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1 Introduction

The mathematical simulation is a conventional
tool for search effective solutions of complex prob-
lems. In many real-life applications the necessity
to take into account different contradictory re-
quirements leads to formulating investigated prob-
lems in a form of multicriteria optimization prob-
lems. In this work we consider the following mul-
ticriteria problem

f(x) → min

x ∈ X ⊂ R
n

f : Rn → R
m

(1)

Here R
n is a decision space, X is a set of admis-

sible decisions, Rm is a criterion space, and f is a
vector-function that images decisions vector into
criterion one. Let Y = f(X) is the image of all
admissible decisions in the criterion space.

Important role in mulitcritrea optimization are
played by an optimality notion. There are a num-
ber of ways to define optimality in multictiteria
optimization [1]. In this work we consider Pareto
optimality.

Here is a mathematical formulation of Pareto
optimality.

Definition 1 Let x′ and x′′ are two decisions

from X. The decision x′ is said to Pareto domi-

nate the decsion x′′ according to given set of cri-

teria f(·) = (f1(·), f2(·), . . . , fm(·)), if fi(x
′) ≤

fi(x
′′), i = 1, 2, . . . ,m, and f(x′) 6= f(x′′).

Definition 2 In multicriteria (1) the solution

f(x′) is called Pareto optimal and its corre-

sponding decision x′ ∈ X is called Pareto effi-

cient, if there is no decision x′′ ∈ X, that Parto

dominates x′.

The set of all Pareto optimal solutions is called
Pareto frontier. We denote that as P (Y ).

We consider the problem of approximating the
Pareto frontier. The approximation of the Pareto
frontier is a classical problem in operations re-
search and decision making support (e.g. see
[2, 3]) and is of considerable applied importance,
because information on the Pareto frontier is used
in effective decision support systems involving
multiple criteria. In particular, the approxima-
tion of the Pareto frontier is a central stage in the
feasible goals method, in which the choice of a tar-
get point is based on computer visualization of the
multidimensional Pareto frontier (see [2]). Due to
this visualization, a decision maker can study in a
visual form the possible criteria values and substi-
tutions of criteria, which should help him or her
to choose the best solution.

In this work we construct an approximation of
the Pareto frontier as sequence of sets Ti such as

lim δH(Tl, P (Y )) = 0,

where δH is Hausdorff distance,

δH (C1, C2) =

= max

{

sup
y∈C2

inf
x∈C1

‖x− y‖ , sup
x∈C1

inf
y∈C2

‖x− y‖

}

.

Depending on features of criteria functions f

and structure of X different approaches can be in-
volved in approximation of Pareto frontier. For
instance in the convex case for approximating of
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P (Y ) may be used method based on linear convo-
lution of criteria. However such methods implic-
itly uses the fact that convex body can be rep-
resented by its support function. In the noncon-
vex case stochastic approaches or methods used
convolution based on Chebyshev distance can be
involved in approximation [6, 7, 4, 5].

It’s known that using Chebyshev distance with
different parameters it is possible to approximate
nonconvex Pareto frontier with arbitrary accu-
racy. But there is still a question how to choose
parameters to build approximation efficiently. In
this work our goal is to estimate convergence rate
of approximation of the Pareto frontier for algo-
ritm that chooses parameters of convolution adap-
tively.

Firstly, we describe the algorithm. Similar al-
gorithms were described early in [7, 9], but seems
there are some differences in details that are im-
portant in our analysis.

2 Algorithm

Before describing the algorithm we need to in-
troduce some additional notations. For given an
axis-parallel box B let V L(B) is its vertex that
has maximal values of coordinates and V C(B) are
vertexes that share an edge with V L(B).

The idea of algorithms is to build new Ti+1 a
set of points each of which is result of solving a
auxiliary single criteria optimization problem con-
structed using information from Ti.

Let on the initial iteration T0 = {p1, p2, . . . pm},
where pi is optimal value for optimization prob-
lems

fi(x) → min,

x ∈ X.

Such points define an unique axis-parallel box B0

in R
m. Let B0 = {B0}. Let initial approximation

T0 = V L(B0).
Before each next step l we have the set of boxes

Bl−1 and the approximation

Tl−1 =
⋃

B∈B

V C(B).

On an arbitrary step l for each Bi ∈ Bl−1 find
pi by solving the auxiliary problems

max
i

(fi(x)) → min,

x ∈ X.

Choose Bi0 such ||pi0 − V L(Bi0)||∞ is maximal
among other pi. Let new approximation Tl =
Tl−1 ∪ pi0 . Let new set of boxes

Bl = Bl−1 ∪Q(V C(Bi0), p
i0)\Bi0 ,

where Q(p1, p2, . . . pn+1) are set of all
possible axis-parallel boxes B such
card(Q(p1, p2, . . . pn+1)\V C(B)) = 1.

The illustration shows approximation process in
2D.

Figure 1: Schema of approximation

It is evident that on each step accu-
racy δH (Tl, P (Y )) can be estimate by ||pi0 −
V L(Bi0)||∞. In the next section we formulate con-
vergence rate for the algorithm.

3 Convergence rate

Theorem 1 Let Tl is an approximation built by

the algorithm for Pareto frontier P (Y ) in multi-

criteria problem (1). And let

δH(Tl, P (Y )) ≤ ε.
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Let T ∗ is any other approximation of P (Y ) such

δH(T ∗, P (Y )) ≤ ε.

Then
cardTl

cardT ∗
≤ 2m

The idea of the proof is based on the fact that
distance between new approximation and Pareto
frontier can be estimate by distance between sub-
sequent approximation, moreover

δH(Tl, P (Y )) ≤ δH(Tl+1, Tl)

That means that on the each step we add to the
approximation so called deep hole [10], which al-
low to estimate the convergence rate respect to
the best possible algortim.
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