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The variational inequality problem consists in find-
ing a vector x∗ ∈ X such that

G(x∗)(x − x∗) ≥ 0, ∀x ∈ X, (1)

where G : Ω → R
n is a continuous mapping, Ω ⊆ R

n

is a open set, X ⊂ Ω is a nonempty convex closed set.
Denote the problem (1) as V I(G, X) and its solution
set as X∗ which we assume to be nonempty.

There are many applications of V I(G, X) in eco-
nomics, physics, operation research and this is one of
main motivations to study it. Typically, these prob-
lems describe large-scale models with complex struc-
ture which are hard to solve by majority of existing
methods (e.g.[1]). Computational problems are con-
nected usually with the necessity to solve complicated
auxiliary tasks on the each iteration. Now high perfor-
mance multiprocessor computers can be used to solve
such problems. Therefore the construction of iterative
schemes that able to be parallelizable is very urgent to-
day. The projection-type methods are very promising
for development of parallel computation techniques.

It is known that a vector x∗ ∈ X∗ if and only if
x∗ is a solution of projection equation x∗ = πX(x∗ −
λG(x∗)) for any λ > 0, where πX(y) = argmin{‖y −
x‖ : x ∈ X} is a projection of the vector y onto X .
This property gave rise a lot of iterative schemes which
include calculations of projection. Up-to-date survey
about these methods is contained in [2].

In general an iterative scheme for solve V I(G, X)
can be wrote as

xk+1 = xk + d(xk, λk, µk), k = 0, 1, 2, . . . , (2)

where d(xk, λk, µk) is a descent direction for the func-
tion ‖x−x∗‖ at xk where x∗ ∈ X∗ and λk, µk > 0 are
stepsizes. These methods differ from each other in the
choice of a direction d(xk, λk, µk) and in convergence
properties of the process (2).

If d(xk, λk, µk) = πX(xk − λk

µk
G(xk)) − xk, µk =

‖G(xk)‖, then the process (2) is a classical projection
method for V I(G, X). It’s convergence is under follow-
ing assumptions (e.g. [3]):

– acute angle condition: G(x)(x − x∗) > 0 for all
x ∈ X\X∗, x∗ ∈ X∗;

– stepsize condition:
∑

∞

k=0
λk = ∞,

∑
∞

k=0
λ2

k < ∞.

If d(xk, λk, µk) = πX(xk − µkG(x̄k(λk))) − xk,
x̄k(λk) = πX(xk − λkG(xk)), then the process (2) is
called extragradient method for V I(G, X). There are
many convergence theorem for this method. Common
assumption can be formulated as following:

– G is pseudomonotone on X that is for any x, y ∈ X
G(x)(y − x) ≥ 0 implies G(y)(y − x) ≥ 0;

– stepsizes λk and µk are defined dynamically such
the process (2) to converge to the set X∗ (e.g. [2]
and references there).

The simplicity of iterative scheme and possibility for
modification make projection methods attractive for
use. The most of studies are devoted to the choice of
rules for stepsize parameters for acceleration conver-
gence of the process (2). Such problem as how to cal-
culate a projection on a set has poor attention. In gen-
eral a quadratic optimization problem should be solved
and this is main computational task. The situation is
complicated for extragradient method because finding
values of parameters λk and µk involves multiple pro-
jection on X . But there are simple sets (hyperplane,
half-space, sphere, simplex and etc.) for which pro-
jection operations are easily performed. For such sets
projection methods are popular.

One way to overcome the difficulties of practical im-
plementation of the projection operation is to represent
the feasible set of X as a finite intersection of ”simpler”
sets Xj , for which the projection is easily performed,
and subsequent realization of cyclic projections for Xj .
This idea has been well investigated for solving the so-
called convex feasibility problems [4]. With the devel-
opment of computer technology and the introduction
of parallel computations this idea has been modified
into the simultaneous projection of a given point onto
several sets [5, 6].
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Notice that there is an alternative approach for over-
coming the problem of calculation of πX(·). It consists
in approximation at a current point the giving set X
by super-half-space containing X and performing pro-
jection onto this space [7, 8].

In this paper we propose the sequential projections
method with envelope stepsize control for solving vari-
ational inequality (1). This method is based on Fejer
algorithms with an adaptive step [9], [10].

Assume that the set X can be decomposed as an
intersection m super-sets Xj for which projection op-
eration is easily performed, X =

⋂
j∈J Xj , J =

{1, 2, . . . , m}. Let B is a unit ball, convP is a con-
vex hull of a set of vectors P = {pi}i∈I , I is a finite
index set. The sequential projections method can be
described a following iterative scheme.
Algorithm 1

Step 0 Give x0 arbitrarily. Choose numbers λ0 > 0,
µ0 > 0, q1, q2, θ0 ∈ (0, 1). Let P 0 = ∅. Set k = 0.

Step 1 Find j ∈ J such that

x̄(λk) = xk − λkG(xk) /∈ Xj (3)

and calculate a direction

pk = (πXj
(x̄(λk)) − xk) / µk, P k = P k ∪ {pk}.

Step 2 Determine

xk+1 = xk + d(xk, λk, µk), d(xk, λk, µk) = µkpk.

Step 3 If 0 ∈ convP k+θkB then µk+1 = q1µk, θk+1 =
q2θk. Set k = k + 1 and go to Step 1.

It can be shown that the Algorithm 1 converges to
the set X∗ under following assumptions:

– (−G) is a strong locally restricted attractant of
X∗, that is for each x̄ ∈ X\X∗ there exists a
neighborhood U(x̄, ε) = {x : ‖x − x̄‖ ≤ 0} such
that

G(x∗)(x − x∗) ≥ δ, x ∈ U(x̄, ε) ∩ X, x∗ ∈ X∗,

for some δ > 0;

– stepsize condition for λk: λk → +0 when k → ∞
and

∑
∞

k=0
λk = ∞;

– stationary condition θk → +0 when k → ∞.

The Algorithm 1 may be modified for multiprocessor
computers with using parallel calculations. It is pos-
sible if on the Step 1 we pick out several sets Xj for

which (3) holds. Directions pk are computed simulta-
neously by different processors for each j ∈ Jk = {j ∈
J : x̄k(λk) /∈ Xj}. As result we obtain a collection of
points (xk+1)j , j ∈ Jk. Next point is determined as
xk+1 =

∑
j∈Jk

wj(x
k+1)j , where wj > 0 are such that∑

j∈Jk
wj = 1.

In the report the numerical results and conclusions
from the comparison proposed algorithms with previ-
ously developed will also be given.
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