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1 Introduction

The quadratic assignment problem (QAP) is a
well-known problem in field of discrete optimiza-
tion [4]. It formalizes the problem of placing in-
terrelated objects. A lot of real-life applications,
such as campus planning, computer motherboard
designing, scheduling of parallel production lines
and so on, can be modeled as the QAPs [1, 2].
Some opimization problems, for example, the trav-
eling salesman problem and the maximum clique
problem, are special cases of the QAP. The QAP
is NP -complete in common case.

We notice that for the problem with number of
the objects greater than 20 there is no algorithm to
find the optimal solution in efficient time. Parallel
algorithms implemented on supercomputers and
use of grid computing allow to raise the size of
such instances up to 25.

We consider the QAP in terms of graphs [2]. A
weighted undirected graph represents a structure
of links between the objects. This graph is called
a flow graph. A weight of edge represents the rel-
ative cost of the corresponding link. Distances be-
tween positions where the objects should be placed
are represented by a weighted undirected graph
called a distance graph. The objective is to find an
one-to-one mapping of vertices of the flow graph
on vertices of the distance graph so that the sum
of the relative costs is minimized. If the objective
is to minimize the maximal cost, the problem is
called the quadratic bottleneck assignment prob-
lem (QBAP).

The applications of the QBAP include, for ex-
ample, bandwidth minimization and very large-

scale integration. We notice that it often makes
sense to minimize the largest cost instead of the
overall cost in practice, so any application of the
QAP can be an application of the QBAP model.

In this paper we provide polynomial algorithms
for some special cases of the QAP and of the
QBAP [5, 6, 7].

2 Formulations

Let us provide the formulations of the QAP and
of the QBAP. Undirected weighted graphs LW =
(N,E) and MW = (V,U) without multiple edges
are given. The symbol W means that the graphs
are weighted. A weight w(ni, nj) > 0 is assigned
to each edge {ni, nj} ∈ E and a weight r(vi, vj) >
0 is assigned to each {vi, vj} ∈ U . We assume that
|N | = |V | = m. A placement of the flow graph
LW on the distance graph MW is defined as an
one-to-one mapping π : N → V . The objective
function of the QAP is

F (π) =
∑

(ni,nj)∈E
w(ni, nj)ρ(π(ni), π(nj))→ min

π
,

where ρ(π(ni), π(nj)) is the shortest distance be-
tween vertices π(ni) and π(nj) in the graph MW .

The objective function of the QBAP is

Fb(π) = max
(ni,nj)∈E

w(ni, nj)ρ(π(ni), π(nj))→ min
π
.

We denote the problems by triples
(LW,MW,F ) and (LW,MW,Fb).

As we mentioned above, the problems are NP -
complete in common cases. Furthermore, the
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problems (L,Ch, F ) and (L,Ch, Fb) of placing an
arbitrary unweighted graph L on an unweighted
chain Ch are NP -complete [3].

3 Algorithms for QAP

We consider the problem (Ch, TW,F ), where
Ch = (N,E) is an unweighted chain and TW =
(V,U) is a weighted tree. Let the vertices from the
set N be renumbered by {1, . . . ,m}. We denote a
degree of the vertex v ∈ V by d(v).

The idea of the algorithm for solving this prob-
lem is to visit each vertex of the tree TW at least
once in such way that edges of a constructed path
have minimal total weight.

Algorithm 1

Step 1. Find a chain C0 = (V0, U0), V0 =
(v1, v2, . . . , vk), that has maximal length in the
tree TW (i.e. ρ(v1, vk) = maxp,q∈V ρ(p, q)). Each
vertex vi ∈ V0 is assigned a subtree Ti = (Vi, Ui).
The set Vi consists of vi and of all tree vertices
that are connected with vi by chains not contain-
ing edges from the set U0. The set Ui consists of
edges of mentioned chains.

Step 2. Set π∗(1) = v1 and π∗(2) = v2. If
d(v2) = 2, then π∗(3) = v3, else π∗(|V2|+ 2) = v3.
To place the vertices {3, 4, . . . , |V2|+1}, we use the
reduced variant of this algorithm for the subtree
T2, in which there is selected a chain that connects
subtree’s root with an arbitrary leaf. Examine the
other vertices of chain C0.

The mapping π∗ obtained by the algorithm is
the optimal solution of the problem. The problem
(Ch, TW,F ) can be solved using the algorithm 1
in O(m3) operations.

Let Cy = (N,E) be an unweighted cycle. The
problem (Cy, TW,F ) is similar to the problem
(Ch, TW,F ). We ”cut” the cycle across an arbi-
trary edge. We place obtained chain using the
modified algorithm 1, in which an arbitrary chain
connecting two leaves is selected at step 1. So,
the problem (Cy, TW,F ) can be solved in O(m)
operations.

Definition 1 A graph S = (V,U) is called a star
if there is only one vertex v1 ∈ V that has a degree

d(v1) = m − 1 and d(v) = 1 holds for all vertices
v ∈ V \ {v1}. The vertex v1 is called the center of
the star.

Let LW = (N,E) be an arbitrary weighted
graph and SW = (V,U) be a weighted star. We
provide the algorithm to build the optimal solu-
tion of the problem (LW,SW,F ).

Algorithm 2
Step 1. Let Z(ni) =

∑
j=1,2,...,mw(ni, nj), i =

1, 2, . . . ,m. Arrange vertices of the graph LW in
such way that Z(n1) ≥ Z(n2) ≥ . . . ≥ Z(nm)
holds.

Step 2. Arrange vertices of the star SW in such
way that r(v1, v2) ≤ r(v1, v3) ≤ . . . ≤ r(v1, vm)
holds, where v1 is the center of the star.

Step 3. Set π∗(n1) = v1, π
∗(n2) = v2, . . . ,

π∗(nm) = vm.
The problem (LW,SW,F ) can be solved using

the algorithm 2 in O(m2) operations.
Consider the problem (SW,MW,F ), where

MW = (V,U) is an arbitrary weighted graph.
Using the following algorithm, one can find the
optimal solution of the formulated problem.

Algorithm 3
Step 1. Examine all pairs of vertices of the

graph MW and build a matrix of shortest paths
between them. Zero diagonal elements are ne-
glected in the matrix.

Step 2. Arrange elements of rows of the matrix
in nondescending order. Denote resulted matrix
by K = (kij), i = 1, . . . ,m, j = 1, . . . ,m− 1.

Step 3. Arrange vertices of the star SW in such
way that w(n1, n2) ≥ w(n1, n3) ≥ . . . ≥ w(n1, nm)
holds, where n1 is the center of the star.

Step 4. Examine each row of the matrix K,
find component-wise products of its elements and
vector of the star edges weights. Calculate sums
of obtained products. Find the minimum among
all these sums. Let the minimum be attained at
the row corresponding to the vertex v1 and the
columns in this row correspond to the vertices
v2, v3, . . . , vm.

Step 5. Set π∗(n1) = v1, π
∗(n2) = v2, . . . ,

π∗(nm) = vm.
The problem (SW,MW,F ) can be solved using

the algorithm 3 in O(m3) operations.
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Theorem 1 The problems (Ch, TW,F ),
(Cy, TW,F ), (LW,SW,F ) and (SW,MW,F )
can be solved in polynomial time.

4 Algorithms for QBAP

We consider the QBAP of placing an unweighted
chain Ch = (N,E) on an unweighted tree T =
(V,U). In our notation, it is the problem
(Ch, T, Fb). To describe the idea of the algorithm
for this problem, we need to propose few defini-
tions.

Let the chain C0 = (V0, U0) be selected which
consists of the vertices {k1, . . . , kp} in the tree T .
We call this chain as the main one and the tree
with selected main chain as representation of the
tree T with the main chain C0. The subtrees Ti =
(Vi, Ui) are defined in same way as in the problem
(Ch, TW,F ).

Definition 2 Let there be a number i = 2, . . . , p−
1 and there be vertices vr, vr+1, vs, vt ∈ Vi that
vr+1 is adjacent to vr, inequalities ρ(vr+1, ki) >
ρ(vr, ki), ρ(vs, vr+1) < ρ(vs, vr), ρ(vt, vr+1) <
ρ(vt, vr) and ρ(vr+1, vs) = ρ(vr+1, vt) = 2 hold and
chains connecting vr+1 and vs, vr+1 and vt do not
intersect. A graph consisting of vertices and of
edges of chains connecting vr and vs, vr and vt is
called a G1-graph.

Definition 3 Let there be a number i = 2, . . . , p−
1 and there be vertices vr, vs, vt ∈ Vi that
ρ(ki, vr) = ρ(ki, vs) = ρ(kt, vt) = 2 holds and
chains connecting these vertices and ki do not in-
tersect. A graph consisting of vertices and of edges
of chains connecting ki and vr, ki and vs, ki and
vt is called a G2-graph.

Algorithm 4

Step 1. Examine all representations of the tree
T with different main chains connecting leaves of
the tree. If there are not found both G1-graph and
G2-graph in some representation of T , go to step
2 with subject to this representation of the tree.
Else, go to step 2 with subject to any representa-
tion.

Step 2. Apply the special algorithm AP to
place vertices of the chain Ch in vertices of the
tree T .

The algorithm AP is bulky so we describe only
its idea which is to place the vertices of Ch in
the vertices of the main chain C0 one by one until
d(ki) ≥ 3 holds for the current vertex ki ∈ V0.
To place the vertices in the subtree Ti, one should
examine the vertices of Ti moving from the root
to the leaves and backward and place the vertices
keeping the distance between adjacent ones equals
to 2. Then examine the next vertices of the main
chain until d(ki) ≥ 3 holds again.

The problem (Ch, T, Fb) can be solved using the
algorithm 4 in O(m4 logm) operations.

Let us consider the problem (SW,MW,Fb),
where SW is a weighted star and MW is a
weighted graph. We notice that the algorithm 3
can be used for solving this problem if we mod-
ify it in such way that at step 4 not the sums of
the component-wise products are calculated but
the maximum of them. Therefore, the problem
(SW,MW,Fb) can be solved in O(m3) operations.

We describe the algorithm to build the optimal
solution π∗ of the problem (Ch, SW,Fb).

Algorithm 5
Step 1. Arrange vertices of the star SW in such

way that r(v1, v2) ≥ r(v1, v3) ≥ . . . ≥ r(v1, vm),
where v1 is the center of the star.

Step 2. Set π∗(n1) = v2, π
∗(n2) = v1, π

∗(n3) =
v3, π

∗(n4) = vn, π∗(n5) = v4 and so on. The
formulas for ni, i ≥ 4, are π∗(n2j) = vm−j+2,
π∗(n2j+1) = vj+2, j = 2, 3, . . . , [m2 ].

The problem (Ch, SW,Fb) can be solved using
the algorithm 5 in O(m logm) operations.

Definition 4 A tree Sp = (V,U) is called a spi-
der if there is only one vertex which degree is
greater than 2 (spider’s center). Chains connect-
ing the center with leaves are called spider legs.

Let Sp = (V,U) be an unweighted spi-
der. We provide the algorithm for the problem
(Ch, Sp, Fb).

Algorithm 6
Step 1. Select an arbitrary leg of the spider

Sp with number of vertices not less than 2. Place
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vertices of the chain Ch one by one in the vertices
of this leg moving from the leaf to the center (the
center remains free, i.e. non-occupied).

Step 2. If there are free vertices vi ∈ V adja-
cent to the spider’s center that d(vi) = 1 holds,
place the vertices of Ch in them. If there are not
and the center is free, place the vertex in arbitrary
leg’s vertex vs ∈ V which is adjacent to the center.
If the center is occupied and there is only one free
leg, place the vertex in vs and go to step 4. Else
the vertex is placed in vt ∈ V , where vt is adjacent
to vs.

Step 3. Place the vertices of the chain in the
vertices of the leg keeping the distance between
occupied spider’s vertices equal to 2 and moving
to the leaf. Then, place the chain’s vertices in
same way moving back to the center of the spider.
After the last vertex of the leg has been occupied,
place the chain’s vertex in the spider’s center if it
is still free. Go to step 2.

Step 4. Place the vertices of Ch in the leg’s
vertices one by one moving to the leaf.

The problem (Ch, Sp, Fb) can be solved using
the algorithm 6 in O(m) operations.

Let us consider the problem of placing an un-
weighted cycle Cy on an unweighted spider Sp.
We place an arbitrary vertex of Cy in the center of
Sp at step 1 of the algorithm 6, we eliminate check
if there is only one free leg at step 3 and eliminate
step 4. The obtained algorithm ends when all the
cycle vertices have been placed in the spider ver-
tices. So, the problem (Cy, Sp, Fb) can be solved
in O(m) operations.

Theorem 2 The problems (Ch, T, Fb),
(SW,MW,Fb), (Ch, SW,Fb), (Ch, Sp, Fb)
and (Cy, Sp, Fb) can be solved in polynomial time.

5 Conclusions

The quadratic assignment problem and the
quadratic bottleneck assignment problem in
terms of graphs are considered. Polynomial algo-
rithms for special flow graphs and distance graphs
are provided. In particular, there are algorithms
for cases when the flow graph is an unweighted

chain and the distance graph is a weighted tree
in the first problem and the distance graph is an
unweighted tree in the second one.
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