
A Hybrid Algorithm for the Single-Machine Total
Tardiness Problem

T. C. E. Cheng a, A. A. Lazarev b c, E. R. Gafarov d

a Department of Logistics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong. Email: lgtcheng@polyu.edu.hk

b Corresponding author. Computing Centre of the Russian Academy of Sci-
ences, Vavilov st. 40, 119991 Moscow GSP-1, Russia. Tel, fax: +007 495 1356238.
Email: Alexandr.Lazarev@ksu.ru

c Partially supported by DAAD (Deutsche Akademische Austauschdienst):
A0206237/Ref. 325 and by Russian funding support of scientific school N -
5833.2006.1

d Computing Centre of the Russian Academy of Sciences, Vavilov st. 40, 119991
Moscow GSP-1, Russia. Tel, fax: +007 495 1356238. Email: axel73@mail.ru

Abstract

We propose a hybrid algorithm to deal with the NP-hard single-
machine scheduling problem to minimize the total job tardiness based
on the Ant Colony Optimization (ACO) meta-heuristic, in conjunction
with four well-known elimination rules for the problem. The hybrid
algorithm has the same run time as that of ACO. We conduct exten-
sive computational experiments to test the performance of the hybrid
algorithm and ACO. The computational results show that the hybrid
algorithm can produce optimal or near-optimal solutions quickly, and
its performance compares favourably with that of ACO for handling
standard instances of the problem.

Keywords: Scheduling, Metaheuristics

Introduction
We are given a set of n independent jobs N that must be processed on a
single machine. Preemption of the jobs is not allowed. The machine can
handle only one job at a time. All the jobs are assumed to be available for
processing at time 0. For each job j, j ∈ N , a processing time pj > 0 and a
due date dj are given. A schedule π is uniquely determined by a permutation
of the elements of N . Define Tj(π) = max{0, cj(π)− dj} as the tardiness of
job j under schedule π, where cj(π) is the completion time of job j under

1

schedule π. We seek to find an optimal schedule π∗ that minimizes the total
job tardiness, i.e., F (π) =

∑n
j=1 Tj(π). The problem is denoted as 1||∑ Tj,

which has been shown to be NP-hard in the ordinary sense (Du, Leung, 1990).
Lawler (Lawler, 1977) presented an O(n4

∑
pj) time dynamic programming

algorithm for the problem. Szwarc et al. (Szwarc et al., 2001) constructed
state-of-the-art algorithms to handle the special instances of the problem
discussed in (Potts, Wassenhove, 1982) for n ≤ 500. It was shown in (Croce
et al., 2004) that all known constructive and decomposition heuristics for non-
paradoxical instances of the problem can yield arbitrarily bad approximation
ratios (Szwarc et al., 2001).

In this paper we propose a hybrid algorithm based on the Ant Colony
Optimization (ACO) meta-heuristic by Bauer et al. (Bauer et al., 1999),
in conjunction with the four well-known Elimination Rules 1-4 for 1||∑ Tj

introduced in (Szwarc et al.,1999; Lazarev et al. 2004; Chang et al.,1995).
We conduct comprehensive computational experiments to compare the per-
formance of the hybrid algorithm and ACO with respect to the following
measures: percentage of time that an optimal solution is found, relative er-
ror of the solution found, and number of iterations needed to find an optimal
solution. We test both algorithms under three cases of 1||∑ Tj, namely the
special instances of Potts and Van Wassenhove (Potts, Wassenhove, 1982),
the case B-1 of Lazarev et al. (Lazarev et al. 2004), and the canonical
instances of Du and Leung (Du, Leung, 1990).

The paper is organized as follows. We introduce in the next section Elim-
ination Rules 1-4, and an exact algorithm that solves the problem optimally.
In the following Section, we present the ACO algorithm. We then discuss our
hybrid algorithm, and present the results of the computational experiments
in sections 3-6. We conclude the findings in the final section.

1 An exact solution algorithm
Without loss of generality, let d1 ≤ d2 ≤ . . . ≤ dn, and if dk = dk+1 then
pk ≤ pk+1. In other words, the jobs are first sequenced in the earliest due
date (EDD) order, and if there is a tie, then the jobs are sequenced in the
shortest processing time (SPT) order, i.e., for jobs that have the same due
dates, they are sequenced in increasing order of their processing times.

We denote by I = 〈{pj, dj}j∈N , t0〉 an instance with the job set N , in
which the jobs have processing times pj, due dates dj, and a starting time

2

t0. Let j∗ denote the job with the largest processing time in N , i.e.,

j∗ = arg max
j∈N

{dj : pj = max
i∈N

pi}

.
We consider a subset of jobs N ′ ⊆ N that must be processed from time

t′ ≥ t0. Let N ′ = {1, 2, . . . , n′}. Define the set L(N ′, t′), i.e., a position list,
of all the indices k ≥ j∗ such that

(a) t′ +
∑k

j=1 pj < dk+1 (Elimination Rule 1 (Szwarc et al.,2001; Lazarev
et al. 2004)), and

(b) dj + pj ≤ t′ +
∑k

j=1 pj, for all j = j∗(N ′) + 1, k
(Elimination Rules 2 and 3 (Szwarc et al.,2001; Lazarev et al. 2004)),

where dn′+1 := +∞.
We denote by 〈{pj, dj}j∈N , t〉 an instance of the problem 1||∑Tj with

the job set set N and parameters {pj, dj}j∈N that must be processed from
start time t. Let (j1 → j2)π∗ denote job j1 precedes job j2 under schedule π.

Proposition 1 (Lazarev et al. 2004) For all instances 〈{pj, dj}j∈N , t0〉, the
set L(N, t0) is not empty.

Proposition 2 (Lazarev et al. 2004) For all instances 〈{pj, dj}j∈N , t0〉,
there exists an optimal schedule π∗ such that (j → j∗)π∗ for all j ∈
{1, 2, . . . , k} \ {j∗} and (j∗ → j)π∗ for all j ∈ {k + 1, . . . , n} for some
k ∈ L(N, t0).

Let N = (j1, . . . , jn), where dj1 ≤ . . . ≤ djn . We denote by
πk = (j1, . . . , jm−1, jm+1, . . . , jk, j

∗, jk+1, . . . , jn), j∗ = jm, m < k, the mod-
ified EDD sequence, where job j∗ is moved from its original position m to
position k.

Proposition 3 (Elimination Rule 4) (Szwarc et al.,1999; Chang et
al.,1995) Delete k from the position list L(N ′, t′), if |L(N ′, t′)| > 1, and
(F (πk) > F (πk+1) or F (πk) ≥ F (πi) for some j∗ ≤ i < k).

Now we present Algorithm A, an exact solution algorithm for 1||∑ Tj,
which is based on Elimination Rules 1-4.

Procedure ProcL (N, t)

3

0. There exists an instance 〈{pj, dj}j∈N , t〉 with the job set
N = {j1, j2, . . . , jn} and start time t, where dj1 ≤ dj2 ≤ . . . ≤ djn ;

1. IF N = ∅ THEN π∗:= empty schedule, GOTO 6.;

2. Find j∗ ∈ N ;

3. Construct the set L(N, t) for job j∗;

4. FOR ALL k ∈ L(N, t) DO:

πk := (ProcL(N ′, t′), j∗,ProcL(N ′′, t′′)), where
N ′ := {j1, . . . , jk} \ {j∗}, t′ := t,
N ′′ := {jk+1, . . . , jn}, t′′ := t +

∑k
i=1 pji

;

5. π∗:=arg min
k∈L(N,t)

{F (πk, t)};

6. RETURN π∗.

Algorithm A

π∗:=ProcL(N, t0).

2 Ant Colony Optimization for 1||∑Tj

We present the ACO algorithm of Bauer et al. (Bauer et al., 1999) in this
section. In each generation, each of the m ants constructs one solution. An
ant selects the jobs in the order in which they appear in a schedule. For the
selection of a job, the ant uses both heuristic and pheromone information.
The heuristic information, denoted by ηij, and the pheromone information,
denoted by τij, is an indicator of how good it seems to place job j in position
i of the schedule. With probability q0, where 0 < q0 < 1 is a parameter of
the algorithm, the ant chooses the next job j from the set S of jobs that
have not been scheduled so far that maximizes [τij]

α[ηij]
β, where α and β are

constants that determine the relative influence of the pheromone values and
the heuristic values, respectively, on the decision of the ant. With probability
1−q0, the ant selects the next job j according to the probability distribution
determined by

pij =
[τij]

α[ηij]
β

∑
h∈S[τih]α[ηih]β

.

4

The heuristic values ηij are computed according to the modified due date
(MDD) rule, i.e., ηij = 1

max{T+pj ,dj} , where T is the total processing time of
all the jobs that have already been scheduled.

After an ant has selected the next job j, a local pheromone update is
performed at element (i; j) of the pheromone matrix according to τij :=
(1 − ρ)τij + ρτ0 for some constant ρ, 0 < ρ < 1, where τ0 = 1

mTEDD
, and

TEDD is the total tardiness of the schedule that is obtained when the jobs
are ordered according to the EDD rule. The value τ0 is also used to initialize
the elements of the pheromone matrix.

After each ant has constructed a solution, the solution is further improved
with a 2-opt strategy, i.e., a local search procedure with pairwise swapping
of jobs. The 2-opt strategy considers possible swaps between all pairs of jobs
in the constructed sequence.

The best solution found so far is then used to update the pheromone
matrix. But before doing so, some old pheromone values will decay according
to τij := (1−ρ)τij. The reason is that old pheromone values should not have
too strong an influence on future pheromone values. Then, for every job j in
the schedule of the best solution found so far, some amount of pheromone is
added to element (i; j) of the pheromone matrix, where i is the position of
job j in the schedule. The amount of pheromone added is ρ/T ∗, where T ∗

is the total tardiness of the best found schedule, i.e. τij := τij + ρ/T ∗. The
algorithm stops when some stopping criterion is met, e.g., a certain number
of generations has been reached or the best found solution has not changed
for several generations.

Computational results of the ACO algorithm were presented in (Bauer et
al., 1999), where the instances of (Potts, Wassenhove, 1982) for n = 50 and
100 were tested. For n = 50, ACO generated an optimal solution for 609 out
of 625 instances. The relative error was less than 0.08%. For n = 100, all
125 instances were solved optimally.

It is easy to show that the run time of ACO without local search is
O(mn2). For each i (there is a total of n positions), job j is chosen in O(n)
time. Local search has a run time of O(n3), but the number of times local
search is applied is unknown. So ACO has a run time no less than O(mn3).
In practice, the run time of ACO does not exceed O(mn2).

5

3 A hybrid algorithm
We present in this section Algorithm H, a hybrid algorithm based on the
ACO meta-heuristic by (Bauer et al., 1999), in conjunction with Elimination
Rules 1-4 (Szwarc et al.,1999; Lazarev et al. 2004; Chang et al.,1995).

In Algorithm H, each ant executes a modified version of Algorithm A,
where the current job j∗ is randomly placed in position k ∈ L(N, t).

Procedure ProcL modified(N, t)

0. There exists an instance 〈{pj, dj}j∈N , t〉 with the job set
N = {j1, j2, . . . , jn} and start time t, where dj1 ≤ dj2 ≤ . . . ≤ djn ;

1. IF N = ∅ THEN π∗:= empty schedule, GOTO 6.;

2. Find j∗ ∈ N ;

3. Construct the set L(N, t) for job j∗;

4. Compute the array of probabilities for each i ∈ L(N, t):

ρij∗ =
τij∗/F (πi)∑

h∈L(N,t) τhj∗/F (πh)
,

where πi = (j1, . . . , jm−1, jm+1, . . . , ji, j
∗, ji+1, . . . , jn), j∗ = jm,m < i;

5. Chose k ∈ L(N, t) randomly according to probability ρkj∗;

6. Update the local trail:

τkj∗ := (1− ρ)τkj∗ + ρτ0,

where τ0 = 1/(mTEDD), and TEDD is the total tardiness of schedule
πEDD;

7. RETURN

π∗ :=(ProcL(N ′, t′), j∗,ProcL(N ′′, t′′)), where
N ′ := {j1, . . . , jk} \ {j∗}, t′ := t,
N ′′ := {jk+1, . . . , jn}, t′′ := t +

∑k
i=1 pji

.

6

Upon completing each iteration, we update the "global trail" τij according
to

τij := (1− ρ)τij + ρ/T ∗,

if job j is placed in position i of the best found schedule. Else,

τij := (1− ρ)τij,

where ρ ∈ [0, 1] is a parameter of the algorithm, and T ∗ is the total tardiness
of the best found schedule. After each iteration, we invoke the 2-opt strategy.

It is easy to show that the run time of Algorithm H without local search
is O(mn2). For each j∗ (there are a total n jobs), position k is chosen in
O(n) time. Local search has a run time of O(n3), but the number of times it
is invoked is unknown. So Algorithm H has a run time no less than O(mn3).
In other words, the run times of Algorithm H and ACO are comparable.

4 Computational results for instances of
(Potts, Wassenhove, 1982)

In this section we present computational results of applying ACO and Al-
gorithm H to deal with instances of the problem 1||∑ Tj comprising n =
4, . . . , 70, 100 jobs that are generated using the schema in (Potts, Wassen-
hove, 1982).

The instances were generated as follows: for each job j, a processing time
pj ∈ Z was randomly chosen from the uniform distribution [1, 100], and a
due date from the uniform distribution

[
n∑

j=1

pj(1− TF −RDD/2),
n∑

j=1

pj(1− TF + RDD/2)],

where TF is the tightness factor and RDD is the relative due date. Both of
the values TF and RDD were taken from the set {0.2, 0.4, 0.6, 0.8, 1.0}. For
each combination of (TF, RDD), we generated 100 instances, i.e., a total of
2,500 instances were generated for each n.

When F (πEDD) = 0, we did not consider any instance because in this
case both Algorithm H and ACO would yield the optimal solutions.

7

We used the following parameter settings: α = 1, β = 2, and ρ = 0.1.
For the heuristic information ηij, we used the MDD rule.

For each instance, the exact Algorithm A returned an optimal value Fopt.
In ACO, ants were allowed to continue to run when the optimal solution

was not found. The number of ants was constrained by m ≤ 100. ACO
could run up to 10 times for each instance when the optimal solution was
not obtained. The best found total tardiness value FACO was recorded, and
the relative error FACO−Fopt

Fopt
was computed. The same experimental approach

was taken to test Algorithm H.
In this way, we obtained computational results to compare the perfor-

mance of ACO and Algorithm H with respect to the following measures:
percentage of time that an optimal solution is found, relative error of the
solution found, and number of iterations needed to find an optimal solution.
The results are presented in Table 1.

Table 1.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
4 2500 0 0 0 0 1.0404 1.004
5 2500 0 0 0 0 1.0616 1.0216
6 2500 0 0 0 0 1.0908 1.036
7 2500 0 0 0 0 1.1384 1.0612
8 2500 0 0 0 0 1.1968 1.0588
9 2500 0 0 0 0 1.1456 1.1044
10 2500 0 0 0 0 1.2576 1.1228
11 2500 0 0 0 0 1.2364 1.126
12 2500 0 0 0 0 1.2672 1.1484
13 2500 0 0 0 0 1.2968 1.2296
14 2500 0 0 0 0 1.3704 1.2464
15 2500 0 0 0 0 1.3576 1.2744
16 2500 0 0 0 0 1.4324 1.3928
17 2500 0 0 0 0 1.4376 1.3196
18 2500 0 0 0 0 1.4656 1.3216
19 2500 2 0 0.22 0 1.6164 1.4004
20 2500 1 0 0.58 0 1.6064 1.4204

8

Continuation of the Table 1.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
21 2500 0 0 0 0 1.5892 1.4232
22 2500 1 0 0.16 0 1.626 1.4844
23 2500 0 0 0 0 1.6572 1.5184
24 2500 0 0 0 0 1.6992 1.5568
25 2500 0 0 0 0 1.8128 1.5504
26 2500 0 0 0 0 1.7736 1.584
27 2500 0 0 0 0 1.88 1.6828
28 2500 2 0 0.09 0 1.9704 1.6688
29 2500 0 0 0 0 1.9172 1.7872
30 2500 0 0 0 0 1.9744 1.7268
31 2500 0 0 0 0 1.9656 1.8656
32 2500 0 0 0 0 2.1688 1.8788
33 2500 0 0 0 0 2.214 1.844
34 2500 1 0 0.15 0 2.2212 1.9568
35 2500 0 0 0 0 2.3272 2.1152
36 2500 0 1 0 0.04 2.2332 2.154
37 2500 1 1 0.38 0.01 2.4796 2.102
38 2500 0 0 0 0 2.2696 2.1172
39 2500 0 0 0 0 2.576 2.1044
40 2500 1 0 0.04 0 2.6036 2.2424
41 2500 0 0 0 0 2.552 2.2704
42 2500 1 1 0.05 0.01 2.7888 2.4092
43 2500 1 1 0.07 0.06 2.7316 2.3656
44 2500 3 0 0.04 0 2.8464 2.3784
45 2500 2 0 0.68 0 2.9736 2.4728
46 2500 1 0 0.03 0 3.1624 2.4088
47 2500 2 0 0.01 0 3.248 2.5152
48 2500 9 0 0.56 0 3.4516 2.5196
49 2500 3 1 0.15 0.08 3.4252 2.7
50 2500 9 1 0.35 0.29 3.716 2.6336
51 2500 8 0 0.22 0 3.8412 2.7768
52 2500 4 1 0.04 0.07 3.5816 2.86
53 2500 4 2 0.03 0.42 3.8948 2.9668
54 2500 9 3 0.1 0.29 4.0324 2.9924

9

The termination of the Table 1.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
55 2500 8 2 0.11 0.06 4.1048 3.0496
56 2500 9 1 0.83 0.01 4.2916 3.0064
57 2500 7 0 0.23 0 4.1568 3.158
58 2500 14 0 0.17 0 4.71 3.3724
59 2500 14 4 0.24 0.1 4.81 3.3372
60 2500 11 1 0.22 0.01 4.7268 3.4224
61 2500 18 2 1.26 0.02 5.3032 3.5216
62 2500 10 2 0.26 0.01 5.0964 3.5032
63 2500 17 7 0.16 0.08 5.3016 3.5728
64 2500 15 6 0.57 0.46 5.2388 3.6504
65 2500 18 7 0.1 0.14 5.548 3.6604
66 2500 17 11 0.15 0.14 5.4288 3.8552
67 2500 17 7 0.83 0.1 6.1068 4.1016
68 2500 25 4 0.2 0.08 6.3864 3.7252
69 2500 18 6 0.12 0.1 6.1912 4.0796
70 2500 33 4 0.23 0.05 6.974 3.8672
100 617 36 0 0.31 0 27.35 4.66

The first and second columns record the number of jobs n and the number
of instances considered, respectively. The third and fourth columns show the
number of instances for which ACO and Algorithm H could not find an
optimal solution, respectively. The relative errors of ACO and Algorithm H
are shown in columns 5 and 6, respectively, while the average numbers of
iterations needed to solve the instances by ACO and Algorithm H are shown
in the last two columns, respectively.

The results show that both ACO and Algorithm H could produce the
optimal solutions for more than 99% of the instances. Algorithm H could not
find an optimal solution for less than 0.44% of the total number of instances
considered, and its relative error was less than 0.46%. On the other hand,
the relative error of ACO was up to 1.26% for n = 61, and the number of
instances for which ACO could not optimally solve was greater than 1% of
the instances considered for n = 70. We thus expect that the superiority of
the performance of Algorithm H over ACO will become more significant as
n grows.

10

5 Computational results for instances of case
B-1 (Lazarev et al.,2004)

In this section we present computational results of applying ACO and Algo-
rithm H to deal with instances of a special case B-1 of the problem 1||∑ Tj.
For this case, we have

p1 ≥ p2 ≥ . . . ≥ pn,
d1 ≤ d2 ≤ . . . ≤ dn,
dn − d1 ≤ pn.

(1)

It was reported in (Lazarev et al.,2004) that this case is the "hardest"
for Algorithm A, i.e., it requires frequent invocation of Elimination Rules
1-4. Instances of the case (1) were also called "hard" instances in (Croce
et al.,2004). This case has been shown to be NP-hard in the ordinary sense
(Lazarev,Gafarov,2006). It has been shown that the exact algorithms pro-
posed in (Szwarc et al.,1999; Lazarev et al. 2004; Chang et al.,1995) for this
case each have a run time of O(2

n
2).

We tested instances with n = 4, . . . , 100 jobs. For each n, we considered
1,000 instances of case B-1. The values of pj were randomly sampled from the
uniform distribution [1, 500], while the due dates dj were randomly chosen
from the uniform distribution [A,A + pn], where A ∈ [0,

∑
pj − pn].

The experimental approach discussed in section 4 was applied to treat
the instances in this section. We used the exact Algorithm B-1 modified for
integer instances to obtain the optimal solutions, which has a run time of
O(n

∑
pj). The results are presented in Table 2.

11

Table 2.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
4 1000 0 0 0 0 1.038 1.005
5 1000 0 0 0 0 1.071 1.034
6 1000 0 0 0 0 1.159 1.073
7 1000 1 0 0.67 0 1.38 1.044
8 1000 0 0 0 0 1.311 1.058
9 1000 0 0 0 0 1.401 1.137
10 1000 0 0 0 0 1.418 1.088
11 1000 0 0 0 0 1.584 1.091
12 1000 0 0 0 0 1.478 1.247
13 1000 0 0 0 0 1.495 1.201
14 1000 0 0 0 0 1.441 1.207
15 1000 0 0 0 0 1.621 1.241
16 1000 0 0 0 0 1.501 1.279
17 1000 0 0 0 0 1.45 1.271
18 1000 0 0 0 0 1.526 1.805
19 1000 0 0 0 0 1.511 1.36
20 1000 0 0 0 0 1.448 1.252
21 1000 0 0 0 0 1.457 1.457
22 1000 0 0 0 0 1.448 1.373
23 1000 0 1 0 0 1.481 1.761
24 1000 0 0 0 0 1.446 1.644
25 1000 0 2 0 0 1.337 1.696
26 1000 0 3 0 0.01 1.381 1.871
27 1000 0 1 0 0.01 1.429 1.707
28 1000 0 1 0 0 1.532 1.8
29 1000 0 3 0 0 1.423 1.815
30 1000 0 2 0 0 1.311 2.027
31 1000 0 4 0 0.01 1.354 1.929
32 1000 0 2 0 0 1.343 1.98
33 1000 0 3 0 0 1.379 2.005
34 1000 0 2 0 0 1.166 1.764

12

Continuation of the Table 2.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
35 1000 0 7 0 0 1.287 2.435
36 1000 0 4 0 0 1.288 1.894
37 1000 0 5 0 0 1.237 2.102
38 1000 0 5 0 0 1.266 2.027
39 1000 0 5 0 0 1.216 2.115
40 1000 0 4 0 0 1.187 2.043
41 1000 0 3 0 0 1.241 1.868
42 1000 0 6 0 0 1.212 2.162
43 1000 0 4 0 0 1.287 2.042
44 1000 0 4 0 0 1.335 1.861
45 1000 0 2 0 0 1.304 2.149
46 1000 0 3 0 0 1.239 1.895
47 1000 0 4 0 0 1.224 1.847
48 1000 0 5 0 0 1.251 2.298
49 1000 0 3 0 0 1.264 2.179
50 1000 0 1 0 0 1.168 1.712
51 1000 0 0 0 0 1.251 1.332
52 1000 0 5 0 0 1.22 1.82
53 1000 0 6 0 0 1.213 1.995
54 1000 0 2 0 0 1.189 1.59
55 1000 0 1 0 0 1.139 1.639
56 1000 0 5 0 0 1.107 2.075
57 1000 0 5 0 0 1.18 2.049
58 1000 0 4 0 0 1.208 2.175
59 1000 0 0 0 0 1.218 1.424
60 1000 0 5 0 0 1.114 2.076
61 1000 0 4 0 0 1.15 1.773
62 1000 0 6 0 0 1.123 2.154
63 1000 0 4 0 0 1.114 1.909
64 1000 0 0 0 0 1.137 1.207
65 1000 0 4 0 0 1.112 1.854
66 1000 0 4 0 0 1.237 1.798
67 1000 0 1 0 0 1.132 1.57
68 1000 0 1 0 0 1.098 1.412

13

The termination of the Table 2.
n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
69 1000 0 4 0 0 1.12 1.912
70 1000 0 6 0 0 1.076 1.904
71 1000 0 5 0 0 1.105 1.907
72 1000 0 4 0 0 1.123 1.765
73 1000 0 3 0 0 1.084 1.589
74 1000 0 2 0 0 1.11 1.527
75 1000 0 4 0 0 1.122 1.656
76 1000 0 4 0 0 1.122 1.688
77 1000 0 0 0 0 1.177 1.382
78 1000 0 2 0 0 1.088 1.532
79 1000 0 6 0 0 1.122 2.114
80 1000 0 6 0 0 1.104 1.97
81 1000 0 3 0 0 1.103 1.553
82 1000 0 2 0 0 1.103 1.602
83 1000 0 2 0 0 1.18 1.653
84 1000 0 2 0 0 1.08 1.603
85 1000 0 3 0 0 1.111 1.555
86 1000 0 1 0 0 1.149 1.534
87 1000 0 0 0 0 1.11 1.415
88 1000 0 2 0 0 1.123 1.401
89 1000 0 1 0 0 1.087 1.484
90 1000 0 3 0 0 1.086 1.596
91 1000 0 4 0 0 1.083 1.76
92 1000 0 4 0 0 1.094 1.936
93 1000 0 2 0 0 1.097 1.519
94 1000 0 2 0 0 1.096 1.463
95 1000 0 2 0 0 1.093 1.459
96 1000 0 5 0 0 1.095 1.963
97 1000 0 0 0 0 1.079 1.134
98 1000 0 0 0 0 1.125 1.238
99 1000 0 1 0 0 1.073 1.275
100 1000 0 1 0 0 1.068 1.525

In the table there are cases where the number of instances for which
an algorithm could not find an optimal solution is not equal to 0, yet the

14

corresponding relative error is 0, e.g., n = 23. This is because the relative
errors obtained for such cases were very small, which became 0 on conversion
into percentages.

The results show that ACO found the optimal solutions for all of the
instances considered, except for n = 7, while Algorithm H found the optimal
solutions for 99% of the instances. However, the relative error of Algorithm
H was no larger than 0.01%. Overall, both algorithms required fewer than 3
ants to produce the optimal solutions. Therefore, we may conclude that the
performance of Algorithm H is only marginally inferior to that of ACO.

6 Computational results for canonical DL-
instances (Du,Leung,1990)

In this section we consider another NP-hard case, known as the canonical
DL-instances (Du,Leung,1990), of the problem 1||∑ Tj. It has also been
shown that the exact algorithms presented in (Szwarc et al.,1999; Lazarev et
al. 2004; Chang et al.,1995) for the canonical DL-instances each have a run
time of O(2

n
2).

First, consider the Even-Odd Partition (EOP) problem: Given a set of 2n
positive integers B = {b1, b2, . . . , b2n}, where bi ≥ bi+1, i = 1, 2, . . . , 2n − 1.
Is there a partition of B into two subsets B1 and B2 such that

∑
bi∈B1

bi =∑
bi∈B2

bi, and such that for each i = 1, . . . , n, B1 (and hence, B2) contains
exactly one number of {b2i−1, b2i}?

We generated instances of EOP for n = 4, . . . , 40. Let δi = b2i−1−b2i, i =
1, . . . , n. The values of δi were randomly chosen from the uniform distribution
[1, 50]. For each n and each set of δi values generated, we constructed an
instance of EOP as follows: b2n := 1, b2n−1 := b2n + δn, b2i := b2i+1 +
1, b2i−1 := b2i + δi, i := 1, . . . , n− 1.

We then converted the EOP instance to a canonical DL-instance for each
n, with the job set N = {V1, V2 . . . , V2n,W1,W2, . . . , Wn+1}, where |N | =
3n+1. Let b = (4n+1)δ. Denote δ = 1

2

∑n
i=1(b2i−1−b2i). Let a2i−1 = b2i−1 +

(9n2+3n−i+1)δ+5n(b1−b2n) and a2i = b2i+(9n2+3n−i+1)δ+5n(b1−b2n),
i = 1, . . . , n. Define the due dates and processing times as follows:

15

pVi
= ai, i = 1, 2, . . . , 2n,

pWi
= b, i = 1, 2, . . . , n + 1,

dVi
=

{
(j − 1)b + δ + (a2 + a4 + . . . + a2i) if i = 2j − 1,
dV2j−1

+ 2(n− j + 1)(a2j−1 − a2j) if i = 2j, j = 1, 2, . . . , n;

dWi
=

{
ib + (a2 + a4 + . . . + a2i) if i = 1, 2, . . . , n,
dWn + δ + b if i = n + 1.

For this case we used the exact pseudo-polynomial algorithm B-1 for
canonical-DL instances to obtain the optimal solutions for the instances con-
sidered, which has a run time of O(nδ). The experimental settings followed
those discussed in section 4. For each n, where n = 4, . . . , 40, the number
of jobs was 3n + 1 = 13, 16, . . . , 121, and we considered 50 instances. Both
Algorithm H and ACO were applied to deal with the instances. The results
are presented in Table 3.

Table 3.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
13 50 0 0 0 0 1.96 1.94
16 50 1 0 0 0 4.92 3.4
19 50 2 3 0 0 10.3 11.64
22 50 2 2 0 0 7.66 8.22
25 50 4 4 0 0 16.28 16.44
28 50 6 4 0 0 19.2 15.24
31 50 0 3 0 0 8.16 15.66
34 50 1 1 0 0 8.8 9.44
37 50 1 0 0 0 7.12 7.58
40 50 0 0 0 0 5.88 4.74
43 50 0 0 0 0 4.14 5.76
46 50 0 0 0 0 3.32 4.48
49 50 0 0 0 0 4.52 4.76
52 50 0 0 0 0 3.28 4.48
55 50 0 0 0 0 3.36 4.26
58 50 0 0 0 0 3.82 4.58
61 50 0 0 0 0 3.04 4.36
64 50 0 0 0 0 3.48 3.46

16

The termination of the Table 3.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
67 50 0 0 0 0 3.22 3.48
70 50 0 0 0 0 2.26 3.1
73 50 0 0 0 0 2.46 3.36
76 50 0 0 0 0 2.96 3.22
79 50 0 0 0 0 2.22 2.52
82 50 0 0 0 0 2.94 3.24
85 50 0 0 0 0 3.34 3.72
88 50 0 0 0 0 2.8 3.56
91 50 0 0 0 0 2.64 2.6
94 50 0 0 0 0 2.7 2.8
97 50 0 0 0 0 2.7 2.9
100 50 0 0 0 0 2.46 2.68
103 50 0 0 0 0 2.48 2.52
106 50 0 0 0 0 3.08 2.46
109 50 0 0 0 0 2.44 2.2
112 50 0 0 0 0 2.18 2.22
115 50 0 0 0 0 2.08 2.12
118 50 0 0 0 0 2.02 1.96
121 50 0 0 0 0 2.18 2.56

The performance of both algorithms was largely comparable. It is noted
that when 3n+1 = 25 or 28, the number of instances for which the algorithms
could not find an optimal solution was greater than 10% of the instances
tested. But the relative errors were all less than 0.01%, and the number of
iterations required to obtain the optimal solutions were all fewer than 20.

It can be assumed that the chance of finding an optimal canonical DL-
schedule is approximately O(1/2n) (Du,Leung,1990). This is because for
each pair of V2i−1andV2i, i = n, . . . , 1, there exist two orders with almost
identical probabilities: V2i−1 is processed in position 2i−1 and V2i in position
3n + 1− (i− 1) of an optimal schedule, and vice versa.

We repeated the experiments without the 2-opt strategy for both algo-
rithms. The results are shown in the next Table 4.

17

Table 4.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
13 50 50 26 13.46 0.01 100 58.2
16 50 50 35 0.77 0.03 100 73.82
19 50 50 43 3.29 2.78 100 88.06
22 50 50 46 2.86 2.05 100 93.52
25 50 50 49 2.03 1.58 100 98.02
28 50 50 50 2.97 2.49 100 100
31 50 50 49 3.48 2.02 100 98.48
34 50 50 49 2.85 1.67 100 98.4
37 50 50 49 1.71 1.41 100 98.02
40 50 50 50 0.96 1.79 100 100
43 50 50 50 2.3 2.06 100 100
46 50 50 50 1.16 2.24 100 100
49 50 50 50 2.18 2.36 100 100
52 50 50 50 1.61 1.75 100 100
55 50 50 50 1.42 1.87 100 100
58 50 50 50 1.08 1.4 100 100
61 50 50 50 1.22 1.51 100 100
64 50 50 50 1.37 1.6 100 100
67 50 50 50 2.41 1.66 100 100
70 50 50 50 1.82 1.71 100 100
73 50 50 50 1.52 1.57 100 100
76 50 50 50 1.71 1.61 100 100
79 50 50 50 2.47 1.49 100 100
82 50 50 50 2.44 1.65 100 100
85 50 50 50 2.02 2.69 100 100
88 50 50 50 1.93 2.03 100 100
91 50 50 50 2.79 1.79 100 100
94 50 50 50 2.28 1.46 100 100
97 50 50 50 1.95 1.37 100 100
100 50 50 50 2.21 1.75 100 100

18

The termination of the Table 4.

n Instances not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
103 50 50 50 1.48 1.74 100 100
106 50 50 50 2.05 1.56 100 100
109 50 50 50 1.78 1.4 100 100
112 50 50 50 1.97 1.76 100 100
115 50 50 50 1.76 1.95 100 100
118 50 50 50 1.79 1.98 100 100
121 50 50 50 2.27 1.38 100 100

The results show that both algorithms achieved "good" performance only
with the aid of local search. But the number of local search executed may
be exponential. When 3n + 1 = 40 or more, none of the solutions obtained
by both algorithms was optimal.

Conclusions
Our computational results show that Algorithm H performs better than ACO
for the instances generated by the schema of (Potts, Wassenhove, 1982).
For 99.5% of the instances considered for this case, Algorithm H found the
optimal solutions. The relative error was less than 0.5 %, and the average
number of iterations needed was fewer than 5 (ants).

For the "hard" instances of case B-1, Algorithm H performs marginally
inferior to ACO. But Algorithm H found the optimal solutions for 99% of
the instances considered, and its relative error was no larger than 0.01%.

For the NP-hard case of (Du,Leung,1990), both ACO and Algorithm H
perform comparably and could achieve good performance only with the aid
of local search.

References
[1] J. Du, J. Y.-T. Leung. Minimizing total tardiness on one processor is

NP-hard. Mathematics of Operations Research 1990; 15; 483–495.

[2] E.L. Lawler. A pseudopolynomial algorithm for sequencing jobs to min-
imize total tardiness. Annals of Discrete Mathematics 1977; 1; 331–342.

19

[3] W. Szwarc, F. Della Croce, A. Grosso. Solution of the single machine
total tardiness problem. Journal of Scheduling 1999; 2; 55–71.

[4] W. Szwarc, A. Grosso, F. Della Croce. Algorithmic paradoxes of the
single machine total tardiness problem. Journal of Scheduling 2001; 4;
93–104.

[5] C.N. Potts, L.N. Van Wassenhove. A decomposition algorithm for the
single machine total tardiness problem. Operations Research Letters
1982; 1; 177–182.

[6] F. Della Croce, A. Grosso, V. Paschos. Lower bounds on the approxi-
mation ratios of leading heuristics for the single-machine total tardiness
problem. Journal of Scheduling 2004; 7; 85–91.

[7] A. Lazarev, A. Kvaratskhelia, A. Tchernykh. Solution algorithms for
the total tardiness scheduling problem on a single machine. Workshop
Proceedings of the ENC’04 International Conference, Colima, Mexico
2004; 474–480.

[8] S. Chang, Q. Lu, G. Tang, W. Yu. On decomposition of total tardiness
problem. Operations Research Letters 1995; 17; 221–229.

[9] A. Bauer, B. Bullnheimer, R.F. Hartl, C. Strauss. Minimizing total tar-
diness on a single machine uing Ant Colony Optimization. Proceedings
of the 1999 Congress on Evolutionary Computation (CEC99), 6-9 July
Washington, D.C., USA 1999; 1445–1450.

[10] D. Merkle, M. Middendorf. An ant algorithm with a new pheromone
evaluation rule for total tardiness problem. Lecture Notes in Computer
Science 2000; 1803; 287–296.

[11] H. Emmons. One machine sequencing to minimize certain functions of
job tardiness. Operations Research 1969; 17 701–715.

[12] A.A. Lazarev, E.R. Gafarov. Special case of the single machine total tar-
diness problem is NP-hard. Journal of Computer and Systems Sciences
International 2006; 3; 120–128 (in Russian).

20

