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Abstract

This paper addresses the parallel machine scheduling problem in which the

jobs have distinct due dates with earliness and tardiness costs. New lower

bounds are proposed for the problem, they can be classed into two families.

First, two assignment-based lower bounds for the one-machine problem are

generalized for the parallel machine case. Second, a time-indexed formulation

of the problem is investigated in order to derive e�cient lower bounds throught

column generation or Lagrangean relaxation. A simple local search algorithm is

also presented in order to derive an upper bound. Computational experiments

compare these bounds for both the one machine and parallel machine problems

and show that the gap between upper and lower bounds is about 1%.

Keywords: Parallel machine scheduling, earliness-tardiness, Just-in-Time, lower bounds,

IP time-indexed formulation.

1 Introduction

The twenty-year old emphasis on the Just-in-Time policy in industry has motivated

the study of theoretical scheduling models able of capturing the main features of this

philosophy. Among these models, a lot of research e�ort was devoted to earliness-

tardiness problems�where both early completion (which results in the need for stor-

age) and tardy completion are penalized. However, as shown by the recent surveys

of T'kindt and Billaut [27] and Hoogeveen [13], most of this e�ort was dedicated to

the one-machine problem. In this paper, we consider the earliness-tardiness problem

in a parallel machine environment.

A set J = {1, · · · , n} of n tasks are to be scheduled on a set of m identical

machines. The single-machine case (m = 1) will be considered in the computational

tests but no speci�c result is presented for this case. Let pj and rj respectively
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denote the processing time and the release date for job j. Each job j has also a

distinct due date dj ≥ rj . In any feasible schedule, Cj is the completion time of job

j. If Cj > dj , the job is said to be tardy and the tardiness is penalized by the cost

βjTj where Tj = max(0, Cj − dj) and βj > 0 is the tardiness penalty per time unit.

Similarly, if Cj < dj , the job is early and it is penalized by the cost αjEj where

Ej = max(0, dj − Cj) and αj > 0 is the earliness penalty per time unit. We also

assume that all the release dates, due dates and processing times are integer, which

ensures that there exists an optimal solution with integer start times. In the standard

three-�eld notation scheme [10], this problem is denoted by P |rj |
∑

j αjEj + βjTj .

The problem is known to be NP-complete even if there is only one machine and no

earliness penalties [16].

Chen and Powell [6] study the special case where the jobs have an unrestrictively

large common due date d ≥
∑

j pj . This problem is formulated as an integer linear

programming. By using column generation, a strong lower bound is derived and a

branch-and-bound algorithm is proposed to solve the problem to optimality.

More recently, Ventura and Kim [29] study a related problem with unit execution

time tasks and additional resource constraints. From the Lagrangean relaxation of

a zero-one linear programming formulation of the problem, both lower bound and

heuristics are derived. The authors use the property that the special case P |rj ; pj =
1|

∑
j αjEj + βjTj is solved as an assignment problem.

In this paper, we study computational issues related to the use of standard math-

ematical formulations for machine scheduling problems in order to derive new lower

bounds for the problem P |rj |
∑

j αjEj + βjTj . This computational analysis was

particularly motivated by the use of time-indexed formulations [7] for which the

bounds provided by the solution of LP-relaxation or Lagrangean relaxations are very

strong [28]. We will focus on two of these formulations � namely the xjt-formulation

and the yjt-formulation according to the terminology of Savelsbergh et al. [22]. In

these formulations, xjt = 1 means that job j starts at time t while yjt = 1 means

that it is in process at time t. These formulations have been useful in the design of

strong lower bounds for problem with di�erent regular criteria. The reader can refer

to the works of Luh et al. [17], De Sousa and Wolsey [26], van den Akker et al. [28]

for single machine scheduling problems. In a more theoretical approach, Queyranne

and Schulz [21] study the polyhedral properties of such formulations.

The main contribution of this paper is to study these formulations for earliness-

tardiness scheduling problems which are renowned for being hard to solve due to the

di�culty of devising good lower bounds. The lower bounds tested on this paper are

not all new �references are given in each section� but, to the best of our knowledge,

they have not been tested and compared for earliness-tardiness problems. Some of

the lower bounds as well as the heuristic algorithm can be considered as new since

they are generalization to the parallel machine case of lower bounds and algorithms

previously developed for the one-machine problem. Finally, experimental comparison

of these algorithms is of importance because it helps choose the best algorithm in

function of the problem parameters.

The paper is organized as follows. Section 2 provides lower bounds based on
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the linear and Lagrangean relaxations of time-indexed problem formulation. In Sec-

tion 3, a new lower bound based on the single-machine bound of Sourd and Kedad-

Sidhoum [25] is presented. The generalization of the bound of Sourd [23] is also

introduced. Section 4 is devoted to a simple heuristic based on local search. and,

in Section 5, we give some computational results which illustrate the e�ectiveness of

the lower bounds. Some conclusions and extensions are �nally discussed in Section 6.

2 Lower bounds based on the time-indexed formulation

2.1 Time-indexed formulation

We present an Integer Program (IP) for the problem P |rj |
∑

j αjEj + βjTj with

integer start times�we recall that all the release dates, due dates and processing

times are integer so that there exists an optimal schedule with integer start times.

We use the time-indexed formulation (or xjt-formulation) [7]. It is based on time-

discretization where time is divided into periods (or time slots), where period t starts

at time t and ends at time t+1. Let T denote the scheduling horizon, thus we consider

the time-periods 0, 1, 2, · · · , T − 1. A simple interchange argument shows that there

is an optimal schedule that completes before T ? = maxj dj + maxj pj +
⌈P

j pj

m

⌉
(we

use the assumption dj ≥ rj): we can indeed suppose that, in an optimal schedule,

there is no idle period after maxj dj , so, if a job completes after T ? on a machine, it

can be processed earlier by another machine. So we will consider that T = T ?. In

general, an optimal schedule completes much before T so that this discretization is

not good. We will show in Section 2.2 a way to remedy this problem.

Let xjt be a binary variable equal to 1 if the task j starts at time t and 0
otherwise. Let [t, t′] denotes the set of the discrete instants between t and t′ and let

estj(t) = max(rj , t−pj+1) denote the earliest start time of j such that it is processed
in time slot t. Let us also de�ne the start cost cjt = max(αj(d′j− t), βj(t−d′j)) where
d′j = dj − pj is the target start time of task j. The time-indexed formulation of the

problem is

min
∑

j∈J
∑T−pj

t=rj
cjtxjt (1)

s.t.
∑T−pj

t=rj
xjt = 1 ∀ j ∈ J (2)∑

j∈J
∑t

s=estj(t)
xjs ≤ m ∀ t ∈ [0, T − 1] (3)

xjt ∈ {0, 1} ∀ j ∈ J , ∀ t ∈ [rj , T − pj ] (4)

Equations (2) ensure that each job is proceeded once. Inequalities (3), also

refered to as resource constraints, state that at most m jobs can be handled at

any time. Clearly, this formulation allows the occurence of idle time. The integer

program renders a solution that corresponds to an optimal schedule for the problem

P |rj |
∑

j αjEj + βjTj .

The MIP solver ILOG CPLEX 9.0 is able to solve all our smallest instances with

n = 30 jobs and m = 2, 4, 6 machines in less than one hour. In these test instances,

the mean job processing time is about 50, clearly, for shorter processing times the
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formulation would be more e�cient. For the single machine case, preliminary tests

show that only instances with about 20 jobs can be solved within one hour. So, for

larger instances (or if CPU time is limited), a relaxation of the formulation must be

considered.

2.2 Linear relaxation with column generation

An important advantage of the xjt-formulation is that the linear relaxation obtained

by dropping the integrality constraints (4) provides a strong lower bound which

dominates the bounds provided by other mixed integer programming formulations

[28]. A major drawback of this formulation is its size. For instance, in our preliminary

tests, the linear relaxation of our 50-job instances cannot be solved due to lack of

memory.

In order to overcome this di�culty, we tested and compared two classical reme-

dies. This subsection is devoted to column generation and the next two subsections

presents two di�erent Lagrangean relaxations.

The xjt-formulation has O(nT ) binary variables but it can be observed that an

optimal solution has only n variables set to 1. In a solution of the linear relaxation,

most variables are also null. Therefore, we implemented the following column gen-

eration algorithm to help ILOG CPLEX solve the linear relaxation. A good feasible

schedule (S1, · · · , Sn) is �rst computed with the heuristic described in Section 4. The
linear program restricted to the n variables xjSj (for 1 ≤ j ≤ n) is initially considered

and solved in order to get the reduced costs of the variables xjt that have not been

added to the linear program yet. All the variables with nonpositive reduced costs are

added to the program and the procedure is iterated until there is no variable with a

negative reduce cost. The linear relaxation is then solved.

According to our tests, the e�ciency of the algorithm is improved with the fol-

lowing modi�cation. All the variables whose reduced cost is less than a small value

(equal to 5 in our implementation) are added instead of adding only variables with

nonpositive costs. In this way, the number of iterations and the computation time

are signi�cantly decreased.

2.3 Relaxing the number of occurences

Another way to cope with the di�culty of the xjt-formulation is to consider the

Lagrangean relaxation of the equalities (2), which means that a job can be allowed

to be processed several times in the relaxed problem. This approach is very related

to the one proposed by Péridy et al. [20] for the one-machine problem in order to

minimize the weighted number of late jobs. However, we do not generalize their

so called short term memory technique which would be too time-consuming for our

parallel machine problem.

We introduce a Lagrangean multiplier µj for each constraint (2). For each vector

µ = (µ1, · · · , µn), a lower bound denoted by LR1(µ) is obtained by solving the
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Lagrangean problem

min
xjt

∑
j∈J

T−pj∑
t=rj

(cjt − µj)xjt +
∑
j∈J

µj (5)

subject to the resource constraints (3) and (4)

The solutions of this dual problem represent schedules in which jobs satisfy the

resource constraints but they can be processed several times, exactly once, or not

at all. Similarly to van den Akker et al. [28], we will refer in the sequel to such

schedules as pseudo-schedules.

We now show that the dual problem can be solved as the following network �ow

problem. The so called time-indexed graph GT is de�ned as a digraph in which the

nodes are the time periods 0, 1, · · · , T − 1 plus a node representing the horizon T .

For each variable xjt, we de�ne a �process� arc between node t and node t + pi with

a cost cjt − µj and a unit capacity and, for each node t < T − 1, we de�ne an �idle�

arc between t and t + 1 with a null cost and a capacity m.

Clearly, there is a one-to-one relation between integer m-�ows from 0 to T in

GT and the pseudo-schedules of the m machine scheduling problem: a (unit) �ow in

the arc (t, t + pj) corresponds to processing job j between t and t + pj . Moreover,

the cost of the �ow in the arc and the cost of starting j at t are equal so that the

minimum cost �ow of capacity m renders LR1(µ).
This is a generalization of the work of Péridy et al. [20] for the one-machine

problem: when m = 1, the minimum cost integer �ow is a shortest path from 0 to

T , which corresponds to the shortest path problem of the Lagrangean relaxation of

Péridy et al. It can be observed that solving the Lagrangean problem can also be

seen as the problem of coloring an interval graph with a set of m colors such that

the total weight is minimum. The nodes of the graph correspond to the intervals

[t, t+pj) in which the jobs are possibly processed. In the m-coloring, two intersecting

intervals must receive distinct colors among the m available ones. This problem is

described and solved by Carlisle and Lloyd [4].

The function LR1(µ) has now to be maximized in order to get the best pos-

sible lower bound. This can be made through the subgradient method. Finally,

we observed that the Lagrangean problem (5) returns integral solutions even if the

integrality constraints are relaxed. Therefore, maxµ LR1(µ) is equal to the linear

relaxation of Section 2.2, that is the Lagrangean relaxation cannot �nd better lower

bounds than the linear relaxation but may eventually �nd them in less CPU time by

using the structure of the network �ow.

2.4 Relaxing the resource capacity constraints

We now study the Lagrangean relaxation of the resource constraints (3) of the xjt-

formulation. We introduce a Lagrangean multiplier µt ≥ 0 for each constraint. This

Lagrangean relaxation is presented by Luh et al. [17] for the minimization of the sum

of weighted tardiness. It can be noted that this approach can be extended to deal
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with precedence constraints even if the Lagrangean problem becomes more complex:

in the context of job-shop scheduling, Chen et al. [5] study the in-tree precedence

constraints and, for the Resource Constrained Project Scheduling Problem, Möhring

et al. [18] address the Lagrangean problem with a general precedence graph.

For each vector µ = (µ0, · · · , µT−1) ≥ 0, a lower bound denoted by LR2(µ) is

obtained by solving the Lagrangean problem

min
xjt

∑
j∈J

T−pj∑
t=rj

cjtxjt + µt

 t∑
s=estj(t)

xjs −m

 (6)

subject to the constraints (2) and (4)

This problem can be decomposed into n independent problems (one problem per

job). Ignoring the constant term, we have to minimize
∑

t

(
cjt +

∑t
s=estj(t)

µs

)
xjt

for all j ∈ [1, n]. For each j, an obvious solution consists in setting to 1 the variable

xjt with the smallest coe�cient and letting the other variables xjt to 0. Therefore,

the Lagrangean problem is solved in O(nT ).
As for the previous Lagrangean relaxation, LR2(µ) is maximized through the

subgradient method and again the integrality property of the Lagrangean problem

shows that maxµ LR2(µ) is equal to the linear relaxation value.

3 Assignment-based lower bounds

3.1 Assignment-based IP formulation

We now consider the assignment-based formulation or yjt-formulation. This formu-

lation assumes the same time-discretization as for the xjt-formulation in Section 2.1.

Here, yjt is a binary variable equal to 1 if the task j is processed in period t and 0
otherwise. However, we will see in Section 3.3 how the discretization can be avoided.

The rationale for this formulation is to regard the scheduling problem as the

assignment of unit task segments to unit time slots. The idea originates in the article

of Gelders and Kleindorfer [9] for the single machine weighted tardiness problem.

Sourd and Kedad-Sidhoum [25] and Bülbül et al. [3] have independently generalized

this approach for the earliness-tardiness one-machine problem. We show that the

approach can also be generalized to the parallel machine case. In the following yjt-

formulation, the additional binary variables zjt indicate that a new block of job j

starts at time t (which means that zjt = 1 if and only if yjt = 1 and yjt−1 = 0).

min
∑

j∈J
∑T−pj

t=rj
c′jtyjt (7)

s.t.
∑T−pj

t=rj
yjt = pj ∀ j ∈ J (8)∑

j∈J yjt ≤ m ∀ t ∈ 0, · · · , T − 1 (9)

zjrj ≥ yjrj ∀ j ∈ J (10)

zjt ≥ yjt − yjt−1 ∀ j ∈ J , ∀ t ∈ {rj + 1, · · · , T − pj} (11)∑T−pj

t=rj
zjt = 1 ∀ j ∈ J (12)

yjt, zjt ∈ {0, 1} ∀ j ∈ J , ∀ t ∈ {rj , · · · , T − pj} (13)
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Let us �rst observe that the objective function is reformulated. The cost of a

task does not depend on its completion time but is split among all the time slots

when it is processed. Then, the assignment costs c′jt to schedule a part of job j in

time slot t must satisfy

t−1∑
s=t−pj

c′js = max (αj(dj − t), βj(t− Tj)) ∀t ∀j ∈ J (14)

and a simple solution proposed by Sourd and Kedad-Sidhoum [25] is

c′jt =


αj

⌊
dj−t−1

pj

⌋
if t < dj ,

βj

⌈
t+1−dj

pj

⌉
if t ≥ dj .

(15)

Equations (8) ensure that each job is entirely executed between rj and T , con-

straints (9) state that at most m jobs are in process at any time. Equations (10)

and (11) de�ne zjt such that it is equal to 1 when a block of job j starts at t and

equations (12) force each job to be processed in only one block, that is without

preemption.

This formulation has more variables and more constraints that the xjt-formulation,

which means that only small instances can be solved by ILOG CPLEX.

3.2 Discrete lower bounds

In the rest of the paper, we relax all the constraints related to the zjt variables.

Therefore, in other words, we consider a preemptive relaxation of the problem. Note

however that the objective function has been reformulated so that the problem is

not P |pmtn, rj |
∑

αjEj + βjTj. Indeed, the latter problem can be shown to be

equivalent to P |pmtn, rj |
∑

wjTj, which means that the earliness costs are relaxed

when �usual� preemption is allowed.

Clearly, the relaxed problem (7) subject to (8), (9) and (13) is a minimum cost

�ow problem in a bipartite network N (n, T ) (see Figure 1). The n sources are the

n jobs and the supply of source i is at most pi. There are T sinks with a demand

at most m. Any source j is linked to any sink t ≥ rj by an arc with a unit capacity

and a cost equal to c′jt. Since T has been chosen large enough, the maximum �ow

in N (n, T ) is equal to P =
∑

j pj . The solution of the relaxed problem, and thus a

lower bound for our problem, is the minimum cost P -�ow.

When m = 1, Sourd and Kedad-Sidhoum [25] show that the �ow problem can be

solved in O(n2T ) time by adapting the well-known Hungarian algorithm [15]. For

m > 1, the problem can be e�ciently solved by the algorithms of Ahuja et al. [1]

that specialize several classical �ow algorithms for the bipartite networks where the

number of sinks is much larger than the number of sources (they are called unbalanced

bipartite networks).

It was observed in Section 2.1 that T is usually much larger than the makespan

of the schedule, which means that the �ow going to the sinks with the highest indices
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Figure 1: The discrete assignment network.

is null in general. Let us here consider that T is no more equal to T ? but satisfy

maxj dj < T < T ? and let us assume that, in an optimal �ow in N (n, T ), there
is no �ow going to the sink T − 1. As the assignment costs are non-decreasing

when T increases (for T > dj), a simple interchange argument shows that the �ow

in N (n, T ) is also an optimal �ow for N (n, T ?). This suggests to �rst run the

�ow algorithm for some T ∈ (maxj dj , T
?) and to iteratively add sinks until an

optimal �ow with no �ow going to the last sink is null. In our tests, we start with

T = min(T ?, 3/2 ∗ max(maxj dj ,maxj rj + pj ,
∑

j pj)). Very often, the optimality

can be proved at the �rst step of the algorithm.

Bülbül et al. [3] relax the equality (14) and propose assignment costs that satisfy

the inequality
∑t−1

s=t−pj
c′js ≤ max (αj(dj − t), βj(t− Tj)):

c′jt =


αj

pj
((dj − pj/2)− (k − 1/2)) if t < dj ,

βj

pj
((k − 1/2)− (dj − pj/2)) if t ≥ dj .

(16)

Clearly, the corresponding minimum cost �ow is still a lower bound for the problem

and experimental results show that this lower bound is often better than the lower

bound proposed by Sourd and Kedad-Sidhoum. This variant in the de�nition of the

assignment cost is also tested in Section 5.

3.3 Continuous lower bound

The computation of the lower bound presented above is not polynomial because the

number of time slots is not polynomial in n. For the one-machine problem, Sourd [23]

presents a similar lower bound that avoids to discretize the scheduling horizon. We

show in this section how to adapt this approach for the parallel machine problem.

The main idea is that preemption of tasks is allowed at any time instead of con-

straining it to be at integer time points only. Therefore, instead of de�ning T values

c′jt for each task j, a piecewise linear function fj(t), t ∈ R with only two segments is

used to represent the assignment costs in a so-called continuous assignment problem.

The proposed function is

fj(t) =

−αj

2 + αj

pj
(dj − t) if t ≤ dj ,

βj

2 + βj

pj
(t− dj) if t > dj .

(17)
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Figure 2: Continuous lower bound for m = 2 machines

It satis�es the inequality
∫ t
t−pi

fi(s)ds ≤ max (αj(dj − t), βj(t− Tj)) which can be

seen as a continuous relaxation of (14).

The counterpart of the decision variables xjt are decision function variables δj(t)
that must be piecewise constant with values in {0, 1}, δj(t) is equal to 1 when job j

is in process at time t and 0 otherwise. Then, the continuous version of the problem

in Section 3.2 is

min
∑

j∈J
∫∞
0 fj(t)δj(t)dt (18)

s.t
∫∞
0 δj(t)dt = pj ∀j ∈ J (19)∑
j∈J δj(t) ≤ m ∀t ≥ 0 (20)

δj(t) ∈ {0, 1} ∀t ≥ 0 ∀j ∈ J (21)

In order to get a lower bound, we consider the Lagrangean relaxation of con-

straints (19). For a vector µ = (µ1, · · · , µn), we have

min
∑

j∈J µjpj +
∑

j∈J
∫∞
0 (fj(t)− µj)δj(t)dt

s.t
∑

j∈J δj(t) ≤ m ∀t ≥ 0

Therefore, we have independent problems for each time t and, by de�ning

gµ(t) = min
∑

j∈J (fj(t)− µj)δj(t)dt

s.t
∑

j∈J δj(t) ≤ m

the solution of the problem is
∑

j∈J µjpj +
∫∞
0 gµ(t)dt.

In other words, computing gµ(t) consists in choosing at most m values in the

multiset of real values {f1(t)− µ1, f2(t)− µ2, · · · , fn(t)− µn} such that the sum of

these values is minimal. This can be achieved by sorting these values and selecting

the m smallest values if there are at least m negative values or selecting all the

negative values otherwise. Figure 2 gives a geometric illustration of the computation

of
∫

gµ(t)dt for a two-machine problem. The integral is the sum of the two hatched

areas.

Let us de�ne, for simple notations, f0(t) = 0 and µ0 = 0 and let us consider an

interval I ⊂ R+ on which the functions fi − µi (i = 0, · · · , n) do not crossover, that

is for any 0 ≤ i < j ≤ n, we have either fi(t) − µi 6= fj(t) − µj for any t ∈ I or

fi(t) − µi = fj(t) − µj for any t ∈ I. Since the indices of the m smallest negative
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values are invariant when t varies in I, the function gµ(t) is linear on I. Therefore,

we simply have to compute gµ(t) for the time points where two functions intersect.
In order to determine both the time points where two functions intersect and

the m smallest negative values, we use an immediate adaptation of the well-known

sweeping algorithm to determine all the intersections between segments [2]. This

algorithm runs in O(n2) so that
∫

gµ(t)dt can be computed in O(n2m).
The function µ 7→

∫
gµ(t)dt is a concave function that can be maximized through

a subgradient method. By adjusting the proof of [23] to the present case, we can

show that this maximal value is equal to the optimum of the mathematical program

(18-21), that is there is no duality gap. Finally, instead of using the simple�and

satisfactorily e�cient�subgradient method, the optimum can be computed in poly-

nomial time by the ellipsoid method (see [23] for details).

4 Feasible solutions

Typically, good feasible solutions can be derived from good relaxations of a problem.

For the one-machine case (m = 1), Sourd and Kedad-Sidhoum [25] and Bülbül

et al. [3] present di�erent heuristic algorithms grounded on the assignment-based

lower bound. These heuristics could be directly adapted for the general case (m > 1)
and very similar heuristics could be derived from the other time-indexed lower bounds

(see e.g. [22]). It can however be observed that computing these lower bounds is

somewhat time-consuming. Therefore, we present in this section a simple local-search

algorithm which runs faster than the computation of the lower bounds presented in

the previous sections. Despite its simplicity, it is experimentally very e�cient.

A feasible solution is represented by m lists (or sequences) of jobs which cor-

respond to the sequencing of jobs on each machine. Clearly, these m lists form a

partition of the job set into m subsets (any job is processed by one and only one

machine). These lists are denoted by (L1, L2, · · · , Lm) and nj denotes the number of

jobs in Lj . The associated cost is the minimum cost with respect to the job/machine

assignment and to the sequencing. It can be estimated by computing the optimal

timing for each sequence, which can be done in polynomial time (see [13] for a review

of the algorithms, we use the algorithm of Sourd [24]).

The neighborhood of a feasible solution is the union of three basic neighborhoods

corresponding to the three following basic moves :

1. job-swap: select two jobs (processed by the same machine or not) and inter-

change their machine assignment and position in the sequence.

2. extract and reinsert : select one job, remove it from its list and reinsert it in

any list at any position.

3. list-crossover : select two lists, say Li and Lj and two positions 0 ≤ νi ≤ ni

and 0 ≤ νj ≤ nj . Replace them by a list formed by the �rst νi elements of Li

followed by the last nj − νj elements of Lj and a list formed by the �rst νj

elements of Lj followed by the last ni − νi elements of Li.
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In order to speed-up the neighborhood search, we adapted the technique pre-

sented in [11, 12], which makes use of the dynamic programming approach of [24] to

store some partial results that can then be re-used to compute the timing of several

neighbor sequences. As the adaptation is obvious, we do not give more details and

the reader is refered to the above references.

The descent algorithm starts with a random partition of the jobs into m subsets.

Each subset is randomly sequenced so that a feasible initial schedule is obtained.

Then the local search is iterated until a local minimum is found. This descent

procedure is iterated several times�in our tests, 10 times or 100 times�starting with

di�erent random initial solutions. The best local minimum is eventually returned.

5 Computational Experiments

5.1 Algorithms and implementation

All of our algorithms are implemented in C++. Here is the list of implementations

with some notes including the libraries used by each algorithm.

LinCG It implements the linear relaxation with column generation presented in

Section 2.2. This algorithm calls ILOG CPLEX 9.0 to solve the linear problems.

LagOcc It implements the Lagrangean relaxation of the number of job occurences

presented in Section 2.3. The network �ow problem is solved with the library

GOBLIN 2.6 [8].

LagRes It implements the Lagrangean relaxation of the resource constraints pre-

sented in Section 2.4.

AssSKS It implements the discrete assignment-based lower bound (Section 3.2)

with the assignment costs de�ned by Sourd and Kedad-Sidhoum [25]. Surpris-

ingly, preliminary tests have shown that the dual simplex algorithm of ILOG

CPLEX is faster than GOBLIN, so we have kept the implementation based on

ILOG CPLEX. The tests have shown that the implementation in which the

algorithm is initialized with the complete network (i.e. with T = T ?) is about

50% slower than the implementation based on �sink generation� described in

Section 3.2. Therefore, we only consider the latter implementation in the ta-

bles.

AssBKY It is the variant of the above algorithm with the assignment costs de�ned

by Bülbül et al. [3].

ContAss It implements the continuous assignment-based lower bound presented

in Section 3.3.

Heur It implements the local search algorithm presented in Section 4. The algo-

rithm is run 10 times.
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The algorithms LagOcc, LagRes and ContAss use the subgradient method.

For each algorithm, the method is stopped when 100 iterations are met without any

improvement or when the time limit of 600 seconds is reached. Due to the column

generation method, LinCG, AssSKS, AssBKY are ensured to have a lower bound

only at the very end of the computation so no time limit is �xed.

5.2 Instances

We randomly generated a set of instances using usual parameters of the earliness-

tardiness scheduling literature (see e.g. [14]). The processing times are generated

from the uniform distribution {pmax/10, · · · , pmax} with pmax = 100. Clearly, this

parameter is of prime importance for the computation of our lower bounds because

the size of the scheduling horizon discretization is signi�cantly decreased for small

values of pmax. When pmax = 10 or pmax = 20, Bülbül et al. [3] show that com-

putation times are indeed dramatically decreased for their assignment based lower

bound. We also recall that Sourd [23] shows that the �continuous� lower bound

remains competitive for very large pmax because it avoids the discretization. For

simplicity of the comparison, all the release dates are equal to 0. The earliness and

tardiness factors are randomly chosen in {1, · · · , 5}. There are two parameters to

compute the due dates, namely, the tardiness factor τ and the range factor ρ. Given

τ , ρ and J , the due date of each job j is generated from the uniform distribution

{θj , · · · , θj + ρ
∑

k∈J pk} where θj = max(rj + pj , (τ − ρ/2)
∑

k∈J pk).
We generated job sets for n varying in {30, 60, 90}, τ ∈ {0.5, 1} and ρ ∈ {0.2, 0.6}.

We then obtained 12 di�erent job sets and we tested them for m equal to 1, 2, 4 and

6 so that each algorithm was run for 48 instances. Our choice for relatively small

values for the tardiness factor τ was motivated by the fact that in most practical

scheduling problems the due dates are not very distant and these instances are more-

over computationally harder. Clearly, some of the algorithms could bene�t from a

special implementation for the special case m = 1 (for example, AssSKS and Ass-

BKY can use the O(n2T ) algorithm of [25]). As the single machine problem is not

the main topic of this paper, we only compare here the general implementation for

any value of m. To the best of our knowledge, the lower bounds derived from the

xjt- and yjt-formulation have never been compared in the literature so that we think

that the experience must be reported in our tests.

5.3 Results

The results for each instance and each algorithm are reported in Table 1. The �rst

four columns indicate the instance parameters. The next column provides the best

upper bound known for the instance which correspond to the best solution provided

by ten runs of the algorithm Heur. The other columns present for all the tested

algorithms the �nal result and the CPU time. The instance (n = 30, τ = 0.5, ρ =
0.6,m = 6) is shown by Heur to have a feasible solution at no cost so there is no need
to run the lower bound algorithms. It can also be observed that there are missing
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Heur AssSKS AssBKY ContAss LinCG LagRes LagOcc

m = 1 0.00% 3.59% 1.43% 3.56% 0.73% ? 1.16% 12.09%

15.4s 607s 1210s 417s 2124s ? 364s 600s

m = 2 0.21% 7.93% 5.17% 5.49% 0.56% 0.65% 19.74%

29.6s 107s 229s 337s 1200s 54.7s 562s

m = 4 1.04% 23.65% 34.52% 37.60% 0.68% 1.01% 12.65%

17.5s 21.1s 36.9s 257s 176s 9.65s 447s

m = 6 0.83% 26.32% 55.3% 55.60% 0.54% 0.66% 18.50%

11.0s 11.5s 15.0s 243s 62.2 s 25.4s 440s

n = 30 0.71% 23.92% 34.55% 37.71% 0.39% 0.68% 6.37%

0.54s 1.23s 3.21s 18.2s 25.3s 3.38 292s

n = 60 0.22% 16.0% 30.53% 29.89% 0.48% 0.59% 10.15%

7.81s 19.8s 40.0s 270s 246s 18.8s 539s

n = 90 1.14% 17.8% 28.23% 29.59% 0.90% 1.05% 33.3%

50.2s 124s 250s 516s 1228s 67.5s 604s

τ = 0.5 0.92% 17.11% 28.35% 28.8% 0.62% 0.83% 23.89%

14.6s 69.5s 150s 306s 694s 45.2s 517s

τ = 1.0 0.47% 20.97% 33.52% 35.54% 0.57% 0.72% 10.34%

25.9s 32.7s 57.8s 274s 367s 18.7s 480s

ρ = 0.2 0.28% 10.55% 8.87% 9.48% 0.45% 0.57% 19.64%

18.5s 66.9s 152s 320s 719s 26.4s 536s

ρ = 0.6 1.12% 28.15% 54.44% 56.35% 0.75% 0.99% 14.03%

22.5s 33.4s 50.2s 258s 322s 37.0s 458s

Mean dev 0.68% 19.1% 31.0% 32.2% 0.59% 0.77% 16.92%

Max dev 6.90% 54.7% 100% 100% 3.44% 3.76% 97.6%

Mean CPU 20.4s 50.6s 102.6s 289s 526s 31.5s 498s
? instances with n = 90 are not taken into account

Table 2: Mean deviations and mean CPU times

results for the instances with n = 90 and m = 1 because the algorithm LinCG failed

to �nd a solution within two hours.

Table 2 shows, for di�erent classes of instances, the absolute mean deviation of

the upper and lower bounds from the best known solution and the mean CPU time.

In the �rst part of the table, the instances are classi�ed according to the number

of machines m. Clearly, CPU times are signi�cantly larger for the single-machine

instances. Moreover, LinCG cannot be run for all the 1 machine instances so, in the

rest of the table, we only consider instances with m ∈ {2, 4, 6} when we indicate the

mean results for the instances classi�ed according to n, τ and ρ. The last part of the

table shows the global mean behaviour of each algorithm for all the instances with

m > 1.
The main conclusion of these results is that, �rst, the gap between the best lower

bound and the best known solution is less than 1% on average and, second, the

mean deviation between the heuristic Heur and the best known solution is also less

than 1%. Consequently, the problem can be considered as well-solved in a practical

view. Heur �nds very good solutions in seconds, running ten times Heur renders

near-optimal solutions in minutes. It can be observed that, for all the one-machine
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Instance # jobs Best LB Best UB

NCOS01 8 1025 1025

NCOS01a 8 975 975

NCOS02 10 3310 3310

NCOS02a 10 1490 1490

NCOS03 10 7490 7490

NCOS03a 10 2050 2050

NCOS04 10 2504 2504

NCOS04a 10 1733 1733

NCOS05 15 4491 4491

NCOS05a 15 3118 3118

NCOS11 20 8077 8077

NCOS11a 20 5163 5163

NCOS12 24 10855 10855

NCOS12a 24 7946 7946

Instance # jobs Best LB Best UB

NCOS13 24 6893 6893

NCOS13a 24 5257 5257

NCOS14 25 8870 8870

NCOS14a 25 4340 4500

NCOS15 30 16579 16579

NCOS15a 30 10478 10479

NCOS31 75 35995 36485

NCOS31a 75 26168 26240

NCOS32 75 35370 35370

NCOS32a 75 25670 25670

NCOS41 90 15260 15422

NCOS41a 90 11894 11922

Table 3: Upper and lower bounds for NCOS-MS-ET instances

instances, Heur �nds the best known solution.

The best lower bound is the linear relaxation of the xjt-formulation. However,

the linear relaxation of the resource constraints gives very close results in signi�cantly

less time. Very interestingly, these lower bounds outperform the other lower bounds

for all the classes of instances. AssBKY is better than LagRes on some instances

with m = 1 and n = 90 but, for these instances, LagRes is stopped by its time

limit whilst AssBKY has no time limit. The last lower bound based on the xjt-

formulation, namely LagOcc, is not so e�cient. For some 30-job instances, with

enough CPU time allowed, we managed to make the subgradient method reach the

linear relaxation value but, in a general way, the convergence of LagOcc seems

more di�cult than for LagRes.

The lower bounds based on the yjt-formulation are e�cient when m = 1. Un-

fortunately, the e�ciency decreases when the number of machines becomes larger.

For some instances AssBKY and ContAss are unable to �nd out a better lower

bound than the obvious null value, which explains that the maximal deviation is

100%. This phenomenon was already observed by [3] and [23] to appear when the

competition between tasks for resource is quite weak. Finally, AssSKS is faster than

AssBKY because some columns with identical assignment costs can be aggregated

in the LP.

For each algorithm, computation times unsurprisingly increase with n but they

decrease with m. The hardest case for the lower bounds is m = 1 (even if we recall

that the CPU time could be decreased by using ad hoc data structures), while the

most di�cult case for Heur is m = 2 (when m = 1 the list-crossover neighborhood is
not used). The parameter associated to the due date generation are not as signi�cant.

We also tested the algorithmsHeur and LagRes on the single-machine earliness-

tardiness instances of Masc Lib, a library of manufacturing scheduling problems from
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Instance # jobs Best LB Best UB

NCOS01 8 1010 1010

NCOS01a 8 975 975

NCOS02 10 2970 2970

NCOS02a 10 1490 1490

NCOS03 10 7140 7140

NCOS03a 10 1990 1990

NCOS04 10 2464 2464

NCOS04a 10 1733 1733

NCOS05 15 4491 4491

NCOS05a 15 3318 3118

Instance # jobs Best LB Best UB

NCOS11 20 7520 7520

NCOS11a 20 5163 5163

NCOS12 24 10025 10029

NCOS12a 24 7232 7232

NCOS13 24 5843 5843

NCOS13a 24 5093 5093

NCOS14 25 8540 8540

NCOS14a 25 4340 4390

NCOS15 30 13475 13649

NCOS15a 30 10479 10479

Table 4: Upper and lower bounds for NCOS-MS-ET-UNP instances

industry [19]. We also adapted these algorithms in order that they can solve problems

where some jobs can be left non-performed if an additional penalty is paid. Table 3

and 4 report the best lower and upper bounds obtained for the tested instances.

6 Conclusion

This paper has addressed the earliness-tardiness scheduling problem on parallel ma-

chines with a focus on lower bounds. Several lower bounds recently proposed for the

one-machine problem have been extended to the parallel machine case. A simple but

e�cient local search heuristic has also been provided.

Experimental tests show that the best lower bound is the Lagrangean relaxation

of the resource constraints in the time-indexed formulation and the gap between

this lower bound and the heuristic is very weak. Clearly, an e�cient branch-and-

bound procedure could be derived from this lower bound. With this goal in mind,

the subgradient method should be improved, heuristics to �nd good Lagrangean

multipliers could be very helpful.
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