
Ordering techniques for local elimination algorithms∗

O.A. Shcherbina∗, A.V. Sviridenko†

∗University of Vienna, oleg.shcherbina@univie.ac.at
†Tavrian National University, oleks.sviridenko@gmail.com

1 Introduction

The use of discrete optimization (DO) models and
algorithms makes it possible to solve many real-
life problems in scheduling theory, optimization on
networks, routing in communication networks, fa-
cility location in enterprize resource planing, and
logistics. Applications of DO in the artificial in-
telligence field include theorem proving, SAT in
propositional logic, robotics problems, inference
calculation in Bayesian networks, scheduling, and
others.
Many real-life discrete optimization problems
(DOPs) contain a huge number of variables and/or
constraints that make the models intractable for
currently available DO solvers. Usually, such
problems have a special structure, and the ma-
trices of constraints for large-scale problems are
sparse. The nonzero elements of the matrices
often involve a limited number of blocks. The
block form of many DO problems is usually caused
by the weak connectedness of subsystems of real-
world systems.
Graph-based local elimination algorithms [8] that
include nonserial dynamic programming (NSDP)
[2, 8], its modifications, and tree decomposition
combined with dynamic programming are promis-
ing decomposition approaches that allow exploit-
ing the structure of discrete problems. Afore-
mentioned methods use just the local informa-
tion (i.e., information about elements of given el-
ement’s neighborhood) in a process of solving dis-
crete problems [11]. NSDP (or Variable Elimina-
tion Algorithm) eliminates variables of DOP using

∗This research is partly supported by FWF (Austrian
Science Funds) under the project P20900-N13.

an elimination order which makes significant im-
pact on running time. As finding an optimal or-
dering is NP-complete [10], heuristics are utilized
in practice for finding elimination orderings. The
literature has reported extensive computational
results for the use of different ordering heuristics in
the solution of systems of equations [1], [3]. How-
ever, no such experiments have been reported for
NSDP to date.
Given the increased recent interest in DOPs, the
subject of experimental research of NSDP algo-
rithms that utilize heuristic variable orderings is
timely. In this paper, we present comparative
computational results from the benchmarking of
five ordering techniques, namely: minimum de-
gree ordering, nested dissection ordering, maxi-
mum cardinality search, minimum fill-in, and lex-
icographic breadth-first search.

2 Variable Elimination Algo-
rithms

Consider a DOP with constraints:

F (x1, x2, . . . , xn) =
∑

k∈K

fk(Y k) → max (1)

subject to the constraints

gi(XSi) Ri 0, i ∈ M = {1, 2, . . . , m}, (2)

xj ∈ Dj , j ∈ N = {1, . . . , n}, (3)

where
X = {x1, . . . , xn} is a set of discrete variables,
Y k ⊆ {x1, x2, . . . , xn}, k ∈ K = {1, 2, . . . , t} , t
– number of components of objective function,
Si ⊆ {1, 2, . . . , n}, Ri ∈ {≤, =,≥}, i ∈ M ; Dj

1



is a finite set of admissible values of variable
xj , j ∈ N . The functions fk(Xk), k ∈ K
are called components of the objective func-
tion and can be defined in tabular form. We
use here a notation: if S = {j1, . . . , jq} then
XS = {xj1 , . . . , xjq}.

Consider a sparse discrete optimization problem
(1) – (3) whose structure is described by an undi-
rected interaction graph G = (X,E). Solve this
problem with a NSDP.
Given ordering of variable indices α the NSDP
proceeds in the following way: it subsequently
eliminates xα1 , . . . , xαn in the current graph
and computes an associated local information
hi(Nb(xαi)) about vertices from Nb(xαi) (i =
1, . . . , n). This can be described by the combi-
natorial elimination process:

G0 = G,G1, . . . , Gj−1, Gj , . . . , Gn,

where Gj is the xαj -elimination graph of Gj−1

and Gn = ∅

3 Elimination Ordering Tech-
niques

An efficiency of the NSDP crucially depends on
the interaction graph structure of a DOP. If the in-
teraction graph is rather sparse or, in other words,
has a relatively small induced width, then the
complexity of the algorithm is reasonable. At the
same time an interaction graph leads us to another
critical factor such as an elimination order which
should be obtained from the interaction graph.
From the other side the NSDP heavily depends
on the elimination ordering. A good elimination
ordering yields small cliques during variable elim-
ination. There are several successful schemes for
finding a good ordering which we will used in this
paper: minimum degree ordering algorithm (MD),
nested dissection ordering algorithm (ND), max-
imum cardinality search algorithm (MCS), min-
imum fill-in heuristic (MIN-FILL) and lexico-
graphic breath-first search algorithm (LEX-BFS).

3.1 Minimum degree ordering algo-
rithm

The minimum degree (MD) ordering algorithm [1]
is one of the most widely used in linear algebra
heuristic, since it produces factors with relatively
low fill-in on a wide range of matrices.
In the minimum degree heuristic, a vertex v of
minimum degree is chosen. The graph G′, ob-
tained by making the neighborhood of v a clique
and then removing v and its incident edges, is
built. Recursively, a chordal supergraph H ′ of G′

is made with the heuristic. Then a chordal su-
pergraph H of G is obtained, by adding v and its
incident edges from G to H ′. To create an elimina-
tion order with help of minimum degree ordering
algorithm the minimum degree ordering() func-
tion from BOOST library (http://www.boost.org)
has been used.

3.2 Nested dissection algorithm

To create an elimination order, we recur-
sively partition the elimination graph using
nested dissection. More specifically, we use
METIS EdgeND() function from METIS li-
brary [5] to find a nested dissection ordering.

3.3 Maximum cardinality search algo-
rithm

The Maximum Cardinality Search (MCS) algo-
rithm [9] visits the vertices of a graph in an order
such that at any point, a vertex is visited that
has the largest number of visited neighbors. An
MCS-ordering of a graph is an ordering of the
vertices that can be generated by the Maximum
Cardinality Search algorithm. The visited degree
of a vertex v in an MCS-ordering is the number of
neighbors of v that are before v in the ordering.
To create an elimination ordering the
chompack.maxchardsearch() function from
the Chordal Matrix Package (CHOMPACK)
(http://abel.ee.ucla.edu/chompack/) has been
used.

2



3.4 Minimum Fill-in algorithm

The minimum fill-in heuristic [4] works similarly
with minimum degree heuristic, but now the ver-
tex v is selected such that the number of edges that
is added to make a neighborhood of v a clique is
as small as possible.

3.5 Lexicographic breadth-first search
algorithm

Lexicographic breadth-first search algorithm
(LEX-BFS) [7] numbers the vertices from n
to 1 in the order that they are selected. This
numbering fixes the positions of an elimination
scheme. For each vertex v, the label of v will
consist of a set of numbers listed in decreasing
order. The vertices can then be lexicographically
ordered according to their labels.

4 Benchmarking

4.1 NSDP algorithm implementation

The NSDP algorithm was implemented by the first
author in Python. The ND and MD algorithms
were implemented in C and C++, respectively.

4.2 Test problems

For benchmarking the DO test problems were gen-
erated by using hypergraphs from the CSP1 hyper-
graph library [6]. This collection contains various
classes of constraint hypergraphs from industry
(DaimlerChrysler, NASA, ISCAS) as well as syn-
thetically generated ones (e.g. Grid or Cliques).
The test problems were generated in the follow-
ing way. The constraints structure of a linear DO
problem with binary variables was described by
hypergraph from the library [6]. To build con-
straint i the next hyperedge of hypergraph was
taken, which includes a set of variables XSi for a
new building constraint. In the next step, the co-
efficients for appropriate variables of ASi were gen-
erated using a random number generator. Then
the left part of i-th constraint had view ASiXSi ,

1CSP – Constraint Satisfaction Problem.

while the right part was σ
∑

ASi , where σ is ran-
dom number from interval (0, 1). Objective func-
tion is linear and includes all variables – vertices
of hypergraph, where coefficients cj of objective
function

∑n
j=1 cjxj → max where created with

help of random number generator.
After the test problems were generated, the or-
dering algorithms MD, ND, MCS, MIN-FILL and
LEX-BFS were applied for obtaining an elimina-
tion ordering. Then the problems were solved with
the NSDP algorithm by utilizing to the specified
elimination ordering.

4.3 Benchmarking ordering analysis

The following five groups of 33 test problems
have been taken: ’dubois’, ’bridge’, ’adder’, ’pret’
and ’NewSystem’. All experimental results were
obtained on a machine with Intel Core 2 Duo
processor 2.66 GHz, 2 GB main memory and
operating system Linux, version 2.6.35-24-generic.
We can see that for ND algorithm the minimal
run-time of the NSDP was achieved 0 times (0
%), for MD 2 times (6,0 %), LEX-BFS 3 times
(9,1 %), MCS 9 times (27,3 %) and MIN-FILL 19
times (57,6 %).

Let us take a look at the results in more detail.
The benchmarking results for the groups of test
problems ’dubois’, ’bridge’, and ’adder’ show to
us that MCS, MIN-FILL and LEX-BFS heuristics
behave quite similar and give the best result for a
given group of problems. At the same time MD
and ND show the worst time result. Also for the
group ’bridge’ we can see the gradual decreasing
of the time result for the LEX-BFS heuristics and
the obvious domination of MIN-FILL.
Here we can see the importance of the right choice
of heuristics for a certain group of problems. In
the case of ’pret’, we see obvious domination of
MIN-FILL algorithm, while MCS and LEX-BFS
fall behind. However, the group ’NewSystem’
shows completely opposite results, where MIN-
FILL runs third while MCS and LEX-BFS take
the first two places.
In the case of ’pret’, we see the obvious domination
of the MIN-FILL algorithm, while MCS and LEX-

3



BFS go back. But the group ’NewSystem’ shows
the completely opposite result, where MIN-FILL
goes on the third place while MCS and LEX-BFS
take the first places.

5 Conclusion

The goal of this paper to research the role of five
variable ordering algorithms and to describe the
effect that they play on solving time of sparse DO
problems with help of the NSDP. Our computa-
tional experiments demonstrate that, for solving
DO problems, variable ordering has a significant
impact on the run-time for solving the problem.
Furthermore, different ordering heuristics were ob-
served to be more effective for different classes
of problems. Overall, the MCS and MIN-FILL
heuristics have provided the best results for solv-
ing DO problems of the problem classes that were
considered in this paper. It seems promising to
continue this line of research by studying meth-
ods of block elimination with suitable partitioning
methods.

References

[1] P.R. Amestoy , T. A. Davis and I. S. Duff, An
approximate minimum degree ordering algo-
rithm, SIAM Journal on Matrix Analysis and
Applications, V. 17, N 4, 886-905, 1996.

[2] U.Bertele and F.Brioschi, Nonserial Dynamic
Programming, Academic Press, 1972.

[3] J. A.George, Nested dissection of a regular fi-
nite element mesh, SIAM J Numer Anal, V.
10, 345-367, 1973.

[4] P. Jégou, S. N.Ndiaye and C. Terrioux, Com-
puting and exploiting tree-decompositions for
(Max-)CSP, Proceedings of the 11th Inter-
national Conference on Principles and Prac-
tice of Constraint Programming (CP-2005), P.
777-781, 2005.

[5] G.Karypis and V.Kumar, MeTiS a soft-
ware package for partitioning unstructured

graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices. Ver-
sion 4. University of Minnesota, 1998.

[6] N. Musliu, M. Samer, T.Ganzow and
G. Gottlob, A csp hypergraph library, Tech-
nical Report, DBAI-TR-2005-50, Technische
Universität Wien, 2005.

[7] D. J.Rose, R. Tarjan and G. Lueker, Algorith-
mic aspects of vertex elimination on graphs,
SIAM J. Comput., V. 5, 266-283, 1976.

[8] O. Shcherbina Graph-Based Local Elimina-
tion Algorithms in Discrete Optimization.
In: Foundations of Computational Intelligence
Volume 3. Global Optimization Series: Stud-
ies in Computational Intelligence, Vol. 203 /
Abraham A, Hassanien A-E, Siarry P, Engel-
brecht A (Eds). Springer Berlin / Heidelberg,
2009, P. 235–266.

[9] R. E.Tarjan and M. Yannakakis, Simple linear-
time algorithms to test chordality of graphs,
test acyclity of hypergraphs, and selectively re-
duce acyclic hypergraphs, SIAM J. Comput.,
V. 13, 566-579, 1984.

[10] M.Yannakakis, Computing the minimum fill-
in is NP-complete. SIAM J. Alg. Disc. Meth.,
V. 2, 77-79, 1981.

[11] Y. I. Zhuravlev, Local algorithm of informa-
tion computation (Russian), I,II. Kibernetika
1965, Vol. 1, pp. 12-19; 1966, Vol. 2, pp. 1-11.

4


