
Draft of paper

Properties of the 1 ||
∑

Tj problem

A.A. Lazarev, E.R. Gafarov

Alexandr.Lazarev@ksu.ru,

http:\\ orsot.narod.ru

Abstract

In this paper we show that the run time of well known algo-
rithms [3, 7, 8] for the problem 1 ||

∑

Tj the run time is more
than O(n2(n−1)/3−1) for canonical DL instances and great or equal
O(n2(n−1)/2) for the special case BF. For this cases we have con-
structed two new algorithms.

1 Introduction

Given a set N of n independent jobs that must be processed on a single
machine. Preemptions of jobs are not allowed. The single machine can
handle only one job at a time. The jobs are available for processing at time
0. For a job j, j ∈ N , a processing time pj > 0 and a due date dj are given.
A schedule π is uniquely determined by a permutation of elements of N . We
need to construct an optimal schedule π∗ that minimizes the total tardiness
value F (π) =

∑n
j=1 max{0, Cj(π) − dj}, where Cj(π) is the completion time

of job j in schedule π. Tj(π) = max{0, Cj(π) − dj} is the tardiness of job j
in schedule π. The problem 1 | |

∑

Tj is NP-hard in the ordinary sense [1].
A pseudo-polynomial time O(n4

∑

pj) dynamic programming algorithm has
been proposed by Lawler [2]. The state-of-the-art algorithms of Szwarc et
al.[3, 4] handle special instances [5] of the problem for n ≤ 500.

In well known algorithms [3, 4, 7, 8] following rules of elimination are
used: Elimination Rules 1-4, the calculation of parameters Ej, Lj,
the construction of the modified instance. We will show that this
algorithms have the exponential run time for special cases 1||

∑

Tj problem.
The paper is organized as following. Section 2 presents some basic prop-

erties, definitions and Algorithm A based on elimination rules 1-3.
In section 3 we investigate the run time of algorithms for canonical DL

instances. We present an alternative algorithm O(nδ) time.

1

The special case BF is considered in section 4. For this case we have
algorithm O(n2) time.

Algorithm B-1 modified has decided instances when pj /∈ Z+. In section
5 we investigate its complexity time (the number of change of schedule).

2 Elimination rules.

The set N of jobs is considered to be initially ordered d1 ≤ d2 ≤ . . . ≤ dn, if
dj = dj+1 then pj ≤ pj+1.
Let j∗ denote the job with the largest processing time in N ,
j∗ = arg max

j∈N
{dj : pj = max

i∈N
pi}.

We consider a subset of jobs N ′ ⊆ N , let N ′ = {1, 2, . . . , n′} that must
be processed from time t′ ≥ t0.

Let define the set L(N ′, t′) of all indexes k ≥ j∗ such that:

(a) t′ +
∑k

j=1 pj < dk+1 (Elimination Rule 1 [4, 7]) and

(b) dj +pj ≤ t′ +
∑k

j=1 pj, for all j = j∗(N ′) + 1, k (Elimination Rules
2,3 [4, 7]).

where dn′+1 = +∞.
We’ll denote < {pj, dj}j∈N , t > the instance of the problem 1||

∑

Tj for
jobs of set N with parameters {pj, dj}j∈N from start time t.

Proposition 1 [7] For all instances 〈{pj, dj}j∈N , t0〉 the set L(N, t0) isn’t
empty.

Proposition 2 [2, 5, 7] For all instances 〈{pj, dj}j∈N , t0〉 there exist the op-
timal schedule π∗ such that (j → j∗)π∗ for all j ∈ {1, 2, . . . , k} \ {j∗} and
(j∗ → j)π∗ for all j ∈ {k + 1, . . . , n} for some k ∈ L(N, t0).

We now describe an algorithm which based on Elimination Rules 1-3.

Procedure ProcL (N, t)

0. There exist the instance < {pj, dj}j∈N , t > with set of jobs N =
{j1, j2, . . . , jn} and start time t, dj1 ≤ dj2 ≤ . . . ≤ djn

;

1. IF N = ∅ THEN π∗:= empty schedule, GOTO 6.;

2

2. Let find j∗ ∈ N ;

3. We construct the set L(N, t) for job j∗;

4. FOR ALL k ∈ L(N, t) DO:

πk := (ProcL(N ′, t′), j∗,ProcL(N ′′, t′′)), where
N ′ := {j1, . . . , jk} \ {j∗}, t′ := t, N ′′ := {jk+1, . . . , jn}, t′′ :=
t +

∑k
i:=1 pji

;

5. π∗:=arg min
k∈L(N,t)

{F (πk, t)};

6. RETURN π∗.

Algorithm A

π∗:=ProcL(N, t0).

We realized two versions of algorithm A: in ”depth” and in ”front”.
Let F (j∗, k) be the total tardiness of the modified EDD sequence where job
j∗ is moved from original position j∗ to position k.

Proposition 3 (Elimination Rule 4). [8, 3] Delete the position k from list
L(N ′, t′) if |L(N ′, t′)| > 1 and (F (j∗, k) > F (j∗, k + 1) or F (j∗, k) ≥ F (j∗, i)
for some j∗ ≤ i < k).

Let Bj be the set of jobs that precede job j, and Aj – the set of job that
follow job j in an optimal sequence. The sets Bj and Aj may be empty at
the same time.

Define Ej = t′+P (Bj)+pj, Lj = t′+P (N ′ \Aj) as the earliest and latest
completion time of job j in this sequence where P (N ′) =

∑

j∈N ′ pj.

Proposition 4 (Emmons conditions). [9] There exist an optimal se-
quence π∗ where

1. i precedes j, (i → j)π∗, if di ≤ max(Ej, dj) and pj ≥ pi;

2. j precedes i, (j → i)π∗, if di + pi ≥ Lj and di > max(Ej, dj), pj ≥ pi.

3

Proposition 5 [2] Let Cj = Cj(π
∗) be the completion time of job j in an

optimal sequence π∗. If

min{dj, Cj} ≤ d′
j ≤ max{dj, Cj},

then an optimal sequence π′ for modified instance < {pj, d
′
j}j∈N , t > with due

dates d′
1, d

′
2, . . . , d

′
n is optimal for original instance < {pj, dj}j∈N , t > with

due dates d1, d2, . . . , dn.

Offer to search solution for modified instance where p′j = pj, d′
j =

max{Ej, dj} [3].

3 Canonical instances.

In this section we will describe two NP-hard cases of the problem 1||
∑

Tj –
canonical instances DL[1] and LG. For canonical DL instances we research
the run time of algorithm A. NP-hardness of canonical instances are showed
by reduction from NP- complete Even-Odd Partition problem (EOP):

Given a set of 2n positive integers B = {b1, b2, . . . , b2n}, bi ≥ bi+1, i =
1, 2, . . . , 2n − 1. Is there a partition of B into two subsets B1 and B2 such
that

∑

bi∈B1
bi =

∑

bi∈B2
bi and such that for each i = 1, . . . , n B1 (and hence,

B2) contains exactly one number of {b2i−1, b2i}?

3.1 Canonical LG instances 1||
∑

Tj.

Now we construct the modified Even-Odd Partition Problem (MEOP). There
is the following set of integers A = {a1, a2, . . . , a2n}. Let δi = b2i−1 − b2i, i =
1, . . . , n.

a2n = M + b,
a2i = a2i+2 + b, i = n − 1, . . . , 1,
a2i−1 = a2i + δi, i = n, . . . , 1,

(1)

where b � 2nδ, M ≥ n3b, δ = 1
2

∑n
i=1(b2i−1 − b2i).

Now we present the polynomial reduction from modified EOP problem
to special subcase B-1[7] of the problem 1 | |

∑

Tj.

4

p1 > p2 > . . . > p2n+1, (2.1)
d1 < d2 < . . . < d2n+1, (2.2)
d2n+1 − d1 < p2n+1, (2.3)
p2n+1 = M = n3b, (2.4)
p2n = p2n+1 + b = a2n, (2.5)
p2i = p2i+2 + b = a2i, i = n − 1, . . . , 1, (2.6)
p2i−1 = p2i + δi = a2i−1, i = n, . . . , 1, (2.7)
d2n+1 =

∑n
i:=1 p2i + p2n+1 + δ, (2.8)

d2n = d2n+1 − 2δ, (2.9)
d2i = d2i+2 − (n − i)b + 2δ, i = n − 1, . . . , 1, (2.10)
d2i−1 = d2i − (n − i)δi − εδi, i = n, . . . , 1, (2.11)

(2)

where b = 2n2δ, 0 < ε < mini δi

maxi δi
.

3.2 Canonical DL [1] instances 1||
∑

Tj.

Now we present the other polynomial reduction from modified EOP problem
to special subcase of the problem 1 | |

∑

Tj [1].
Let a2i−1 = b2i−1 + (9n2 + 3n − i + 1)δ + 5n(b1 − b2n) and

a2i = b2i + (9n2 + 3n − i + 1)δ + 5n(b1 − b2n), i = 1, . . . , n.

We construct the canonical DL instance [1] of the problem 1 | |
∑

Tj

for set of jobs N = {V1, V2 . . . , V2n,W1,W2, . . . ,Wn+1}. |N | = 3n + 1. Let
b = (4n + 1)δ. Define due dates and processing times as follows:

pVi
= ai, i = 1, 2, . . . , 2n,

pWi
= b, i = 1, 2, . . . , n + 1,

dVi
=

{

(j − 1)b + δ + (a2 + a4 + . . . + a2i) i = 2j − 1,
dV2j−1

+ 2(n − j + 1)(a2j−1 − a2j) i = 2j, j = 1, 2, . . . , n;

dWi
=

{

ib + (a2 + a4 + . . . + a2i) i = 1, 2, . . . , n,
dWn

+ δ + b i = n + 1.

Let {Vi,1, Vi,2} = {V2i−1, V2i}, i = 1, . . . , n. Define the canonical DL schedule
as follows

π = (V1,1,W1, V2,1,W2, . . . ,Wn−1, Vn,1,Wn,Wn+1, Vn,2, Vn−1,2, . . . , V1,2).

5

Figure 1: Search tree.

Proposition 6 [1] For canonical DL instances there exist always an optimal
schedule that is a canonical DL schedule.

Next we show that algorithms based only Elimination Rules 1-4, the
calculation of parameters Ej, Lj, the construction of the modified instance
have exponential run time for canonical DL instances.

In Fig.1 there shows the search tree of Algorithm A for canonical DL
instances.

Definition Let canonical DL instances, where

δ −
i−1
∑

j:=1

δj ≥ δi, 2 ≤ i ≤ (n − 1),

be SD (shortly delta) instances.
For the case SD

δi >

∑i−1
j:=1 δj − δ

2(n − i + 1)
, 2 ≤ i ≤ (n − 1),

6

holds, because δ −
∑i−1

j:=1 δj ≥ δi > 0, so
∑i−1

j:=1 δj − δ < 0.
For example, if

δi > 2
i−1
∑

j:=1

δj, 2 ≤ i ≤ n,

there is the case SD.

We consider a set of jobs N where jobs have EDD (early due date) order:
(V1, V2,W1, . . . , V2i−1, V2i,Wi, . . . ,Wn,Wn+1).

Definition. The skeleton of a tree that contains ”double branching” (Fig.1)
are called ”basis tree”.

Proposition 7 The search tree contains ”double branching” (Fig.1) when
Elimination Rules 1–3 are used. There exist a branching when we select a
position for each job V2i−1. For job V2i an opposite position is approaching,
i = 1, 2, . . . , n.

Proposition 8 For the case SD Elimination Rule 4 doesn’t reduce ”double
branching” when we select a position for each job V2i−1, i = 1, 2, . . . , n.

Proposition 9 Elimination Rule 4 deletes other positions from the position
list without the 2-nd and the last current positions.

That’s why Algorithm constructs only canonical DL schedules when Elimi-
nation Rule 4 are used.

Proposition 10 When we use parameters Ej, Lj ”double branching” isn’t
reduced.

Proposition 11 Numbers bi don’t influence the position list, only numbers
δi, i = 1, 2, . . . , n, do.

3.3 The run time of well known algorithms for the case
SD.

Proposition 12 For the case SD algorithms that use only rules: Elimina-
tion Rules 1-4, the calculation of parameters Ej, Lj, the construc-
tion of the modified instance have the run time more then O(n2(n−1)/3−1).

7

If a canonical instance doesn’t correspondent the case SD then the ”basis
tree” is not complete. While δ̄ < δ + 2(n − i + 1)(a2i−1 − a2i) the ”double
branching” holds.

If a2k−1 − a2k ≈ a2l−1 − a2l, ∀k, l = 1, . . . , n, then the ”double branching”
holds for i := 1, . . . , n/2.

If δ1 ≥ . . . ≥ δn then the run time is smallest.

3.4 Solution algorithms for canonical instances.

If δ /∈ Z let’s consider the modified instance where bi are multiplied to 2.
The modified instance are equivalent to the original one.

Define dj(t) = dj − dWn+1
+ t, j ∈ N . Let πl(t) and Fl(t) are an

optimal schedule and its total tardiness for the instance with set of jobs
Nl = {V2l−1, V2l,Wl, . . . , V2n−1, V2n,Wn,Wn+1} and due dates dj(t), j =
V2l−1, V2l,Wl, . . . , V2n−1, V2n,Wn,Wn+1, l = n + 1, . . . , 1.

Algorithm B-1 canonical

0. πn+1(t) := (Wn+1), Fn+1(t) := max{0, b − t}
t ∈ Tn+1 := [dWn+1

−
∑n

i=1 a2i − nb − 2δ, dWn+1
−

∑n
i=1 a2i − nb]

1. for l = n, n − 1, . . . , 1, for
t ∈ Tl := [dWn+1

−
∑l−1

i=1 a2i−(l−1)b−(2δ−
∑n

i=l−1 δi), dWn+1
−

∑l−1
i=1 a2i−

(l − 1)b]:

π1 := (V2l−1,Wl, πl+1(t − a2l−1 − b), V2l), π2 := (V2l,Wl, πl+1(t −
a2l − b), V2l−1);

F (π1) := max{0, a2l−1 − dV2l−1
(t)} + max{0, a2l−1 + b − dWl

(t)} +

Fl+1(t − a2l−1 − b) + max{0,
n
∑

j=l

(a2j−1 + a2j + b) + b − dV2l
(t)};

F (π2) := max{0, a2l−dV2l
(t)}+max{0, a2l +b−dWl

(t)}+Fl+1(t−

a2l − b) + max{0,
n
∑

j=l

(a2j−1 + a2j + b) + b − dV2l−1
(t)};

Fl(t) := min{F (π1), F (π2)}; πl(t) := arg min{F (π1), F (π2)}.

2. return: the optimal schedule π1(dWn+1
) and its value of the total tar-

diness F1(dWn+1
).

8

Notice that the step 1 of the algorithm are performed for each integer t
from the interval length is 2δ.

Proposition 13 Algorithm B-1 canonical constructs an optimal sched-
ule for canonical Dl instances in O(nδ) time.

There exist the exact Algorithm B-1 modified. In this algorithm only
”points of change of schedule” are considered. Its run time depends on a
number of that points.

We investigate the number of that points. Our results are presented in
section 5.

4 Special case of the problem 1||
∑

Tj

The following case are considered:

p1 ≥ p2 ≥ . . . ≥ pn,
d1 ≤ d2 ≤ . . . ≤ dn,
dn − d1 ≤ pn.

(3)

This case is called ”hard” instances in the paper [6]. The research of known
algorithms [3, 7, 8] has shown that for case B-1 the number of branchings in
the search tree is big [7].

Define the case BF as follows:

p1 ≥ p2 ≥ . . . ≥ pn,
d1 ≤ d2 ≤ . . . ≤ dn,
dn − d1 ≤ pn,
n = 2k,
∑k

i:=1 pi < dj <
∑n

i:=k pi, j = 1, 2, . . . , n,
p1 − pn � pn,
∑n

i:=k+j+1(p2j−1 − pi) > dk+j − d2j, j = 1, ..., (k − 1),
∑n

i:=k+j+1(p2j − pi) > dk+j − d2j, j = 1, ..., (k − 1).

(4)

We denote the jobs as (1, 2, . . . , n) = (V1, V2, . . . , V2j−1, V2j, . . . , Vn).
Notice that for the case 4 in all n! schedules only k job are tardy.

Proposition 14 For the case (4) the search tree contains ”double branching”
(Fig.1) when Elimination Rules 1–4 are used. There exist a branching when
we select a position for each job V2i−1, i = 1, . . . , (k − 1). For job V2i an
opposite position is approaching.

9

Proposition 15 [7] For all l ∈ N in the case (3) there exist an opti-
mal schedule π∗ = (π∗

1, πl, π
∗
2), where {πl} = Nl = {l, . . . , n}, {π∗

1, π
∗
2} =

{1, . . . , l − 1}.

Proposition 16 For the case (4) algorithms that use only rules: Elimi-
nation Rules 1-4, the calculation of parameters Ej, Lj, the con-
struction of the modified instance have the run time great or equal then
O(n2n/2).

For the case (3) we have pseudo-polynomial Algorithm B-1 O(n
∑

pj)
and Algorithm B-1 modified for pj > 0.

For the case (4) there exist exact Algorithm BF run time O(n2).

5 Computational results

The section describes the search for the number of change of schedule that
will allow to investigate run time of Algorithm B-1 modified for canonical
instances. The results are showed in the table after experiment 8.

We consider a set of EOP instances. For each EOP instance we construct
the canonical DL instance of the problem 1||

∑

Tj. Then we use Algorithm
B-1 canonical and count up the number of points t of change of schedule
for each l.

Experiment 6. We consider all instances for n = 2, 3, 4, 5 when
{

200 ≥ b1 > b2 ≥ b3 > b4 ≥ . . . ≥ b2n−1 > b2n ≥ 1,
bi ∈ Z+,

holds. That’s why the number of instances is great then C2∗n
200 . For n = 5 we

have :

C10
200 =

200!

(200 − 10)!10!
= 22′451′004′309′013′280

instances.

The number of points is counted up in each step l = n, n − 1, . . . , 1 and
then is summarized.

The following results are obtained:

10

n (number of pairs) Max number of points
2 1
3 4
4 11
5 21

The follow property holds:
Property 1.Two EOP instances
{(a1, a2), (a3, a4), . . . , (a2j−1, a2j), . . . , (a2n−1, a2n)}
and {(a1, a2), (a3, a4), . . . , (a2j−1 + 4, a2j + 4), . . . , (a2n−1, a2n)}, where 4 ∈
Z+, a2j−1 + 4 ≤ a2j−2, a2j + 4 ≤ a2j+1 are identical. Appropriate canon-
ical instances have equal points of change of schedule and identical optimal
schedules.

That’s why we denote EOP instance as (δ1, δ2, . . . , δn). We can reduce
the number of considered instances.

Experiment 8. We consider all EOP instances (δ1, δ2, . . . , δn) for n =
2, 3, . . . , 7 when

{

50 ≥
∑n

i:=1 δi,
δi ∈ Z+,

holds.

Denote CSl – the number of points of change of schedule in the step
l = n, n − 1, . . . , 1 of Algorithm B-1 canonical.

We’ve found ”hard” EOP instances that CSn = 1, CSn−1 = 3, CSn−2 ≥
7, CSn−3 ≥ 15, CSn−4 ≥ 31, . . .
Following properties hold:
Property 2. Let S – a set of EOP instances: δ1 =

∑n
i=2 δi. Let U – a set

of ”hard” instances. Then S
⋂

U 6= Ø.
Property 3. An instance from set S have ”complexity” (1,3,7,15,31,0)
(for n = 6). We assume that the complexity for some instance can be
(1, 3, 7, . . . , ai, 2ai + 1, . . .).
Property 4. If we’ll delete the first pair from set B for ”hard” instance then
the modified instance may be not ”hard”.
Property 5. Let the instance (δ1, δ2, . . . , δn) have the complexity
(1,3,7,15,31) then an instance (δ1 + k ∗ 2, δ2, . . . , δn) have this complexity
too.
Property 6. ”Hard” instances can have the solution or not for original EOP.

11

Property 7. For some EOP instance we can construct the equivalent EOP
instance where δ1 ≤ δ2 ≤ . . . ≤ δn. But for the modified instance the run
time of Algorithm B-1 canonical is lower and the number of points of
change of schedule is less then for original one. For modified instances we
have experiment 8.2. Notice, that the case SD correspondents to δ1 ≤ δ2 ≤
. . . ≤ δn.

Computational results:
n B-1 B-1 canonical (CSn, CSn−1, . . . , CS1)

δ1, δ2, . . . , δn δ1 ≤ δ2 ≤ . . . ≤ δn

2 1 (1,0) (1,0)
3 3 (1,3,0) (1,1,0)
4 8 (1,3,8,0) (1,3,2,0)
5 15 (1,3,8,18,0) (1,3,5,5,0)
6 23 (1,3,8,18,32,0) (1,3,7,7,7,0)
7 38 (1,3,8,18,32,63,0) (1,3,7,13,19,19,0)
8 44 - -
9 51 - -

6 Conclusion.

For cases BF and SD of the problem 1||
∑

Tj algorithms that use only rules:
Elimination Rules 1-4, the calculation of parameters Ej, Lj, the
construction of the modified instance have the exponential run time
O(n2(n−1)/3−1) or O(n2(n−1)/2).
It’s difficult to believe that this algorithms will give the solution for n ≥ 100
in this cases.
We’d better use other scheme of instances generation then scheme [5].
For cases BF and SD we have exact pseudo-polynomial and polynomial al-
gorithms.

References

[1] J. Du and J. Y.-T. Leung (1990). Minimizing total tardiness on one
processor is NP-hard, Math. Oper. Res., 15 , pp. 483–495.

[2] E.L. Lawler (1977). A pseudopolynomial algorithm for sequencing jobs
to minimize total tardiness, Ann. Discrete Math., 1 , pp. 331–342.

12

[3] W. Szwarc, F. Della Croce and A. Grosso (1999). Solution of the single
machine total tardiness problem, Journal of Scheduling, 2 , pp. 55–71.

[4] W. Szwarc, A. Grosso and F. Della Croce (2001), Algorithmic paradoxes
of the single machine total tardiness problem, Journal of Scheduling, 4,
pp. 93-104.

[5] C.N. Potts and L.N. Van Wassenhove (1982). A decomposition algorithm
for the single machine total tardiness problem, Oper. Res. Lett., 1 , pp.
177–182.

[6] F. Della Croce, A. Grosso, V. Paschos (2004). Lower bounds on the
approximation ratios of leading heuristics for the single-machine total
tardiness problem, Journal of Scheduling, 7 , pp. 85–91

[7] A. Lazarev, A. Kvaratskhelia, A. Tchernykh (2004). Solution algorithms
for the total tardiness scheduling problem on a single machine, Workshop
Proceedings of the ENC’04 International Conference, pp. 474–480.

[8] S. Chang, Q. Lu, G. Tang, W. Yu (1995). On decomposition of total
tardiness problem, Oper. Res. Lett., 17, pp. 221–229.

[9] H. Emmons (1969). One machine sequencing to minimize certain func-
tions of job tardiness, Oper. Res., 17, pp. 701–715.

13

