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Summary

Given a single machine and set of jobs with processing times (p;) and due
dates (d;). The classical NP-hard scheduling problem 1|| 37} to minimize
the total tardiness is a well-understood one. In this paper, we show that
the special case B-1 of the problem when d,,q0 — dimin < Pmin is NP-hard in
the ordinary sense. For this case we have constructed a pseudo-polynomial
algorithm with run time O(n ) p;).

1 Introduction.

Given a set N of n independent jobs that must be processed on a single
machine. Preemptions of jobs are not allowed. The single machine can
handle only one job at a time. The jobs are available for processing at time
0. For each job j, j € N, a processing time p; > 0 and a due date d; are given.
A schedule 7 is uniquely determined by a permutation of elements of N. We
need to construct an optimal schedule 7* which minimizes the total tardiness
value F(m) = 37 | max{0, Cj(w) — d;}, where C;(7) is the completion time
of job j in schedule 7. Tj(m) = max{0, C;(w) — d;} is the tardiness of job j
in schedule 7. The problem 1 || > 7} is NP-hard in the ordinary sense [1].
A pseudo-polynomial time O(n* 3" p;) dynamic programming algorithm has
been proposed by Lawler [2]. The state-of-the-art algorithms of Szwarc et
al.[3, 4] handle special instances [5] of the problem for n < 500.

We show that the special case B-1 [6] is NP-hard in the ordinary
sense. Notice that there exists a pseudo-polynomial algorithm with run time
O(n ) p,) for the case B-1. We propose a polynomial scheme of reduction
from NP-complete Even-Odd Partition Problem to the special case B-1
of the problem 1 || > 7j.



2 Even-Odd Partition Problem (EOP).

Given a set of 2n positive integers B = {by, by, ..., bon}, by > biyq, @ =
1,2,...,2n — 1. Is there a partition of B into two subsets B; and B, such
that ), .5 bi = >, cp, bi and such that for each i = 1,...,n B, (and hence,
Bs) contains exactly one number of {bg;_1,b9;}? The EOP problem is well
known NP-complete problem.

Let §; = by—y — by, @ =1,...,n, 0 = > 0;. Now we construct the
modified Even-Odd Partition Problem. There is the following set of integers
A= {al,ag, ce ,agn}.

agn:M+b,
agi:a%”—l—b,i:n—l,...,l, (]_)
Agi—1 = Qg + 05, 1 =mn,...,1,

where b > nd (for example b = n?§), M > n®b. Obviously, we have a; >
Ajt1, Vi = 1,2, R ,2n — 1. Notice that 5@ = bgz;l - bgi = 92;—1 — A9;, 1=
1,...,n.

The modified problem is equivalent to the original one.

For example, let B = {by,bs,...,bs} = {15,12,12,7,5,3}, 6 = 10, n = 3.
For By = {b1,b4,b5} and By = {by, b3, bg} we have ZbieBl by = ZbieBQ b;
27. We denote b = n%0 = 3% = 90, M = n’b = 2430, A =
{2703, 2700, 2615, 2610, 2522, 2520}. The modified EOP instance has a so-
lution too: A; = {2703,2610, 2522}, Ay = {2700, 2615, 2520}.

Lemma 1 The original EOP problem has a solution if and only if the mod-
ified EOP problem does.

Proof. Let for the original problem there exist two subsets B; and B, that
Zbi€B1 b, = ZbiGBz b;. We denote A; = {az|b2 c Bl}, Ay = {al|bz S BQ}
Then we have >, 4 a; =), 4, @i

Let for the modified problem there exist two subsets A; and A, that
ZaieAl a; = ZaieAQ a;. Let’s denote By = {b;la; € A1}, Bs = {bila; € As}.
We have >, 5 bi = >, cp, bi.J



3 Special case of the 1 || ) T; problem.

The following case B-1 of the problem 1 || > 7} is considered [6]:

P1L=>P2 > ... 2 Dp,
diy <dy < ... < d,y, (2)

This case is called "hard” instances in the paper [7]. The research of known
algorithms [3, 6, 8] has shown that for case B-1 the number of branchings in
the search tree is large [6].
Definitions. The sequence m = (j1, Ja, . .., jn) is an SPT schedule (short-
est processing time), if p; < pj;,.,, for p;, = pj;.,, it holds d;, < d;,,,,
i =1,2,...,n — 1. The sequence m = (j1,Ja,.-.,Jn) is an EDD sched-
ule (earliest due date), if d;, < dj,,,, for d;, = d;,,, it holds p;, < pj.,,,
1=1,2,...,n—1.

For the case (2) the sequence m = (1,2,...,n) is an EDD schedule. The
sequence m = (n,n — 1,...,1) is an SPT schedule.

The sequence 7’ is an partial schedule, if it contains only jobs from subset
N’ C N. Let {n'} is subset N’ C N of jobs processed in 7', and we denote

P(n') = Zie{w’} Di-

i1

Lemma 2 [6] For the case (2) there exists an optimal sequence m* =

(Tepp, Tspr), where mppp and mwspr are partial sequences constructed ac-
cording to EDD and SPT rules.

Corollary.[6] For the case (2) late jobs for all optimal schedules are processed
according to the SPT order, except, may be, the first one.

Now we present the polynomial reduction from the modified EOP prob-
lem to the special subcase (2) of the problem 1 || > T}. This case we denote
as canonical LG case.

We denote the jobs as Vi, Vo, V3, Vi, oo, Voi1, Vi, ooy Va1, Vo, Vo,
N={1,2,...,2n,2n + 1}.



D1 > D2 > ... > Pantl,

di < dy < ...<dopyi1,

dont1 — di < Pang1,

Pon+1 = M = n3b7

Don = Don+1 + b= A2,

P2i = Poiy2 +b=ag, i=n—1,...,1,
D2i—1 = P2i + 0; = Agi—1, 1 =1n,...,1,
dont1 = Y 11 P2i + Pont1 + %(57

dap = dans1 — 9,
d2i2d2i+2—(n—i)b—|—5, z':n—l,...,l,
dgi_l :dgz—(n—l)dl—Sél, i:n,...,l,

)
)

where b = n?0, 0 < € < %. The due dates pattern of the canonical
LG instance is presented on the Fig. 1.

Let L = % Zi":lp@-, then we have dy, 11 = L + po,+1 because % Zi”:lpi =
> i1 P2+ %5 . Canonical DL instances from paper [1] do not correspond to

the case (3).
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4 Properties of the special case (3) of the
problem 1|| ) 7}.

Lemma 3 For the case (3), for all sequences, the number of tardy jobs equals
n or (n+1).

Proof.

1. We consider set N’ of (n+2) jobs with the smallest processing times and
process its in the begin of schedule. We have Y. v, p; > (1 +2)pmin =
(n + 2)n°b, where ppi, = minjen{p;} = Pant1-

According to (3.4)-(3.8),

1
dmax = m%({dj} = d2n+1 = (n + 1)7136 + (b +2b+ ...+ nb) + 55,
J€

therefore
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Figure 1: Due date pattern 8f the canonical LG instance.



dmax = d2n+1 = (n + 1)ngb +

n(n+1)

1 3
5 b+§5<(n+2)nb<2pi,

€N’

Thus the job processed on the (n+2)th position is tardy in all schedules.
Following jobs are tardy too according to (3.3). So in all schedules the
number of tardy jobs is greater or equal to n.

. Let’s consider set of n long processing time jobs N’ and process its in
the begin of schedule. Two cases are considered

a) let n = 2k, then N” = {V}, V4, ..., Var_1, Var }, we have

k
P(N") :nn3b+2(nb+(n—1)b+...+(n—k+1)b)+25i’

=1

P(N") = nnb + 2("<";r D_[(n= k)(z_ EEDy, 3.

=1
According to (3.8) - (3.11),
i, = minjen{d;} = dy = dopi1 — (0 _1((n —i)b—8) + 6 +
(n—1)61 —eby) = (n+1)n*b+ (b+2b+ ... +nb) + 56 —
(i ((n = D)b = 0) + 0+ (n — 1)dy +e61) > P(N”);
let n =2k + 1, then N” = {Vi,Vs,..., Var_1, Var, Vogks1)—1} and

k+1
P(N") = b+ 2(b-+-(n— )b+ (n—k+ 1))+ (n—k)b+ S5,
7:=1

PV - nn3b+2(n("2+ D (n- "“W;‘ EE Dy ks 36

(n+1)nb+ b+2b+...4+nb) + 36— (i (n—i)b—6) + 6+
(n —1)0y +¢€61) > P(N"),



Jobs from the set N/ aren’t tardy. That’s why in all sequences the
number of tardy jobs is less or equal (n 4+ 1).

Thus for the case (3) in all sequences the number of tardy jobs equals n
or (n+1). W

Lemma 4 For the case (3), for all schedules m = (7, m2), there exist a sched-

ule 7' = (7TEDD77TSPT)7 where {7T1} = {WEDD}7 {7T2} = {WSPT}7 |{7T1}| =
(n+1), [{m}| =n, and what is more F(m) > F(n') holds.

Proof.

The partial sequence m; are considered. Because first n jobs in m; aren’t
tardy that’s why the EDD order is optimal for set of jobs {m;}. In this case
on the (n + 1)th position job j = argmax{d; : i € {m}} are processed.

Now we consider the sequence 7. The EDD order is optimal for set of
jobs {my}, because all n jobs are tardy. W

Let  (VitaVarseoosVidse oo Vids Vansts Vios ooy Vias oo Voo, Vig) s
canonical LG schedule, where {V;1,Vio} = {Vai_1, Vo }, i=1,2,...,n.

Lemma 5 If the sequence m = (71, ma), [{m}| = (n+1), |[{m}| =n is not
canonical LG schedule or we cannot reduce it to canonical LG schedule by
EDD and SPT rules to {m} and {my} sets, then in the schedule w two jobs
{Vai—1, Vai} are on-time or

(‘/1,17 ‘/2,17 R ‘/;,17 R Vn71,17 ‘/27L717 ‘/271,7 ‘/2n+17 Vn71,2 e 7‘/1',27 R ‘/2,27 ‘/1,2>7

(4)
jobs {Va,_1, Vo, } precede Vo, 1.

Proof. Let 7 = (m,m2), where [{m}| = (n+ 1), [{m}| = n. Let’s consider
following cases:

L If {m} = {Via,...,Vh2} so my consists only one job from set
{Vai_1, Vo;}, for all i = 1,... n. Let’s arrange jobs from {my} by SPT
rule. We have new schedule 7’. According to lemma 4, F(7') < F(r).

2. If {mo} # {Via,...,V,2}. Following cases are possible:

a) Vany1 € {m},



b) there exist the pair of jobs {Va;_1, V2;} C {ma}.
Then for some i we have {Va;_1, Vo;} C {m}, because [{m}| = n.

[

In Theorem 1 we show that for the case (3) all optimal schedules are
canonical LG schedules. We will prove that a schedule 7 can be transformed
to a canonical LG schedule 7" and F(7) > F(7'). In the proof of Theorem 1
Lemmas 6, 7, 8, 9 are used.

Lemma 6 Let
= (‘/1,17 ‘/2,17 ey ‘/;,17 ey Vn71,17 ‘/anla ‘/277,7 ‘/2n+17 anl,Q ey ‘/;',27 ceey ‘/2,27 ‘/1,2)7

where the job Va1 is processed on the (n + 2)th position. For schedule m' =
Vi Vo, Vins o Vaen, Vanet, Vangs Van, Va2 - Vi, -, Vo, Vi)
we’ll have F(m) > F ().

Proof. In schedule 7 the job V5, ;1 on the n-th position are processed.
According to lemma 3, the job V5, 1 isn’t tardy. The job V5,1 on the
(n + 2)th position are processed, that’s why it’s a tardy job.

For jobs {Vo, Vi, ..., Vai, ..., Vap_o, Vo, 1} we have

- 1
P({‘/27 ‘/47 BRI Vina SRR ‘/2n727 ‘/21171}> = nn3b+z kb—i_én = dV2"+1—n3b—§5+§n,

k:=1

according to (3.8). Obviously,

P({‘/Lla %,17 ety ‘/75,17 sty Vn—l,b ‘/Qn—l})+pV2n Z P({‘/27 ‘/47 o 7‘/217 sty ‘/QTL—27 ‘/2n—1})+pV2n

holds, thus

1
O2n(7T> 2 d2n+1 + b— 55 + 671 > d2n-

So the job V3, in schedule 7 is tardy.
Let m = (w11, Van, Vony1,mo1). Consider the canonical LG schedule n’ =
(711, Vo1, Van, m21). We aims to show F'(w) > F(x').
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Figure 2: The permutation of V5, and V5, 1.

Figure 3: The permutation.

a) Let in the schedule 7’ the job Va,.; isn’t tardy. According to (3.8)
doni1 — Conia (') < %5 holds, because the schedule 7’ is canonical LG.

From Fig. 2 we can look the equation

F(m) = F (') = Ton(7) + Tops1(7) = (Ton(7') + Tops1 (7)) = (Top4a(7) —
Tons1 (7)) = (Ton (") = Ton (7)) > (P2n — 50) = Pant1 = Pany1 +b— 50 —
Pon+1 > 0 is l"lght

b) Let in the schedule 7’ the job V3, is tardy.

F(m)=F(7") = Ton(m) +Toni1 (1) = (Ton (1) + Ton g1 (7)) = pan—Pans1 =
b> 0.

Lemma 7 Let in the schedule @ = (77'11,‘/21',1,‘/2@',71'12,71'21,)(, 722) jObS
{Vai—1, Vai}, i < n, aren’t tardy and on the position i ("right”) the job
X € {Vaj_1,Va;}, 7 > 1+ 1, is processed, |[{maa}| = (i —1). Then for the
schedule " = (w11, Va1, X, m19, To1, Vai, maa) we’ll have F(m) > F(7').

Proof. Let in the schedule 7 only jobs from {my;, X, mya} are tardy, where
{ma2}| = (i — 1). The job X is processed on the position i ("right”) (Fig.

9



3). In canonical LG schedule the job Vo € {V5_1, V5;} is processed on the
position 4 ("right”).

Construct schedule 7" = (myq, Va1, X, m12, 21, Vo, m22).  According to
lemma 3, in all schedules the number of tardy jobs is great or equal n. So
the number of tardy jobs following Va; in 7’ is greater or equal (n — 7). Thus,

F(r) = F(1') > (p2i — px)(n — i) — (dx — dy;).
a) If X =V, then py; —px = (j — )b,

dx —dyi =Y 4 (n—k)b— (j —i)6 = n(j —i)b— Y1 kb— (j —1)0 =
n(j —i)b—i(j —i)b— Y42 kb — (j —0)o.

So
F(7T) - F(Tr’) Z (j — l)b(n — Z) — (n(j — i)b — Z(] _ i)b _ ch;loﬂ kb —
(j—)8) = >ohly Kb+ (j —1)6 > 0.
b) If X = Va;_; then
p2i —px = ((j — )b —6;),
dy — doyy = Sl — Kb — (G — ) — (n — j)o; — e =

n(j — b — Y9 kb — (j — )8 — (n — j)§; — 6, = n(j — )b —
i(j — )b — S0 kb — (j — )8 — (n— 5)d; — &4

So

Fm)=F(x') 2 (= )b=6;)(n—i) = (n(—i)b—i(j )b 1% " kb~
(=)0 — (n—5)0; —6;) = SU T b+ (j —4)8 — (j — )3, + 20, > 0.

Lemma 8 Let in the schedule m = (w1, Vai_1, Vai, T2, To1, X, Taa) jobs
{Vai_1, Vai}, i < n, aren’t tardy and on the position i ("right”) the job
X € {Vaj_1,Vo;}, 7 < i—1, is processed, |[{maa}| = (i —1). Then for the
schedule w' = (711, Vai_1, X, T2, o1, Vai, o) we have F(mw) > F(x').

10



Proof.

Let in the schedule 7 only jobs from {my;, X, m} are tardy, where
[{m22}| = (i —1). The job X is processed on the position ¢ ("right”) (Fig.
3). In canonical LG schedule the job Vo € {Va_1, V5;} is processed on the
position i ("right”).

Construct schedule 7' = (my1, Va1, X, m12, mo1, Vi, Ta2).  According to
lemma 3, in all schedules the number of tardy jobs is great or equal n. So
the number of tardy jobs following V5; in 7’ is greater or equal n — 7. Thus,

F(r) = F(n') > (d — dx) — (px — pai)(n — i+ 1).
a) If X = V5, then px — pay = (i — )b,

dyi —doj = 32 L (n = k)b — (i = j)d = n(i = j)b— 3, L kb — (i = j)d =
n(i = )b — (i = 1)(i = )b+ Xp2g” kb — (i = j)3.

So
F(rm) = F(a') > n(i — )b — (i = 1)(i — )b+ Ype” kb —
(i =)0 — (i = j)bln — i+ 1) = Y0 kb — (i — )0 > 0.
b) If X = V5;_; then px — po; = (i — )b+ 05,
n(i — j)b— Yt kb — (i — )0 + (n — j)d; + e6; =
n(i — )b — (i —1)(i — )b+ >ty kb— (i — 5)5 + (n — §)5; + &6;.

So
F(m) = F(r') > (i — /)b — (i = 1)(i = )b+ Y257 kb — (i = )3 +
(n—])5]+8(5]—((z—g)b—i—@)(n—z—l—l) = ZZ_:ISJ kb—(i—j)5—§j+€5j > 0.
|
Lemma 9 Let in the schedule m = (m1, Vai_1, Vai, T2, To1, X, Taa) jobs
{Vai_1, Vai}, i < m, aren’t tardy and on the position i ("right”) the job
X € {Va1)-1, Vou-1)} is processed, |{m2}| = (i — 1). Let in the schedule

' = (m1, Vai_1, X, T2, a1, Vai, maa) the job Y are processed on the position
(n+1) and Ty (7') < 25. Then we’ll have F(m) > F(n').

11



Proof. Let in the schedule 7 only jobs from {my;, X, ms} are tardy, where
{ma2}| = i — 1. The job X is processed on the position ¢ ("right”) (Fig.
3). In canonical LG schedule the job Vo € {Va_1, V5;} is processed on the
position i ("right”).

Construct schedule 7 = (myy, Vo1, X, m12, m21, Vi, Ta2).  According to
lemma 3 in all schedules the number of tardy jobs is great or equal n. So the
number of tardy jobs following Va; in 7’ is greater or equal (n — ¢). Thus,

F(m) = F(1') > (d — dx) — (px — pai)(n — i) — (Ty (7)) — Ty (7)) >
(d2i - dX) - (pX - p2i>(n - Z) — 20.
a) If X =Vj_1) then px — ps; = b,

dgi —dgi,Q = (n—z—i— 1)b—6

Thus,
Fm)—F(@")>n—i+1)b—6—(n—i)b—2=0b—30 > 0.

b) If X = Vo_1)—1 then px — py = b+ 0,1,

dgi — dgi,Q = (n — 1+ 1)b —0 + (n — 14+ 1)(51‘,1 + 851',1.

So

F(r)—F(@")>n—-i+1)b—0+(n—i+1)0;—1 +&di_1 —
(n—4)(b+ 0;—1) —26 =b— 35 + &;_1 + d;_1 > 0, because b = n?d.

Theorem 1 For the case (3) all optimal schedules are canonical LG sched-
ules or can be reduced to canonical LG schedules if EDD rule is applied for
first (n+ 1) jobs.

Proof. Let 7 be arbitrary schedule. According to lemma 4 we can reduce
to schedule m = (mgpp, mspr) where [{mgpp}| = (n + 1). The job Va,.1 is
processed on the position (n + 1)th or (n + 2)th. Let the schedule 7 isn’t
canonical LG schedule.

12



Then in 7 two jobs {Vai, Vi}, ¢ < mn aren’t tardy or
7w has structure (4) (see lemma 5). If (4) holds then accord-

ing to lemma 6 there exist a canonical LG schedule 7/ =

Vi Vo, Vins o Vi, Vanet, Vang, Van, Vg - Vig, -, Vo, Vi)
so that F(r) > F(n’). Denote 7 := 7'

The following algorithm transform a schedule 7 to a canonical LG sched-
ule. The algorithm consists two cycles.

Denote ' :=7

Cycle 1.WHILE in the next schedule 7’ exist ¢ that on the position
i "right” a job X ¢ {Vou_1)-1, Vau-1)}, X # Vani1 is processed AND jobs
Vi1, Vo; aren’t tardy DO

We apply permutation for V5; and X are denoted in lemmas 7 and 8. We
have new schedule 7’. The total tardiness decreased.

End of cycle 1.

Denote 7 := 7’. Obviously, the step’s number of Cycle 1 is less n. Then
to apply the EDD rule for first (n + 1) jobs in 7.

The job V4,41 is processed on the position (n + 1) or (n 4 2) in schedule
m. If the job Va,11 is processed on the position (n + 2) ("left”) then the job
Van—1 has the position n and V3, has the position (n+ 1) according to Cycle
1 and EDD rule.

Following cases are probable:

I. Let the job V3,1 is processed on the position (n + 2).

We consider the schedule 7 = (w1, Van—1, Van, Vant1, m2) where Vo, is
processed on the (n 4 1)th position. There [{m}| = (n — 1) = |[{m2}|
holds.

According to Cycle 1 there only situations described in lemma 9 are
probable. So P(m)+2¢b+d > P(me) > P(m)+2gb— 6, where ¢ — the
number of situations in schedule 7.

For example
{m}={Vai1, Vai b U{Vi1, Var, ..., Vico1, Vigaa, -, Vs |

{ma} = {Vau—1)-1, ‘/Q(i—l)} U{Via, Voo, ..., Vicao, Vit12, ..., Vi1 2}-

Then ¢ = 1 and P(m)+2b+9 > P(ms) > P(m )+ 2b—0 holds, because

—(0 = 0i-1 — 0 — ) < P{VA1, Van, .o, Vicon, Vieaa, oo, V1)) —
P({Vm, Voo, ..o, Vicao, Vigi o, -, Vn—l,Q}) <0 —0;—1 —0; — 0, and

13



P({Va—1)-1, Vai—1)}) — P({Vai—1, Vai}) = 2b 4 01 — ;.

Consider two cases when ¢ =1 and ¢ > 1.

In the case ¢ = 0 we have (4) (see lemma 6).

a) Let ¢ = 1.
It’s known Z?:;lpl = 2L + pons1 = 2L + n3b.

We denote A = P(my) — (P(m1) + 2b), where —§ < A < 4.

Let S = P(7T1>. Then 28 + 2b + A + Popn—1 + Pon + DPont+1 =
25 + A+ 2b+ 3n3b + 2b + 4, = 2L + n3b.

Thus ] ]
L= S+§A+2b+n3b+§(5n,

then

1.1
Con(m) = P(m1)+P2n—14pan = S+2n°b+2b+45, = L+n3b+§6n—§A.

It’s known L + n3b = d2n+1, then —0 < CQn(Tf) — d2n+1 < 0.
There exist two subcases when Cy,(m) > doyyq and Co,(m) <
d2n+1-

L. Con(m) > dopy1.

For schedule 7" = (1, Van_1, Vani1, Vo, m2) we have

F(m) = F(n') = Ton(7) + Topia(m) — (Ton(7') + Topia (7)) =
(Tont1(m) =Tons1 (') = (Ton(7") = Ton (7)) = (P2n+1+(Con(m)—
dant1)) = Pant1 = Con(T) — dany1 > 0.

2. an(ﬂ‘) < d2n+1.
And Cy,(7) > da, holds, because day, 11 — dop, = 0 and da,41 —
Con(m) < 0.

Let’s describe the schedule 7.
™= (7T117‘/22'717‘/21'777-127‘/anlu‘/2n7‘/2n+1;7r217X77T22)7

where {my}| = (i = 1), X € {Vai-1)-1, Va1 }-

14



If X = Vyi_1)-1 then permutation of neighboring jobs
Vagi—1y—1 and Vo(;_1y according to SPT rule doesn’t increase
the total tardiness.

Let X = Vy-1). In 7 (n + 1) jobs are tardy. We construct
the schedule

/
7' = (m1, Vai—1, X, T2, Van—1, Van, Vant1, a1, Vai, Ta2).

There

F(m) = F(r') = (doi — dag-1)) — (n — i + 1)(p2(i-1) — p2i) =
(n—i+1)b—3d—(n—i+1)b = —¢ holds so the total tardiness
is increased to 4.

Then Cy,(7") — daps1 > b — 6. We construct the schedule

1
™ = (711, Vai—1, X, 12, Van—1, V2n+1, Van, Ta1, V2i77T22)-

We have F(n') — F(7") > (pans+1 +b—3) — pans1 > b — 0.
Then F(r) — F(n")=b—6§ —0 > 0.
b) Let ¢ > 1. Then dy, — Co,(7) > b — 20.
If ¢ = 2 then in the schedule 7’ considered in lemma 9, for job
Y = V4, we have Ty (7') < 26. So we can use the permutation
described in lemma 9.

If ¢ > 2 then in the schedule 7’ n jobs are tardy and according to
lemma 9 F(7) > F(n’) holds.

II. Let the job V4,1 is processed on the position (n+1). Then from lemma
9 we have Ty (7') = Topia (') < 36. So we can use the permutation
described in lemma 9.

Cycle 2. WHILE in the next schedule 7’ exist two jobs Va;_1, V5; so that
on the position ¢ ("right”) a job X € {V54-1)-1, Vou—1)} is processed AND
jobs Vo1, Vo aren’t tardy DO

We apply permutation for V5; and X denoted in cases I and II. We have
a new schedule 7’. The total tardiness decreased.

End of cycle 2.

End of algorithm.
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So we can transform a schedule 7 to canonical LG schedule 7* in O(n)
time and F(r) > F(7*) holds.
|

Theorem 2 The modified EOP problem has a solution if and only if in an
optimal canonical LG schedule Capy1(T) = dopy1-

Proof.
Let’s consider a canonical LG schedule

™= (‘/1,17 ‘/2,1) R ‘/7:,17 sy Vn,l; ‘/277,4-17 Vn,27 e )‘/7;,27 R ‘/2,27 ‘/1,2>

It’s known jobs V,,9,..., ‘/Z'72, ..., Va9,Vi9 are tardy. The job Vi, can
be tardy, then F(m) =" Ty, ,(7) + T, (7).
We denote G = 322"+ p,.

Then . -
Z CVi,Q (ﬂ-) =nG — Z(n - i)pVig‘
ii=1 ii=1
Let’s denote
=L 5o

then
n—1
dy,, = don1 — (Y _(n = k)b + (n— i+ 1)5 + 6(i)((n — i)5; + £6;)),
k:=1
So

n n—1 n n—1
> Ty, (1) =nG=Y (n—i)pv,,— Y (danp1— Z n—k)b+(n—i+1)6+¢(i) ((n—i)d;+ed;))).
=1 7:=1 7:=1

=1

The problem min, min(} 7" Ty, (7) + Ty, (7)) is reduced to

) =
= > (n = Dpvi, — iy O(0) (0 — 0)8i + £6;) —

F(m
problem max ®, where &
Tv2n+1 <7T) ‘

L ItV =Vy, i=1,...,nthen Ty, (1) = 36, &, = S (n—1)pai— 10.
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2. fVio=Vy4, i=1,... ,nthen Ty, (7) = max{—%é,()} =0,

¢ = 12?;}(” — P21 — Dy (0 —1)6; + 0;) = Z?;}(” —1)pai +

The function ® has the maximal value ®; + %(5 — %Z?:l €d; when
S 1 o(i)(ed;) = D00 6 so dor_ d(i)d; = 5> i1 0;. So for modified
problem there exist two subsets A; and A, so that Zaié A, 0= Zaie A, @i
(the modified EOP problem has a solution). There Cy,,41(7) = da,41 holds.

If the modified EOP problem hasn’t a solution then > . _, ¢(:)0; =
% > or_, 0; doesn’t holds. According to value dgy, 11 we have Cop 1 () # dapa-

If Conya (W) = dap41 then 22:1 bvi, = 22:1 DPvy; T %5 = 22:1 bv;, SO the
modified EOP problem has a solution.

5 Algorithm B-1 for the case (2)

We denote d;(t) =d; —d, +t, j€1,...,n.
Algorithm B-1

1 m,(t) := (n), Fi(t) == max{0,p, —t + to};

2: fork=n—1n-2,...,1do

3 mhi= (kg (t — pr));

4w = (mpa(t), k);

5. F(r') == max{0,pp — di(t)} + F 1 (t — pr);
6:  F(r?) := Fy,(t) + max{0, Z?:kpj —di(t) };
7. Fy(t) := min{F(r!), F(r?)};

8:  mi(t) ;== argmin{F(7'), F(7?)};
9: end for
10: return the schedule 77 (d,) and its value of the total tardiness Fi(d,).

Notice that lines 1 and 3-8 of the algorithm are performed for each integer
t from the interval [to, to + >, ;).

Lemma 10 There exists an optimal schedule T for the case (2) where either
(k' — @)px or (j — k)qr holds for each triad of jobs i, j, k such that (i — j)g=,
| d; — d; |< min{p;,p,}, and k < min{i, j}.

Proof. Assuming existence of an optimal schedule 7% = (71,4, 7o, k, 73, j, 74)
for certain jobs 4,j, and k, let construct two schedules #«' =
(1, 7o, k4,73, j,m4) and 7" = (my,4,m9,J, 73, k,m4). In the following, we

show that either F(r') < F(7*) or F(n") < F(7*) holds.
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Since k < min{i, 5}, it follows that py > p;, pr > pj, di < d;, and dj, < d;.
Let consider three cases.
Case 1: cx(m*) < di. For the schedule " we have ¢;(1') = ¢ (7*) < dj, < d;
and both jobs i and k are early in both schedules 7* and #n’. Notice that for
each g € {m} we have ¢,(7’) < ¢,(7*). This implies F(7') < F(7*).
Case 2: cx(m*) > dy and cx(7*) < d;. Hence, the job k is tardy in 7*; i.e.,
Ty(7*) > 0. Since | d; — d; |< min{p;,p;} < pr and cx(7*) < d;, it follows
that ¢;(7*) < ¢,(7*) —pr < dj —pr < d;. That means the job i is early in 7*;
i.e., T;(m*) = 0. Because of ¢;(7") = cx(7*) and cx(7’) = cx(7*) — p;, we have

F(r")—F(r*) < max{0, cx(7*)—d; } —max{0, ¢ (7*)—p;—dy. } — (cr.(7*)—dy) < 0.

Case 3: ci(m*) > dj, and cx(7*) > d;. Hence, the jobs k and j are tardy in
the schedule 7* and the job k is tardy in the schedule 7”. Additionally, we
have T;(n") = max{0, cx(7*) — pr + p; — d;}. Therefore, F(n") — F(n*) <
HlaX{O,Ck<7T*) — Pk +pj - d]} + Cj(ﬂ'*) — dk — Ck(ﬂ'*) + dk — Cj(ﬂ'*) + dj <
max{0, ¢, (7*) — pr + p; — d;} — e (7*) +d; <O0.

Finally, if F(7n') = F(n*) or F(x") = F(7*) then either 7’ or 7" is an
optimal schedule too. If F(n') < F(7*) or F(7n") < F(n*) then we have the
contradiction with optimality of 7*. This means that there is no optimal
schedule 7* such that (i — k — 7).~ and each optimal schedule has the
property proposed in the lemma. The proof is completed. B

Theorem 3 Algorithm B-1 constructs an optimal schedule for the case
(2) in O(n)_ p;) time.

Proof. Optimality of Algorithm B-1 for the case (2) directly follows from
Lemma 10. To evaluate complexity of the algorithm, let notice that on each
step (for each k =n,n —1,...,1) we need to consider integer points in the
interval [to;to+ ) _7_, p;]. For certain k and ¢, each step of the algorithm per-
form in constant time. Consequently, Algorithm B-1 constructs the optimal
schedule in O(n ) p;) time.l

6 Conclusion.

When p; € Z*, j € N, for canonical DL instances [1] and case (2) we
have exact algorithm B-1 with O(n > p;) run time. For the special case (3)
there exist pseudo-polynomial algorithm B-1 canonical with O(nd) time.
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Algorithm B-1 modified has decided instances when p; ¢ Z*, so we can
find a solution for not integer EOP problem.

In the conclusion we would like to express next proposition: for any NP-

hard case of the problem 1||) 7} don’t exist algorithm with run time less
than O(nd).
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