Newton-type methods and generalized solutions to improper linear programs

L. D. Popov*
*Institute of Mathematics and Mechanics UB RAS, popld@imm.uran.ru

A linear (as well as nonlinear) mathematical program is said to be improper (ill-posed, infeasible) if it has no feasible solutions and therefore has no optimal points [1]. Following to [2-3], we introduce some kind of a generalized solution to such a program and propose original Newton-type method that gives us this generalized solution if a program is improper and an ordinary solution if this program is feasible.

1. Let us consider the linear program

$$
\begin{equation*}
\min \{(c, x): A x=b, x \geq 0\} \tag{1}
\end{equation*}
$$

and the dual one

$$
\begin{equation*}
\max \left\{(b, y): A^{T} y \leq c\right\} \tag{2}
\end{equation*}
$$

where matrix $A=\left(a_{i j}\right)_{m \times n}$ and vectors c and b are given, x and y are vectors of primal and dual unknowns, (\cdot, \cdot) denotes scalar product.

We assume the program (1) is improper of the 1 st kind, i. e. it has no feasible solutions but the constraints of the dual program (2) are consistent. As a consequence, the follow perturbed program

$$
\min \{(c, x): A x=b-u, x \geq 0\} \quad(=: \zeta(u))
$$

is solvable iff it is feasible $\left(u=\left(u_{1}, \ldots, u_{m}\right)\right.$ is parameter of perturbation).

Denote

$$
M(u)=\{x: \quad A x=b-u, \quad x \geq 0\}
$$

and

$$
\begin{equation*}
\bar{u}=\arg \min \{\|u\|: M(u) \neq \emptyset\} \tag{3}
\end{equation*}
$$

where $\|\cdot\|$ is Euclidean norm.

Basing on the vector \bar{u} let us define a generalized solution to (1) as an ordinary solution to the perturbed program

$$
\begin{equation*}
\min \{(c, x): A x=b-\bar{u}, x \geq 0\} \quad(=: \zeta(\bar{u})) \tag{4}
\end{equation*}
$$

that is solvable and closest to the original one in the sense (3).

If program (1) is feasible, then $\bar{u}=0$, so for a proper program our generalized solution coincides with an ordinary one.
2. Let consider the mixed penalty function

$$
\bar{F}_{\epsilon}(x)=(c, x)-\epsilon \sum_{i=1}^{n} \ln x_{i}+\frac{1}{2 \epsilon}\|A x-b\|^{2}
$$

where $\epsilon>0$ (see [4]).
Let \bar{x}_{ϵ} be an unique minimizer for $\bar{F}_{\epsilon}(x)$ over all x positive and $\bar{u}_{\epsilon}=b-A \bar{x}_{\epsilon}, \bar{v}_{\epsilon}=\epsilon c-A^{T} \bar{u}_{\epsilon}$. One can verify that the triplet $\left(\bar{x}_{\epsilon}, \bar{u}_{\epsilon}, \bar{v}_{\epsilon}\right)$ is an unique solution to the follow system of nonlinear equations

$$
\Phi(x, u, v ; \epsilon)=\left(\begin{array}{c}
A x+u-b \tag{5}\\
A^{T} u+v-\epsilon c \\
V x-\epsilon^{2} e
\end{array}\right)=0
$$

Here $v=\left(v_{1}, \ldots, v_{n}\right), V=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$ and $e=(1, \ldots, 1)$. Vectors x and v both are positive, v is a slack vector.

The system (5) is just a rewriting of well-known KKT-optimality conditions; it is very similar to the systems which are studying in the theory of central path in mathematical programming [5]. We aim to establish the convergence properties of the sequence $\left(\bar{x}_{\epsilon}, \bar{u}_{\epsilon}\right)$ as $\epsilon \rightarrow+0$.
3. Let the dual program (2) satisfy Slater's condition:

$$
\begin{equation*}
A^{T} y_{0}<c \quad \text { for some } y_{0} \tag{6}
\end{equation*}
$$

This condition implies the program (4) is solvable and its optimal set is bounded.

The convergence properties in question are given in the following statements.

Theorem 1 If an optimal set of program (4) is bounded, then the system (5) has an unique solution for every $\epsilon>0$.

Theorem 2 Let the condition (6) hold. Then the components \bar{u}_{ϵ} and \bar{x}_{ϵ} of the corresponding solutions of the system (5) are bounded for all $0<\epsilon<\bar{\epsilon}$.

Theorem 3 If the triplet $\left(\bar{x}_{\epsilon}, \bar{u}_{\epsilon}, \bar{v}_{\epsilon}\right)$ satisfies to equations (5), then

$$
\zeta\left(\bar{u}_{\epsilon}\right) \leq\left(c, \bar{x}_{\epsilon}\right) \leq \zeta\left(\bar{u}_{\epsilon}\right)+n \epsilon
$$

Theorem 4 Let the condition (6) hold and \bar{x}_{ϵ} be an unique minimizer of the function $F_{\epsilon}(x)$ over $x>0$ with $\epsilon>0$. Then

$$
b-A \bar{x}_{\epsilon}=\bar{u}_{\epsilon} \rightarrow \bar{u}, \quad\left(c, \bar{x}_{\epsilon}\right) \rightarrow \zeta(\bar{u})
$$

as $\epsilon \rightarrow+0$.
Thus, the system (5) appears to be a good tool to find our generalized solution.
4. Given $\epsilon>0$, one can get a solution to (5) as a limit point of the iterative sequence $\left\{x^{s}, u^{s}, v^{s}\right\}$ generated by the formulae

$$
\begin{gathered}
x^{s+1}=x^{s}+\alpha \Delta x, \quad u^{s+1}=u^{s}+\alpha \Delta u \\
v^{s+1}=v^{s}+\alpha \Delta v
\end{gathered}
$$

The Newton-type descent direction is equal to

$$
\left(\begin{array}{c}
\Delta x \\
\Delta u \\
\Delta v
\end{array}\right)=-\nabla \Phi\left(x_{s}, u_{s}, v_{s} ; \epsilon\right)^{-1} \Phi\left(x_{s}, u_{s}, v_{s} ; \epsilon\right)
$$

The nonsingular Jacobian matrix is as follow

$$
\nabla \Phi(x, u, v ; \epsilon)=\left(\begin{array}{ccc}
A & E_{m \times m} & 0 \\
0 & A^{T} & E_{n \times n} \\
V_{n \times n} & 0 & X_{n \times n}
\end{array}\right)
$$

where $X=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$, by analogy with V.
For choosing step parameter α the standard procedures may be used similar to Armijo one. In a small neighborhood of a solution $\alpha=1$. Starting points x^{0} and v^{0} must be positive. Point u^{0} may be arbitrary, e. g. $u^{0}=b-A x^{0}$.

Note that (according to the implicit function theorem) the system (5) determines three smooth trajectories $x=x(\epsilon), u=u(\epsilon), v=v(\epsilon)$ as $\epsilon \epsilon$ $(0, \bar{\epsilon})$, and for them

$$
\begin{aligned}
& \left(\begin{array}{c}
\nabla x(\epsilon) \\
\nabla u(\epsilon) \\
\nabla v(\epsilon)
\end{array}\right)=\nabla \Phi(x, u, v ; \epsilon)^{-1}\left(\begin{array}{c}
0 \\
c \\
2 \epsilon e
\end{array}\right)= \\
= & \left(\begin{array}{c}
(D M-E) D c+2 \epsilon(E-D M) V^{-1} e \\
H A D c-2 \epsilon H A V^{-1} e \\
(E-M D) c+2 \epsilon M V^{-1} e
\end{array}\right)
\end{aligned}
$$

where $D=X V,{ }^{-1} M=A^{T} H A, H=\left(E+A D A^{T}\right)^{-1}$.
These three trajectories may be considered as the generalized central path for the improper program (1).

References

[1] Eremin I.I. Duality for improper linear and convex programs // Doklady of AN USSR. 1981. Vol. 256, N 2. P. 272-276. (in Russian)
[2] Eremin I.I., Mazurov Vl.D., Astaf'jev N.N. Improper linear and convex mathematical programs. Moscow.: Nauka, 1983. (in Russian)
[3] Eremin I.I. Contradictory models of optimal planning. Moscow: Nauka, 1988. (in Russian)
[4] Fiacco A.V., McCormick G.P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley \& Sons Ltd, 1969.
[5] Roos C., Terlaky T., Vial J.-Ph. Theory and algorithms for linear optimization. Chichester: John Wiley \& Sons Ltd, 1997.

