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Applications of the p-regularity theory, successfully
developing for the last years, to optimization problems
are represented. The main result of this theory gives
a detailed description of the structure of the zero set
of an irregular nonlinear mapping. Among the appli-
cations, the construction of p-factor-operator is used
to construct numerical methods for solving degener-
ate optimization problems and p-order necessary and
sufficient optimality conditions are formulated to solve
degenerate optimization problems with equality con-
straints, in which the Lagrange multiplier associated
with the objective function might be equal to zero.
The p-factor-approach is applied to singular calculus
of variations problems, i.e. when constraints are non-
regular at the solution point. All results are illustrated
by classical examples of optimization problems [1]–[3].

P-order Extremal Principle. Necessary and
Sufficiens Conditions for Optimality in Irregu-
lar Equality-Constrained Problems. Consider the
following equality constraints problem

minimize
x∈X

ϕ(x) (1)

subject to F (x) = 0, (2)

where ϕ : X → R is a sufficiently smooth function
in a Banach space X and F is a sufficiently smooth
mapping from a Banach space X to a Banach space
Y . For the sake of simplicity consider the completely
degenerate case, i.e. F (n)(x∗) ≡ 0, n = 1, p− 1, and
X, Y is finite dimensional spaces. Introduce so-called
p-factor Lagrange function

Lp(x, h, λ0(h), y(h)) =
= λ0(h)ϕ(x) + 〈y(h), F (p−1)(x)[h]p−1〉.

Theorem 1 Let ϕ ∈ C2(X), F ∈ Cp+1(X),
F (x∗) = 0 and ImF (p)(x∗)[h]p−1 = Y for any h ∈
KerpF (p)(x∗)\{0} (i.e. F (p)(x∗)[h]p = 0). If there ex-
ists α > 0 and y(h) ∈ Y ∗ such that

Lpx(x∗, h, 1, y(h)) = 0

and

Lpxx(x∗, h, 1,
2

p(p+ 1)
y(h))[h]2 ≥ α‖h‖2

∀ h ∈ KerpF (p)(x∗),

then x∗ is a strict local minimizer to problem (1)–(2).

The p-Factor Method for Solving Singular
Unconditional Optimization Problems. Consider
the following optimization problem

minimize
x∈Rn

ϕ(x),

where ϕ ∈ Cp+1(Rn) and at the solution point x∗,
ϕ′′(x∗) is singular. For example, ϕ(x) = x41 + x42 or
ϕ(x) = x21 +x21x2 +x42 and x∗ = (0, 0)>. The principal
scheme of p-factor method in completely degenerate
case is following:

xk+1 = xk −
{
ϕ(p)(xk[h]p−2

}−1×
×
[
ϕ′(xk) + ϕ(p−1)(xk)[h]p−2

] (3)

for k = 0, 1, . . ..
The following result holds

Theorem 2 Suppose that there exists{
ϕ(p)(x∗)[h]p−2

}−1
for some h, ‖h‖ = 1. Then

for ε > 0 sufficiently small and for any x0 ∈ Uε(x
∗)

the sequence (3) converges to x∗ and

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2, k = 0, 1, . . . ,

where c > 0 is independent constant.

For ϕ(x) = x41 + x42 application of (3) gives as

xk+1 = −1

6
((xk1)3, (xk2)3)>

or

‖xk+1 − x∗‖ ≤ 1

6
‖xk − x∗‖2.

Using Newton method we obtain

xk+1
N = xkN − [ϕ′′(xkN )]−1ϕ′(xkN ) =

2

3
xkN ,
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i.e. there is not exist quadratic convergence rate of the
classical Newton’s method.

For function ϕ(x) = x21 + x21x2 + x42, x∗ = (0, 0)>

we could not quarantee convergence in general because
at the initial points x01 = x02

√
1 + (x02)2 does’t exist

{ϕ′′(x0)}−1.
Application p-regularity theory to degenerate

nonlinear programming problems. Consider the
nonlinear optimization problem

min
x∈A

ϕ(x). (4)

Here, the feasible set is A = {x ∈ Rn | g(x) ≤
0m}, where 0m is a zero vector in Rm, (g(x))> =
(g1(x), g2(x), . . . , gm(x)) is a row vector function, and
the function ϕ(x) and g(x) map Rn to R.

The Lagrange function for problem (4) is given by
L(x, v) = ϕ(x) + v>g(x), where v ∈ Rm

+ is a Lagrange
multiplier vector. Assuming that ϕ(x) and g(x) are
twice continuously differentiable, the gradient and Hes-
sian of the Lagrange function are defined as

∇xL(x, v) = ∇ϕ(x) +
m∑
i=1

vi∇gi(x),

∇xxL(x, v) = ∇2ϕ(x) +
m∑
i=1

vi∇2gi(x).

It is assumed that the solution set X∗ ⊂ Rn of prob-
lem (4) is not empty. In what follows, we also assume
that the constraint regularity condition (CRC) is sat-
isfied, in other words, the gradients of the active con-
straints ∇gi(x∗) are linearly independent. This condi-
tion guarantees that each x∗ ∈ X∗ is associated with
a unique Lagrange multiplier vector v∗ ∈ V ∗ that sat-
isfies ∇xL(x∗, v∗) = 0n and v∗i = 0 if gi(x

∗) > 0 for
i = 1, 2, . . . ,m.

Consider the non-standard version of the MLF
method in which the modified Lagrange function has
the form

LE(x, λ) = ϕ(x) +
1

2

m∑
i=1

λ2i gi(x),

where λ> = (λ1, λ2, . . . , λm)
Obviously, the ith component of the Lagrange mul-

tiplier vector v is expressed in terms of the ith compo-

nent of the new vector λ by the formula vi =
(λi)

2

2
.

Thus, the use of λ automatically ensures that the corre-
sponding Lagrange multiplier vector v is nonnegative.

A solution x∗ ∈ X∗ is associated with a vector λ∗

with components λ∗i = ±
√

2v∗i . The vectors x and λ
are jointly denoted by the single symbol w ∈ Rn+m.
Similarly, the pair [x∗, λ∗] is denoted by w∗. Therefore,

LE(x, λ) = LE(w). According to the Kuhn–Tucker
theorem, w∗ satisfies the system

G(w) =

 ∇ϕ(x) +
1

2

m∑
i=1

λ2i∇gi(x)

D(λ)g(x)

 = 0m+n. (5)

Here, D(λ) is a diagonal matrix whose dimension is
determined by the dimension of λ and its ith diagonal
element is λi. Note that system (5) can generally have
an infinite set of solutions even in the neighborhood of
w∗. Let ∇g>(x) be the Jacobi matrix of the mapping
g(x). For system (5), the Jacobi matrix is given by

G′(w) =

 ∇2ϕ(x) +
1

2

m∑
i=1

λ2i∇2gi(x) ∇g(x)D(λ)

D(λ)∇g>(x) D(g(x))

 .
(6)

For the pair [x∗, λ∗], we define the set of active con-
straints as I(x∗), the set of weakly active constraints
as I0(x∗), and the set of strongly active constraints as
I+(x∗)

I(x∗) = {j = 1, 2, . . . ,m | gj(x∗) = 0},
I0(x∗) = {j = 1, 2, . . . ,m | λ∗j = 0, gj(x

∗) = 0},
I+(x∗) = {j = 1, 2, . . . ,m | λ∗j 6= 0, gj(x

∗) = 0}.

When the MLF method is substantiated and ana-
lyzed, the CRC condition is usually supplemented with
the following conditions:

(i) Strict complementarity (SC) condition; i.e.,
λ∗i gi(x

∗) = 0 for i = 1, 2, . . . ,m and, if gi(x
∗) = 0,

then λ∗i 6= 0 for all i = 1, 2, . . . ,m.
(ii) Second-order sufficient optimality conditions:

there is a number ν > 0 such that

z>∇2
xxLE(x∗, λ∗)z ≥ ν‖z‖2 (7)

for all z ∈ Rn satisfying ∇gj(x∗)>z ≤ 0, j ∈ I(x∗).
Assume that the SC condition is does’t fulfilled at

the point x∗. Then both λ∗i = 0 and gi(x
∗) = 0 hold for

some index i. Therefore, I0(x∗) is not empty. In this
case, matrix (6) becomes singular at the point w∗ and,
consequently, system (5) cannot be solved by Newton-
type methods.

Consider the system of nonlinear equations (5). Let
the mapping G be nonregular at the point w∗, in
other words, the Jacobi matrix (6) is singular and
rank(G′(w∗)) = r < n+m. In this case, w∗ is called a
degenerate solution to system (5).

The singularity of the matrix G′(w∗) means that
there is at least one nonzero vector h such that

G′(w∗)h = 0m+n. (8)
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Obviously, for such a vector h, the solution to system
(5) also solves the modified system

Φ(w) = G(w) +G′(w)h = 0m+n. (9)

For a singular matrix G′(w∗), the matrix Φ′(w∗) =
G′(w∗) + G′′(w∗)h is nonsingular and, consequently,
the solution w∗ to system (9) is locally unique. The
nonsingularity of Φ′(w∗) underlies the construction of
the 2-factor-method for solving degenerate systems of
nonlinear equations.

Consider the 2-factor-operator G′(w) +G′′(w)h, h ∈
Rn+m, ‖h‖ 6= 0, where the vector h satisfies the con-
dition

rank [G′(w∗) +G′′(w∗)h] = n+m. (10)

A particular form of h depends on the specific features
of system (5). Note that the 2-factor-operator can be
defined in different manners. In this paper, we use the
most convenient form.

Definition 1 The mapping G is called 2-regular at the
point w∗ with respect to some vector h ∈ Rn+m if con-
dition (10) is satisfied.

Consider an iterative process for solving system (5),
which is called the 2-factor-method:

wk+1 = wk− [G′(wk)+G′′(wk)h]−1[G(wk)+G′(wk)h],
(11)

where k = 0, 1, . . ., and w0 is an initial approximation
in a sufficiently small neighborhood of w∗.

Theorem 3 Let w∗ be a solution to system (5),
Uε(w

∗) be a sufficiently small neighborhood of w∗, and
the mapping G ∈ C3(Rn+m → Rn+m) be 2-regular at
w∗ with respect to some nonzero element h ∈ Rn+m

satisfying (8).
Then the sequence defined by (11) converges to w∗

and satisfies

‖wk+1 − w∗‖ ≤ α‖wk − w∗‖2, (12)

where α > 0 is an independent constant and w0 ∈
Uε(w

∗).
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