0.000 
4 -1.248 5.143 -1.038 -0.764 -0.767 
6 -0.695 9.617 -0.308 -0.587 -0.556 
8 -3.578 10.736 -2.938 -3.261 -3.198 

15 

10 -6.469 10.697 -6.143 -6.411 -6.398 
2 -1.163 0.230 -1.163 -1.163 -1.163 
4 -5.780 0.805 -5.291 -5.643 -5.635 
6 -13.998 -5.263 -13.845 -13.947 -13.953 
8 -18.459 -8.074 -17.942 -18.233 -18.224 

20 

10 -24.234 -12.244 -23.892 -23.908 -23.967 
 

Table 4. SA performance compared to the optimal solutions 
  Relative Deviation (%) 

# Jobs  No. Opt. 
Solutions Mean Std. Dev. Maximum 95% Confidence 

Interval 
10 75 0.057 0.287 2.267 [0.000, 0.121] 
20 53 0.258 0.541 2.904 [0.138, 0.379] 
40 38 0.328 0.601 2.885 [0.195, 0.462] 
60 16 0.681 1.064 6.532 [0.444, 0.917] 
80 7 0.665 0.700 2.602 [0.509, 0.821] 
100 4 0.608 0.766 3.633 [0.437, 0.778] 

 
Table 5. Performance comparison of SA for job sequences  

(Average relative deviation) 
# 

Jobs Fam. SW SW-SA SA-NL SA-NL-
SA SA-L SA-L-

SA 
2 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.216 0.209 0.254 0.254 0.061 0.061 
6 0.330 0.231 -0.399 -0.399 -0.493 -0.493 
8 1.782 1.594 1.983 1.983 1.905 1.905 

10 

10 0.110 -0.324 -0.120 -0.120 -0.137 -0.137 
2 0.000 0.000 0.000 0.000 0.000 0.000 
4 -1.038 -1.038 -0.764 -0.764 -0.767 -0.767 
6 -0.308 -0.391 -0.587 -0.587 -0.556 -0.556 
8 -2.938 -3.257 -3.261 -3.261 -3.198 -3.198 

15 

10 -6.143 -6.496 -6.411 -6.411 -6.398 -6.398 
2 -1.163 -1.163 -1.163 -1.163 -1.163 -1.163 
4 -5.291 -5.291 -5.643 -5.643 -5.635 -5.636 
6 -13.845 -13.930 -13.947 -13.947 -13.953 -13.953 
8 -17.942 -18.177 -18.233 -18.233 -18.224 -18.224 

20 

10 -23.892 -24.173 -23.908 -23.908 -23.967 -23.967 
 

 
 
 

Table 6. Average relative deviation of proposed heuristics 
grouped by number of jobs (large problem size) 
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# Jobs GT SW SW-SA SA-NL SA-
NL-SA SA-L SA-L-

SA 
20 9.494 0.373 0.216 0.221 0.221 0.211 0.210 
40 7.434 0.389 0.240 0.238 0.238 0.152 0.151 
60 6.754 0.356 0.240 0.327 0.326 0.232 0.231 
80 6.122 0.252 0.145 0.531 0.529 0.383 0.380 
100 6.154 0.187 0.100 0.569 0.568 0.418 0.416 

 

Table 7. Average relative deviation of proposed heuristics  
grouped by number of families (large problem size) 

# 
Families GT SW SW-SA SA-NL SA-

NL-SA SA-L SA-L-
SA 

2 0.784 0.000 0.000 0.000 -0.005 0.000 -0.005 
4 5.960 0.284 0.269 0.386 0.386 0.352 0.351 
6 8.083 0.286 0.165 0.466 0.466 0.354 0.354 
8 9.735 0.564 0.341 0.512 0.512 0.391 0.391 

10 11.397 0.423 0.166 0.523 0.523 0.297 0.297 
 

Table 8. Average relative deviation of proposed heuristics  
grouped by due date tightness values (large problem size) 

R GT SW SW-SA SA-NL SA-
NL-SA SA-L SA-L-

SA 
0.25 6.242 0.099 0.034 0.230 0.228 0.144 0.142 
0.50 7.830 0.259 0.130 0.347 0.345 0.256 0.254 
0.75 7.626 0.398 0.267 0.375 0.374 0.328 0.328 
1.00 7.069 0.490 0.322 0.557 0.557 0.388 0.388 

 
Table 9. Average relative deviation of proposed heuristics  

grouped by family setup time type (large problem size) 

Setup GT SW SW-SA SA-NL SA-
NL-SA SA-L SA-L-

SA 
[10,20] 9.770 0.306 0.165 0.353 0.352 0.273 0.272 
[1, 100] 7.606 0.394 0.248 0.380 0.379 0.276 0.275 

[101, 150] 4.198 0.234 0.152 0.399 0.397 0.288 0.286 
 

Table 10. Statistical summary for the heuristic comparisons  

Heuristic Comparison d  Std. Dev. dmax 
95% Confidence 

Interval for d 
d = (SW) – (SA-L) 0.063 1.650 18.303 [-0.007, 0.134] 

d = (SW) – (SA-NL) -0.014 1.693 18.313 [-0.087, 0.058] 
d = (SA-NL) – (SA-L) 0.077 0.961 11.551 [0.036, 0.119] 

 
 


