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Abstract

In this paper we study the single machine total tardiness problem. We first identify some optimality properties based

on which a special case with a given number of distinct due dates is proved polynomially solvable. The results are then

extended to the case with release dates.
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1. Introduction

Among the classical scheduling problems, the

single machine total tardiness problem without

release dates (SMTTP), i.e., 1k
P

Ti, is one of the
most widely studied. Since the first theoretical

development by Emmons [3], an abundance of

papers on SMTTP have been published. Two pa-

pers in the literature are of particular significance

for the study of this well-known problem. Lawler

[7] gave a pseudo-polynomial algorithm to solve

SMTTP in Oðn4P Þ time, where n is the number of

jobs and P is the total processing time of all jobs.
This implies that the problem cannot be strongly

NP-hard. By a reduction from a restricted version

of the NP-hard Even–Odd Partition problem, Du
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and Leung [2] resolved the complexity status of

SMTTP, which had remained open for decades.

Du and Leung’s results, together with Lawler’s

pseudo-polynomial algorithm, confirm the ordin-

ary NP-hardness of SMTTP. Before the publica-
tion of Du and Leung [2], the majority of the

literature on this problem was focused on finding a

polynomial algorithm or proving its NP-hardness.

So, a great variety of enumerative algorithms have

been proposed. Most of the algorithms rely heavily

on the dominance rules developed by Emmons [3]

and Lawler [7], both of which have been extended

by other researchers. Following the resolution of
the complexity status of this problem, a substantial

body of literature was centered on heuristic algo-

rithms. Koulamas [5] gave a comprehensive review

of the total tardiness problems with an empha-

sis on critically evaluating heuristic algorithms

for SMTTP. However, as indicated by Chen et al.

[1], developing approximation algorithms with

good performance guarantees for this problem is
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difficult. The best ratio guarantee for any of the

proposed heuristics is n/2. On the other hand,

Szwarc and some other researchers [9,10] focused

on the development of exact algorithms, which are

mainly based on either dynamic programming or

the branch-and-bound method, or their combina-
tion. Koulamas [5] also gave a brief survey of

enumerative algorithms for SMTTP. A more de-

tailed review on this aspect was presented by Chen

et al. [1]. The most recent result can be found in

Szwarc et al. [10], which contains a branch-and-

bound algorithm that handles instance with up to

500 jobs.

Since SMTTP is NP-hard in the ordinary sense,
it is worth investigating its polynomially solvable

cases. However, there exist only a few such results.

For example, the common due date problem

1jdi ¼ dj
P

Ti can be solved by the shortest pro-

cessing time (SPT) rule according to Lawler and

Moore [8], while the equal processing time prob-

lem 1jpi ¼ pj
P

Ti is obviously solvable by the

earliest due date (EDD) rule, since it is identical to
the unit processing time problem 1jpi ¼ 1j

P
Ti in

the case of identical release dates. In the case that

the due dates and processing times are agreeable,

the problem 1jðdi; piÞj
P

Ti is solvable in Oðn log nÞ
time by the SPT or EDD rule according to The-

orem 3 of Lawler [7], where ðdi; piÞ denotes the

agreeability of due dates and processing times.

Emmons [3] identified three special cases where
SMTTP can be polynomially solved. Lawler [7]

extended two of Emmons’ results. Koulamas [6]

reviewed the polynomially solvable cases of

SMTTP and developed the other results of Em-

mons.

In this paper, we first recall a famous theorem

in Lawler [7] and identify some optimality prop-

erties. Then, a special case of SMTTP with a given
number of distinct due dates is proved polynomi-

ally solvable. The problem addressed in this paper

can be formally stated as follows: A set of n jobs

N ¼ f1; . . . ; ng has to be processed on a single

machine that can perform only one job at a time.

Each job i has a processing time pi and a due date

di. All pi and di are integers. The objective is to

schedule the jobs so as to minimize total tardinessP
Ti, where Ti ¼ maxf0;Ci � dig and Ci is the

completion time of job i. Using the three-field
notation of Graham et al. [4] and Chen et al. [1],

the problem can be denoted as 1k
P

Ti.
The remainder of this paper is organized as

follows: In Section 2, some optimality properties

and complexity analysis for a special case are

presented. The results are extended to the problem
with release dates in Section 3.
2. Optimality properties and complexity analysis

Lawler’s [7] pseudo-polynomial algorithm is

based on Theorem 3 of [7], which is in turn based

on two preliminary results (Theorems 1 and 2 of
[7]). The sensitivity of an optimal schedule to the

due dates is considered in Theorem 1 of [7], while a

dominance rule is presented in Theorem 2 of [7],

which is also a result from Theorem 1 of Emmons

[3].

Theorem 2.1 (Theorem 3 of Lawler [7]). Suppose

the jobs are agreeably weighted and numbered in

nondecreasing due date order, i.e., d1 6 d2 6 � � � 6
dn. Let job k be such that pk ¼ maxj fpjg. There is

some integer d, 06 d6 n� k, such that there exists

an optimal schedule p in which k is preceded by all

jobs j such that j6 k þ d, and followed by all jobs j
such that j > k þ d.

We note that the above theorem holds for a
more general agreeably weighted case of 1k

P
wiTi,

i.e. pi < pj implies wi Pwj. Similarly, all the fol-

lowing discussion holds for the agreeably weighted

case, too.

Consider a special case of 1k
P

Ti in which there

are m distinct due dates d 0
1 < � � � < d 0

m, where m is a

fixed positive integer. To reflect the restriction on

the due dates, we add di 2 fd 0
1; . . . ; d

0
mg to the sec-

ond field of the three-field notation ajbjc of Chen

et al. [1] and Graham et al. [4]. Define Ni to be the

subset of the ni ¼ jNij jobs with the common due

date d 0
i ; i ¼ 1; . . . ;m. Also, suppose the ni jobs in Ni

are indexed by the SPT rule as Ji1; . . . ; Jini . It is

easily proven, by a simple interchange technology,

that there exists an optimal schedule in which

Ji1 ! . . . ! Jini holds for all i ¼ 1; . . . ;m. Then,
following Theorem 2.1, we can state Theorem 2.2

as follows:
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Theorem 2.2. Suppose there are m distinct due dates

d 0
1 < � � � < d 0

m, where m < n is a given positive inte-

ger, and the jobs in the set Ni of the jobs with due

date d 0
i are indexed by the SPT rule as Ji1; . . . ; Jini .

Let Jknk be such a job in Nk that pknk ¼ maxi fpinig.
There is some integer d, 06 d6m� k, such that

there exists an optimal schedule p in which Jknk is

preceded by Nk n fJknkg and all Ni such that

i ¼ 1; . . . ; k � 1; k þ 1; . . . ; k þ d, and followed by

all Ni such that i > k þ d.

Now, we consider the time complexity of

Lawler’s dynamic programming algorithm for this
special case. Equation (3.1) in Lawler [7] is recalled

below. We note that the notation in this equation

is independent of our notation in Theorem 2.2:

T ðSði; j; kÞ; tÞ ¼ min
d
fT ðSði; k þ d; k0Þ; tÞ

þ wk0 maxð0;Ck0 ðdÞ � dk0 Þ
þ T ðSðk0 þ dþ 1; j; k0Þ;Ck0 ðdÞÞg;

ð1Þ

where k0 is such that

pk0 ¼ maxfpj0 jj0 2 Sði; j; kÞg:
First of all, according to Theorem 2.2, each Eq.

(1) requires minimization over at most m (not n)
alternatives and an OðmÞ running time.

Next, consider any Eq. (1). For the sake of

convenience, we say the set Sði; j; kÞ is decomposed
by job k0 and call job k0 the decomposition job.

Suppose a set N 0
l � Nl, is included in Sði; j; kÞ. By

Theorem 2.2, all jobs in N 0
l or a reduced set

N 0
l n fk0g, where k0 is the job with the largest index

in N 0
l and is selected as the decomposition job,

should be wholly included in either Sði; k þ d; k0Þ or
Sðk0 þ dþ 1; j; k0Þ. As the decomposition job in

each recursion is the one with the largest index
among the jobs in the selected subset, the set N 0

l is

always in the form of fJl1; Jl2; . . .g. In other words,

job i can only be one of the m jobs Ji1; i ¼ 1; . . . ;m.
Moreover, it is easily seen that, in the case of

i ¼ m, all jobs in Sði; j; kÞ are from Nm, and

decomposition of Sði; j; kÞ is unnecessary. Hence,

there are no more than m� 1 values for the index i
in the set Sði; j; kÞ.

Then, any Ji1; i6m� 1, is preceded only by the

jobs in Nl; l < i. So, the possible values of t are not
more than ðn1 þ 1Þ � � � � � ðnm�2 þ 1Þ6 ½ðnþ m�
2Þ=ðm� 2Þ�m�2

in the case of m > 2. In the case of

m ¼ 2, there is only one possible value of t, i.e.,
t ¼ 0.

In conclusion, the problem 1jdi 2 fd 0
1; . . . ; d

0
mg

j
P

Ti can be solved by Lawler’s algorithm in
Oðm2n2½ðnþm� 2Þ=ðm� 2Þ�m�2Þ ¼Oðm4�mnmÞ time

in the case of 2<m< n.
Finally, we consider the case of m ¼ 2.

According to Theorem 2.2, in each recursion, if

k0 2 N1 job k0 is either immediately followed by J21
or immediately preceded by the job with the largest

index among the remaining jobs in N2, which

should also be followed by job k0 in the case of
k0 2 N2. We note that in the case of k0 2 N2 and the

latter case of k0 2 N1 the jobs following job k0 are
already sequenced in the SPT order. So, there are

only n1 þ 1 schedules that need to be considered,

i.e., for j ¼ 1; . . . ; n1, the first j jobs in N1 (in SPT

order), followed by the rest of the jobs in N1 and all

jobs in N2 in SPT order. As the time complexity of

the SPT ordering is Oðn log nÞ, the problem 1jdi 2
fd 0

1; d
0
2gj

P
Ti can be solved in Oðn log nÞ time.

Recall that in the case of m ¼ 1, the problem

addressed is known as 1jdi ¼ dj
P

Ti and can be

solved in Oðn log nÞ by the SPT rule [8]. We have

the following theorem:

Theorem 2.3. 1jdi 2 fd 0
1; . . . ; d

0
mgj

P
Ti is polyno-

mially solvable for a fixed value of m. Especially, the
time complexity is Oðn log nÞ for the case of

m ¼ 1; 2 and Oðm4�mnmÞ for the case of 2 < m < n.

3. An extension of the results to a problem with

release dates

Consider a special case of the preemptive single
machine total tardiness problem where the release

dates and due dates are strictly agreeable, in the

sense that ri < rj implies di 6 dj, and ri ¼ rj implies

di ¼ dj. In such a case, we denote the problem as

1jðri; diÞ¼; pmtnj
P

Ti (P1). By assumption, all jobs

simultaneously released are given equal slacks, but

the slacks for two jobs with different release dates

are not necessarily equal. It is easy to see that the
problem 1jri; di ¼ ri þ d; pmtnj

P
Ti is a special

case of P1. The ordinary NP-hardness of this CON

due date problem [11] implies that P1 cannot be
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polynomially solved. On the other hand, as a

special case of 1jðri; diÞ; pmtnj
P

Ti, where (ri; di)
denotes the agreeability of the release dates and

due dates, P1 cannot be strongly NP-hard [11].

Hence, we have the following result.

Theorem 3.1. 1jðri; diÞ¼; pmtnj
P

Ti is NP-hard in

the ordinary sense.

Moreover, it is easy to see that the properties

identified in the last section hold even for the case

that all jobs in a subset Ni; i ¼ 1; . . . ;m, are re-

leased simultaneously at ri, but ri < rrþ1 holds for

any subset pair Ni and Niþ1; 16 i < m. So, Theo-
rem 2.3 also holds for 1jðri; diÞ¼; pmtnj

P
Ti.
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