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ABSTRACT

The weakly NP-hard single-machine total tardiness scheduling problem has been extensively studied in the
last decades. Various heuristics have been proposed to efficiently solve in practice a problem for which a
fully polynomial time approximation scheme exists (though with complexity O(n’/e)). In this note, we show
that all known constructive heuristics for the problem, namely AU, MDD, PSK, WI, COVERT, NBR,
present arbitrarily bad approximation ratios. The same behavior is shown by the decomposition heuristics
DEC/EDD, DEC/MDD, DEC/PSK, and DEC/WI.
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1. INTRODUCTION

We consider the single-machine total tardiness 1|} 7; problem where a jobset N = {1,2,....n}
of n jobs must be scheduled on a single machine. For each job j, we define a processing time p;
and a due date d;. The problem calls for arranging the jobset in a sequence S = (1,2,...,n) so as
to minimize 7'(N, S) = >_1, 7; = .. max{C; — d;,0} where C; = >, p;.

The 1{|>_7; problem is NP-hard in the ordinary sense (Du and Leung, 1990). It has been
extensively studied in the literature and many exact procedures have been proposed. The state-
of-the-art exact method of Szwarc, Grosso, and Croce (2001) manages to solve problems with
up to 500 jobs. A fully polynomial time approximation scheme was given in Lawler (1982),
though with complexity O(n’/¢). Despite the presence of a fully polynomial time approximation
scheme, various heuristic procedures were proposed (a nonexhaustive list of papers include
Carroll (1965), Wilkerson and Irwin (1971), Baker and Bertrand (1982), Morton, Rachama-
dugu, and Vepsalainen (1984), Potts and Wassenhove (1991), Holsenback and Russell (1992),
Panwalkar Smith and Koulamus (1993)). The purpose of this work is to analyze the
approximation ratio of the most frequently applied heuristics for the 1||}°7; problem. Given an
algorithm A computing a feasible schedule Sy, for a jobset N of 1|37}, we denote by T(N, Sa)
the total tardiness of S5 and by r(N, Sa) the approximation ratio T(N, Sx)/T(N, S*) where S*
indicates the optimal solution for 1||>-7; on N. We will use r to indicate the worst value of
r(N, Sa) over all jobsets N.
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We show in this note that, quite surprisingly, all the constructive heuristics, the basic
decomposition heuristic DEC/EDD, as well as the enhanced DEC/MDD, DEC/PSK, and
DEC/WI decomposition heuristics perform arbitrarily badly since the lower bounds on their
corresponding approximation ratios depend at least linearly on the problem size. The paper is
organized as follows: in Section 2, the theoretical background for this problem is recalled; in
Section 3, the constructive and decomposition heuristics are briefly presented and their
approximation ratio is discussed; finally, Section 4 concludes the paper with final remarks.

2. THEORETICAL BACKGROUND

We make use of the following notation. Given the jobset N = {1,2,...,n} let (1,2,...,n) be an
SPT sequence (where i < j whenever p; = p; and d;<d;). Let also ([1],[2],...,[n]) be an EDD
sequence (where [i] < [j] whenever d;=d; and p,<p;). As the cost function is a regular
performance measure, we know that in the optimal solution the jobs are processed with no
interruption starting from time zero. Let p(B) = > xcp pr- Let B; and A, be the sets of jobs that
have been shown, at any time, to precede and follow job j in an optimal sequence.
Correspondingly, let ¢; and /; be the earliest and latest completion times of job j in any sequence
consistent with this partial ordering. Then, e¢; = p(B)) + p; and /; = p(N — 4,). The main known
theoretical properties are the following.

Property 2.1. Consider two jobs i and j, i <j. Then, i — j if d;<max{d; e;}, else j— i if
d;+p;>l; (Emmons, 1969).

Property 2.2. (Lawler, 1977) Let job n in SPT correspond to job [k] in EDD. Then, job n can be
set only in position h>k and the jobs preceding and following k are uniquely determined as
B, ={1112],...,[k— 1] [k+ 1], ..., [A]} and A, = {[h+1], ..., [n]}.

Property 2.3. (Lawler, 1977; Potts and Van Wassenhove, 1982; Szwarc, 1993) Let C,(h) =
Z]I'Ll pyj) be the completion time of job n when set in position h > k. Then, job n ([k]) cannot be set in
such position if:

(a) Cn(h) Z d[/z+ 1] h < n;
(b) Cu(h) < dyy+py, h>k
(c) Cu(h)<dy+py, for somer=k,....,h—1.

By exploiting Property 2.2, Lawler (1977) proposed a pseudo-polynomial dynamic program-
ming algorithm running with complexity O(n* > p,). Also, by means of scaling techniques, he
derived a fully polynomial time approximation scheme running with complexity O(n’/c)
(Lawler, 1982). Further recent improved dominance and decomposition results (Chang et al.,
1995; Szwarc and Mukhopadhyay, 1996; Croce et al., 1998) are not mentioned here as they were
not used in the considered heuristics.

3. APPROXIMATION RESULTS

The following lemma shows that the upper bound proposed in Lawler (1977) for the
approximation ratio of the EDD sequence can be attained.
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Lemma 3.1. rgpp < n and this bound is tight.

Proof. For the upper bound we recall here the proof of Lawler (1977). Consider a jobset N
and an EDD sequence Sgpp on N. Denote by Tp.x(N, Sepp) the value of the maximum
tardiness of Sgpp and by S* an optimal solution of 1|} 7; on N. Notice that that
T(N, Sepp) = 0 when T(N, S*) = 0 and as the EDD rule minimizes the 1|7, problem, we
have  Tax(N, SEpD) < Timax(N, ) < T(N, S*).  But then, T(N, Sgpp) < nTmax(N, Sepp) <
nT(N, S*).

In order to prove the tightness of the ratio above, consider the following example (E)):
N={1,2,....,n}, py=m, ps,....,p,=1, di =0, d>,...,d,=e. The optimal sequence is
S*=(02,...,n 1), with T(N,S*)=nn+1)2+m—1—(m—1)e. The EDD rule produces

sequence Sgpp = (1,2,...,n), where Ty=m, T,=m+i—1—¢ for i=2,...,n. Thus,
T(N, Sgpp) = nm+n(n—1)/2 — (n— 1)e. Hence, for m large enough and ¢ small enough, we
have (N, Sgpp) ~ n. |

3.1. Constructive heuristics

This subsection deals with approximation ratios for constructive heuristics. Quick dispatching
rules as well as simple greedy algorithms are grouped in this class. Below are indicated and
briefly exposed the main constructive heuristics proposed for the 1||>7; problem. For
conciseness, only one-shot procedures are fully described while, for the other procedures, the
relevant references are indicated for details.

AU: at time ¢, schedule i before j if u; > u;, where u; = exp[—max{d; — t — p;, 0} /kp]/p; and
p =i, pi/n. This heuristic, specifically developed like COVERT for the more general
weighted tardiness problem 1||> w;7T}, does not take into account Property 2.1 (Morton,
Rachamadugu, and Vepsalainen, 1984).

MDD: at time ¢, schedule i before j if max{z+p;, d;} < max{t+p;d;}, or max{t+p;d;} =
max{t+p;,d;} and p; < p; (Baker and Bertrand, 1982).

PSK: start with an SPT sequence and scan the jobs in that order, searching for the best job to
be placed in the first unscheduled position; once that position is filled, the next position is
considered and the process is iterated until all jobs have been sequenced; we refer here to
the description of the algorithm in (Panwalker, Smith, and Koulamas, 1993).

WI: (can be seen as a hybrid construction/local search heuristic) use adjacent job pairwise
interchanges in the process of building the schedule; we refer here to the description of the
algorithm in Wilkerson and Irwin (1971).

COVERT: given a partial sequence S, place one job at a time among the remaining
unscheduled jobs according to the following priority index PI; (E denotes the set of
unscheduled jobs that have no unscheduled predecessors according to Property 2.1)
(Carroll, 1965):

1( g di < p(S) +p;

p(SUE) —d;

PI = S)+pi<d <p(SUE

) p(E)—pj p( ) Pj 7 P( )
0 P(SUE) < d;
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the job selected is the one with largest PL;/p; ratio. This heuristic was designed for the more
general 1{|> w,T; problem.

NBR: start with an EDD schedule and check whether a job should be relocated by means of a
dominance rule based on Property 2.1 used in combination with the Net Benefit of job
Relocation; we refer here to the description of the algorithm in Holsenback and Russell
(1992).

Note that, T(N, Spsk) = T(N, Swi) = T(N, Scovert) = T(N, Sngr) = T(N, Sgpp) = 0 when
T(N, S*) = 0. As far as AU is concerned, the following proposition holds.

Proposition 3.1. ray — 0.

Proof. Consider the following two-job example denoted by E»: N = {1,2}, p; =1, p, =¢,
di=1,d,=1+¢. Then, at t =0: uy = 1, and u, = exp[—2/k(1 + ¢)]/e > exp(—2/k)/e. For any
given value of the parameter £, setting 0 < £ < exp(—2/k) yields u, > 1. Hence AU will schedule
job 2 first and job 1 last: we get Say = (1,2) and T(N, Say) = € > 0. The optimal sequence is
S* = (1,2) with T(V, S*) = 0 and AU gives an infinite relative error. |

Proposition 3.2. rypp = 'psk = 'wi = FCOVERT = H/2.

Proof. Consider the following example denoted by E; in what follows: N = {1,2,...,n+ 1},
Pr=n,p2 -..o Pny1 = 17 dl =n, dz» K] d}’l+l =n+e.

The MDD rule selects at time # =0 job 1 to be scheduled in first position. All the other
(identical) jobs will then follow. Hence an EDD sequence S = (1,...,n+ 1) is generated where
T,=0, T;,=i—1—¢, for i=2,...,n+1. Thus, T(N, Supp) = n(n+ 1)/2—ne. The optimal
sequenceis S* = (2,...,n+ 1, 1), with T(N, S*) = n. Hence, for € small enough, »(N, Smpp) =~ n/2.

As pointed out in Alidaee and Gopalan (1997) and Cheng (1992), procedures PSK and W1 are
basically equivalent to the MDD rule for all those instances such as example E3 where there are
no couples of jobs i and j with p; # p; or d; # d; such that max{t+p; d;} = max{t+p;d;}.
Indeed, both PSK and WI reach the same result as MDD in example Ej.

Finally, with respect to COVERT, notice that Property 2.1 implies2 -3 — - — n+1,
whereas job 1 is not involved in precedence relations. Also, notice that PI; = 1. Consider the
first stage, where S =), E= {1,2}. Then p(S) =0, p(E) =n+1, and PI, = (1 —&)/n. Hence
job 1 is scheduled first, yielding the same sequence ScoverT = (1,2,...,n+1), and this
completes the proof of the proposition. |

Proposition 3.3. rngr > nl6.

Proof. Consider the following example denoted by FE;: set n=2m+2 and consider
N:{172’a2m+2}’ p1:m> p2:1a P3: :pm+1:€; pm+2: :p2m+1:1’
Pomiz =2, dy=m, dy=m+(l2), di=m+({i—2)e, for i=3,....m+1, d,,=m+1+
(m—1e, di=j+m—1)e, for j=m+3,...,2m, dy, 1 = doyyo = 2m+ (m— 1)e.

The NBR algorithm considers, at any stage, a sequence Sand a set of jobs i} < iy < -++ < iy
in S such that 7; < p; and p; >p;, > --- >p;. A job is selected among i, ..., i, in order to be
moved just after i, so that the decrease in tardiness is maximum (see Holsenback and Russell
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(1992) for details). Notice that, for example E4, NBR will execute one single stage, considering
jobs 1, 2m+1, 2m + 2, and moving job 1 to the last position with tardiness (m + 1) + (m + 1)e.
The sequence induced by NBR is then Sypr =(2,3,...,2m+2,1) with T(N, Snpr) =
(m+1)4+ (m+ D)e. The optimal sequence is $* =(2,3,..., m+1, 1|, m+2, m+3,...,2m+2)
with T(N,S*) =3+ (m+ 1)e. Recalling that n =2m+2, we have r(N,Sngr) = (m+1)+
(m+ 1)e)/(3+2¢) >ml3 =~ nl6. |

3.2. Decomposition heuristics

Decomposition heuristics were proposed in Potts and Wassenhove (1991) and Koulamas
(1994) to which we refer for details. Below are sketched the main decomposition heuristics
applied to the 1{|>_7; problem.

DEC/EDD: exploits Properties 2.2 and 2.3; when more than one position k£ can be occupied
by the largest processing time job, the EDD rule is used to solve the two subproblems
generated for each value of k; the largest processing time job is then placed in the position
inducing the best cost function value.

DEC/(MDD-PSK-WI): as above but applies MDD (or PSK or WI) instead of EDD.

Consider any decomposition heuristic DEC/H. Notice that T(N,Specu) =0 when
T(N, S*) = 0. The following proposition generalizes the result given in Yu (1996) for DEC/
EDD.

Lemma 3.2. Let ry < f(n) where f is a strictly monotone-increasing function with f(n) > 1 and
for any natural numbers p, q, f(p)+f(q) < f(p+q). Then rpgcg < f(n—1).

Proof. Let Spec/u be the sequence produced by DEC/H. At the first stage, DEC/H will
consider the job with largest processing time n, and will try all nondominated positions for it.
Let S* = (ST, n, S5) be an optimal sequence, where ST and S5 are optimal sequences for the job
subsets Ny, N, given by the optimal decomposition. Let 7}, be the (optimal) tardiness of job n in
such a sequence. Then, by the position selection rule in the decomposition heuristics:

T(N, Spec/u) < T(N1, Sy, pec/u) + T(N2, S, pec/n) + T
<S(N1]) - T(N1, S7) +f(IN2]) - T(N2, S3) + T
<f(N) +S(IN2]) - [T(N1, S7) + T (N2, S3)] + T,
f(n—=1)- [T(N1,S7) + T(N2,S5)] + T,
f(n=1)-T(N,S").

INIA

Remark 3.1. The above lemma provides rprc/epp <r—1 (derived in Yu (1996)) as a
corollary, but it also implies for DEC/DEC/EDD (call it DEC*/EDD) that rpp Jepp SN —2
and, more generally, rppcrppp <1 — k.

To the authors’ knowledge no tight bounds are available for the decomposition heuristics. The
following propositions provide lower bounds on the worst-case approximation ratio of the main
decomposition heuristics.
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Proposition 3.4. rpec/Epp > 2.

Proof. Consider the following example denoted by Es: set n=2m+1 and consider
N={L2....2m+1}, pr=m—e,pp= - = ppp1=Lpui2 = -+ = ppu1 =6, di=m,
di=m+i—1,fori=2,... . md, ,=2m—1,d;=2m—1,+¢,fori=m+2,...,2m+1.

We have Sgpp = (1,...,2m+1). Job 1 is the largest processing time job. The completion time
Cy(r) for job 1 in position r is

C m4r—-1-¢ r=1, ...,m+1
1(r) = 2m+(r—m—=2) r=m+2,....2m+1.

Positions r=2,...,m+1 are eliminated by d,+ p,> C,(r); positions r =m+2,...,2m are
eliminated by Cy(r)>d,,;. Job 1 can thus be placed in positions 1 and 2m+1 inducing
sequences = (1,...,2m+1)and 6 =(2,...,2m+1,1). We get T(N, ) = (1 —¢e) +em(m— 1)/
2—(m—2)e+(m+1)and T(N,0) = m+ (m— 2)e. Hence, T(N, ) > T(N, ) and position 2m + 1
is selected for job 1 with tardiness m + (m — 2)e. Then, sequence (2, ..., 2m) is entirely early and
the jobs can be scheduled as they are. So, Sprc/epp = 0. Besides, the optimal sequence is
S*=0,m+2,....2m+1, 2,...,m+1) with T(N,S*) =1+m(m—1)e. Hence for £ small
enough, V(N, SDEC/EDD) = [m + (m - 2)6)/(1 + m(m - 1)5] ~m =~ nl2. |

Remark 3.2. Notice that, applying a slightly worse implementation of DEC/EDD where
property 1(c) is neglected, makes, as shown in Yu (1996), the n—1 bound tight for this
decomposition heuristic. Ironically, taking into account such a property reopens the gap since
the tight example presented in Yu (1996) is no longer valid.

PVOpOSi[iOﬂ 3.5. 'DEC/MDD — 'DEC/PSK — 'DEC/WI 2 nl3.

Proof. Consider the following example Eg: set n = 3m/2 and assume N = {1,2,...,3m/2},
with p, =m?, p;=2m, for i=2,....,ml2, p;=2, for j=(m=2)+1,....3m2, d,=n,
di=m*+2(i—1m, for i=2,...,(m2)—1, dyp=2m>—2m—e, dy=2m">—2m+e, for
j=mi2)+1,...,3m/2.

Job 1 has the largest processing time and can be placed in positions 1 and 3m/2 only. If it is
placed in position 1, its tardiness is 0 and the MDD rule induces sequence (1,2, ..., 3m/2) with
value m(m+1)— (m—1)e = m*+m— (m — 1)e. If, on the other hand, it is placed in the last
position, its tardiness is m” but all the other jobs are early and the total tardiness remains m?.
Hence, for € small enough, the last position is selected. In all, Sprc/mpp = (2, - - -, 3m/2, 1) and
T(N, SpbEc/MDD) = m>. However, the optimal sequence for this example is S* =(1,2,...,
m/2)—1,m/2)+1,...,3m/2,m/2). with value 2m+e. Recalling that n = 3m/2, we have
"N, Sprcempp) = m2(2m+¢€) ~ m/2 = n/3. Analogously to Proposition 2, we have that both
DEC/PSK and DEC/WI reach the same result as DEC/MDD in example E5, and this completes
the proof of the proposition. |

4. CONCLUSION

In this note we have discussed bounds for the approximation ratios of the leading heuristics for
the 1/|>°7; problem. Though no tight bounds have been derived (except for the simple EDD
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rule), we have shown that there is no hope of constant approximation ratio for all the known
constructive heuristics, nor for the decomposition ones. For the decomposition heuristics, even
if the lower bounds obtained are slightly better than the corresponding bounds of the former
category, their approximation ratios depend linearly on the problem size. Notice that, as far as
examples Es and Eg are concerned, the same bounds are obtained even if the improved
elimination rules of Chang et al. (1995) and the double decomposition scheme of Della Croce
et al. (1998) are embedded in the considered decomposition heuristics. Finally, we remark that
in Yu (1996) an internal report in Chinese (that we could not manage to obtain) is cited where
apparently a n/2 tight bound is proved for WI: should one take into account this result, then, by
means of Lemma 3.2, a (n — 1)/2 upper bound can be immediately derived for DEC/WI. Also, it
should be possible to reach the same upper bound for DEC/MDD and DEC/PSK due to the
results presented in Alidace and Gopalan (1997) and Cheng (1992), respectively.
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