Dichotomy for sheduling problem $P_{m} \mid$ prec; $p_{j}=1 \mid C_{\max }$

I. V. Urazova, R. Yu. Simanchev
Omsk State University, urazovainn@mail.ru, osiman@rambler.ru

1. Statement of the problem

Set V of unit length tasks, partial order \lessdot on V, and a deadline $d \in N[1]$. Can V be scheduled on m processors so as to satisfy the precedence constraints and meet the overall deadline D, i.e. is there a schedule $\sigma: V \rightarrow\{1,2, \ldots, d\}=D$ that 1) if $i \lessdot j$ then $\sigma(i)<\sigma(j)$;
2) for all $k \in D$ exist at most m jobs $i \in V$ that $\sigma(i)=k$.

Denote Σ_{d} the set of all schedules. The problem consist in minimization completion time, i.e.

$$
\begin{equation*}
\max _{i \in V} \sigma(i) \rightarrow \min _{\sigma \in \Sigma_{d}} \tag{1}
\end{equation*}
$$

This problem can be interpreted as follows. Let G be an acyclic directed graph defining the precedence relation \lessdot on V. The goal is to place vertices from G in horizontal rectangle of width m in such of way that the precedence between vertices ere satisfied and minimum number of columns is used.

2. Polyhedral relaxation

Let us assign a vector $x=\left(x_{i k}, i \in V, k \in D\right) \in$ $R^{\text {nd }}$ to a schedule $\sigma: V \rightarrow D$ as follows:

$$
x_{i k}^{\sigma}=\left\{\begin{array}{lc}
1, & \sigma(i)=k \tag{2}\\
0, & \text { otherwise }
\end{array}\right.
$$

Let $M_{d} \in R^{n d}$ be the set of vectors satisfying system (3)-(7). On the basis of simple observations we can distinguish the following sets: let $V_{k} \in V$ be the set of vertices such that for all $i \in V \backslash V_{k} x_{i k}=0$ holds; let the set $D_{i} \in D$ for
$i \in V$ be such that for all $k \in D \backslash D_{i} x_{i k}=0$.

$$
\begin{gather*}
\sum_{k \in D_{i}} x_{i k}=1, i \in V ; \tag{3}\\
\sum_{i \in V_{k}} x_{i k} \leq m, k \in D ; \tag{4}\\
x_{i k} \leq \sum_{l \in D_{j}, l>k} x_{j l},(i, j) \in E(G), k \in D_{i} ; \tag{5}\\
0 \leq x_{i k} \leq 1, i \in V, k \in D_{i} ; \tag{6}\\
x_{i k}=0, i \in V, k \in D \backslash D_{i} . \tag{7}
\end{gather*}
$$

Constraints (3) enforce that each job is started exactly once in time interval $[k ; k+1$); inequalities (4) enforce that no more than m jobs can be processed in unit of time; inequalities (5) represent the precedence between jobs.

Proposition 1. The integer vertices of polyhedron (3)-(7) and only they correspond to schedules in the sense of (2).

Denote $M_{d, Z}=\operatorname{conv}\left(M_{d} \backslash Z^{\text {nd }}\right)$ the convex hull of all points corresponding to schedules. Consider the problem (1) as problem of integer linear programming on polyhedra M_{d} with objective function:

$$
\begin{equation*}
h(x)=\sum_{k=1}^{d} \lambda_{k} \sum_{i \in V_{k}} x_{i k} \rightarrow \min _{x \in M_{d}}, \tag{8}
\end{equation*}
$$

Here $\lambda_{1} \ll \lambda_{2} \ll \ldots \ll \lambda_{d}$.

Optimum values of problems (1) and (8) coincide if coefficients $\lambda_{k}, k=1, \ldots, d$ satisfy to conditions $m \sum_{\ell=1}^{k} \lambda_{\ell} \leq \lambda_{k+1}, k=1,2, \ldots, d-1[1]$.

3. Valid inequalities

The inequality $a x \leq a_{0}$ is called valid for $M_{d, Z}$ if for all $x \in M_{d, Z}$ holds $a x \leq a_{0}$. If there exists such $\bar{x} \in M_{d, Z}$ that $a \bar{x}=a_{0}$ then inequality $a x \leq a_{0}$ is called a support inequality.

In [2] it has been shown that the inequality

$$
\begin{equation*}
\sum_{s=1}^{t} x_{i_{s} k} \leq 1 \tag{9}
\end{equation*}
$$

is a valid inequality for $M_{d, Z}$. Here $P \subset G$ be a path, $k \in D$.

Also in [2] it has been shown that the inequality

$$
\begin{equation*}
\sum_{l=1}^{k-1} x_{z l}+\sum_{j \in V(P)} x_{j k}+\sum_{l=k+1}^{d} x_{i l} \leq 1 \tag{10}
\end{equation*}
$$

is a valid inequality for $M_{d, Z}$. Here $P \subset G$ be a path, $k \in D, i \in V(P)$ is the first vertex of P, $z \in V(P)$ is the last vertex of P.

Inequalities (9) and (10) have laid down in a basis of algorithm of cutting plane $S H P$.

4. Dichotomy for solving problem

 $P_{m} \mid$ prec $; p_{j}=1 \mid C_{\max }$At the decision of a problem difficulty arises (8) methods of integer linear programming. It is connected with exponential growth of factors of criterion function. It can be avoided using a dichotomy. Application of a dichotomy for value search becomes possible thanks to inclusion $\Sigma_{d} \subset \Sigma_{d^{\prime}}$ under condition of $d<d^{\prime}$.

The initial interval of division gets out of inequalities $\left|P_{\max }\right|+1 \leq d_{\text {min }} \leq p_{m}$ proved in [1]. Here $\left|P_{\max }\right|$ - the length of maximal path in G, p_{m} - the density of G relatively m. Check not emptiness of set Σ_{d} is carried out by the decision of a problem of integer linear programming by
algorithm $S H P$ from any objective function.

Algorithm DMN serching $d_{\text {min }}$.

Input: \mathbf{M}_{d} - polyhedral (3)-(7), $A=\left|P_{\max }\right|+1$,
$B=p_{m}$.
Iteration $k, k=1,2, \ldots$
Step 1. To find $d=\left\lceil\frac{A+B}{2}\right\rceil$.
Step 2. To solve task $\min \left\{h(x) \mid x \in \mathbf{M}_{d} \cap \mathbf{Z}^{n d}\right\}$ with algorithm $S H P$, where $h(x)$ any objective function.
If $\mathbf{M}_{d} \cap \mathbf{Z}^{n d}=\emptyset$ then $A=d, B=B$ and step 3.
If $\mathbf{M}_{d} \cap \mathbf{Z}^{n d} \neq \emptyset$ then $A=A, B=d$ and step 3 .
Step 3. If $B-A=1$ then quit: $d_{\text {min }}=B$. Otherwise iteration $(k+1)$.
End.
The given algorithm has been approved in numerical experiment. Exact decisions of the problems which dimension changes from 10 to 120 have been received.

References

[1] R. Yu. Simanchev and I. V. Urazova, Integer model for scheduling problem of minimization of the general holding time of requirements with precedences by parallel machines . Avtomatika and telemehanika, N 10, 2010.
[2] R. Yu. Simanchev and I. V. Urazova, Polytope schedules of service of identical requirements parallel machines. DAOR, N 1, v.18, 2011.

