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A hierarchy is one of the promising paradigm
in mathematical programming in recent years [1].
The pioneering work on bilevel optimization [2] led
to the monograph on the class of mathematical
programs with equilibrium constraints (MPECs)
[3] and, somewhat later, to the monographs on
the bilevel programming problems (BPPs) [4], [5].

There are a lot of applications of the MPECs
and BPPs in control, economy, traffic, telecom-
munication networks, etc. (see, e.g., [6]). An
investigation of MPECs or BPPs in the view of
elaboration of the efficiency numerical methods is
the urgent challenge of contemporary theory and
methods of Mathematical Optimization [1].

One of most interesting classes of bilevel prob-
lems is the class with several players at the lower
level. Also, we suppose, that players at the lower
level depend on each other and we should find
some equilibrium for these players. Such a for-
mulation of the bilevel problem provides an inter-
esting link between the hierarchy and competition.
The latter is another promising paradigm accord-
ing to Pang [1]. In this work we investigate two
classes of BPPs with the equilibrium at the lower
level.

The bilevel problems in the classical statement
[4], [5] represent optimization problems, which –
side by side with ordinary constraints such as
equalities and inequalities – include a constraint
described as an optimization subproblem:

F (x, y) ↓ min
x,y

, x ∈ D, y ∈ Y∗(x),

Y∗(x)
4
= Argmin

y
{G(x, y) | (x, y) ∈ D1}.


(BP)

Note, we consider an optimistic formulation of

the bilevel problem (the goal of the upper level
can be adjust with the actions of the lower level).
Therefore the goal function F is to be minimized
w.r.t. x and y simultaneously.

One or several players, which are subordinated
to the upper level can be modeled by the opti-
mization subproblem. If we model more than one
player, we need to assume that all yj , j = 1, ..., n
do not depend on each other. In that case the only
”aggregative” player is operating at the lower level
actually. On the one hand, such a model allows
to investigate bilevel problems with the multiple
players at the lower level. Note, the problems with
several players at the lower level are very often
arising from practice (e.g. the corporation may
have several branches). On the another hand, the
assumption of the independence of yj can reduce
the adequacy of the model.

In this work the generalized bilevel optimization
problem is investigated. In the generalized bilevel
problem the parametric game problem instead of
parametric optimization subproblem is formulated
at the lower level:

F (x, y1, ..., yN ) ↑ max
x,y1,...,yN

,

x ∈ X,
(y1, ..., yN ) ∈ NE(Γ(x))(PE(Γ(x))),

 (BPΓ)

where NE(Γ(x))(PE(Γ(x))) is the set of Nash
(Pareto) equilibrium points of the game

Gk(x, y1, ..., yN ) ↑ max
yk

, y ∈ Yk(x), k = 1, ..., N.

(Γ(x))
Here N is the number of players at the lower

level. Each player at the lower level aims to max-
imize its profit functions Gk. And the player at
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the upper level aims to maximize profit function F
subject to finding an equilibrium (Nash, Pareto)
for players at the lower level. It seems that direct
investigation of the problem (BPΓ) with the pur-
pose of elaboration of solution methods is difficult
to realize now. Therefore, we offer to investigate
special classes of the problem (BPΓ).

Let us formulate the simplest case of such a
problem with the parametric matrix game [7] at
the lower level and linear goal functions with lin-
ear constraints at the upper level:

〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max
x,y,z

,

x ∈ X = {x ∈ IRm | Ax ≤ a, x ≥ 0,
〈b1, x〉+ 〈b2, x〉 = 1}, (y, z) ∈ C(ΓM(x)),


(BPΓM )

where C(Γ(x)) is the set of saddle points of the
game

〈y, Bz〉 ↑ max
y

,

y ∈ Y (x) = {y | y ≥ 0, 〈en1 , y〉 = 〈b1, x〉},
〈y, Bz〉 ↓ min

z
,

z ∈ Z(x) = {z | z ≥ 0, 〈en2 , z〉 = 〈b2, x〉}.


(ΓM(x))

c, b1, b2 ∈ IRm, y, d1 ∈ IRn1 ; z, d2 ∈ IRn2 ; a ∈ IRp;
b1 ≥ 0, b1 6= 0, b2 ≥ 0, b2 6= 0; A,B are ma-
trices of appropriate dimension; en1 = (1, ..., 1),
en2 = (1, ..., 1) are vectors of appropriate dimen-
sion.

Also we investigate a bilevel problem with
the simplest nonantagonistic conflict at the lower
level, represented as a parametric bimatrix game
[7] with matrices B1 and B2:

〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max
x,y,z

,

x ∈ X = {x ∈ IRm | Ax ≤ a, x ≥ 0,
〈b1, x〉+ 〈b2, x〉 = 1},
(y, z) ∈ NE(ΓB(x)),


(BPΓB)

where NE(Γ(x)) is the set of Nash equilibrium
points of the game

〈y, B1z〉 ↑ max
y

,

y ∈ Y (x) = {y | y ≥ 0, 〈en1 , y〉 = 〈b1, x〉},
〈y, B2z〉 ↑ max

z
,

z ∈ Z(x) = {z | z ≥ 0, 〈en2 , z〉 = 〈b2, x〉}.


(ΓB(x))

c, b1, b2 ∈ IRm, y, d1 ∈ IRn1 ; z, d2 ∈ IRn2 ; a ∈ IRp;
b1 ≥ 0, b1 6= 0, b2 ≥ 0, b2 6= 0; A,B1, B2 are ma-
trices of appropriate dimension; en1 = (1, ..., 1),
en2 = (1, ..., 1) are vectors of appropriate dimen-
sion.

The expression 〈b1, x〉 + 〈b2, x〉 = 1 can be in-
terpreted as some resource, which should be dis-
tributed by the leader among the followers.

In order to elaborate numerical methods for the
solving of bilevel problems (BPΓM ) and (BPΓB)
we need to reformulate these problems as single
level problems. Further to this end optimality
conditions for generalized matrix game (ΓM(x))
and generalized bimatrix game (ΓB(x)) are con-
sidered.

Let us formulate a generalized matrix game with
parameters ξ1 and ξ2:

〈y, Bz〉 ↑ max
y

,

y ∈ Y = {y | y ≥ 0, 〈en1 , y〉 = ξ1 > 0},
〈y, Bz〉 ↓ min

z
,

z ∈ Z = {z | z ≥ 0, 〈en2 , z〉 = ξ2 > 0}.


(ΓM)

Recall, that the solution of the game (ΓM) with
fixed ξ1 and ξ2 is defined as follows [7].

Definition 1 The tuple (y∗, z∗) be called a saddle
point of the game (ΓM) iff

∀y ∈ Y 〈y, Bz∗〉 ≤ v∗
4
=

4
= 〈y∗, Bz∗〉 ≤ 〈y∗, Bz〉 ∀z ∈ Z.

 (1)

Here v∗ is an optimal value of the game (ΓM).
Now, we can formulate optimality conditions for

generalized matrix game (ΓM). These conditions
are a generalization of classical optimality condi-
tions in a matrix game [7].

Theorem 1 The tuple (y∗, z∗) ∈ C(ΓM) if and
only if there exists a number v∗ such that the fol-
lowing system is fulfilled:

ξ1(Bz∗) ≤ v∗en1 , z∗ ≥ 0, 〈en2 , z〉 = ξ2;
ξ2(y∗B) ≥ v∗en2 , y∗ ≥ 0 〈en1 , y〉 = ξ1.

}
(2)
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Note, conditions (2) represent finite numbers of
equalities and inequalities.

Similarly, for generalized bimatrix game

〈y, B1z〉 ↑ max
y

,

y ∈ Y = {y | y ≥ 0, 〈en1 , y〉 = ξ1 > 0},
〈y, B2z〉 ↑ max

z
,

z ∈ Z = {z | z ≥ 0, 〈en2 , z〉 = ξ2 > 0},

 (ΓB)

we can define a solution as follows [7].

Definition 2 The tuple (y∗, z∗) be called a Nash
equilibrium point of the game (ΓB) iff

α∗
4
= 〈y∗, B1z

∗〉 ≥ 〈y, B1z
∗〉 ∀y ∈ Y,

β∗
4
= 〈y∗, B2z

∗〉 ≥ 〈y∗, B2z〉 ∀z ∈ Z.

 (3)

Optimality conditions for generalized bimatrix
game (ΓB) are a generalization of classical opti-
mality conditions in a bimatrix game [7].

Theorem 2 The tuple (y∗, z∗) ∈ NE(ΓB) if and
only if there exist numbers α∗ and β∗ such that the
following system is fulfilled:

ξ1(B1z
∗) ≤ α∗en1 , ξ2(y∗B2) ≤ β∗en2 ;

〈y∗, (B1 + B2)z∗〉 = α∗ + β∗;
y∗ ≥ 0, 〈en1 , y〉 = ξ1; z∗ ≥ 0, 〈en2 , z〉 = ξ2.


(4)

Here α∗ and β∗ are payoffs of the first and the
second players in the game (ΓB) respectively.

Let us draw attention to the equality
〈y∗, (B1 + B2)z∗〉 = α∗ + β∗ in (4). This
equality creates basic complexity in system (4).

Now we can replace a game at the lower level
by its optimality conditions. So, for the bilevel
problem (BPΓM ) it is possible to formulate the
following equivalent single level problem:

〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max
x,y,z,v

,

Ax ≤ a, x ≥ 0, 〈b1, x〉+ 〈b2, x〉 = 1,
y ≥ 0, 〈en1 , y〉 = 〈b1, x〉,
z ≥ 0, 〈en2 , z〉 = 〈b2, x〉,

〈b1, x〉(Bz) ≤ ven1 ,
〈b2, x〉(yB) ≥ ven2 .


(PM)

More precisely, the following theorem takes
place.

Theorem 3 The triplet (x∗, y∗, z∗) is a global op-
timistic solution of the bilevel problem (BPΓM ), if
and only if there exist a number v∗ such that the 4-
tuple (x∗, y∗, z∗, v∗) is a global solution of problem
(PM).

It can readily be seen, that problem (PM) is a
global optimization problem with a nonconvex fea-
sible set (see, e.g., [8]–[10]). A nonconvexity in the
problem (PM) generated by a group of (n1 + n2)
bilinear constraints. These constraints arise from
optimality conditions for the generalized matrix
game at the lower level of the bilevel problem
(BPΓM ). It is known, that bilinear function is
represented as a difference of two convex functions
(i.e. bilinear function is d.c. function) [11]–[12].
So, problem (PM) belongs to the class of noncon-
vex optimization problems with d.c. constraints
[9].

As far as bilevel problem with the game (ΓB)
is concerned we obtain the following single level
problem similarly:

〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max
x,y,z,α,β

,

Ax ≤ a, x ≥ 0, 〈b1, x〉+ 〈b2, x〉 = 1,
y ≥ 0, 〈en1 , y〉 = 〈b1, x〉,
z ≥ 0, 〈en2 , z〉 = 〈b2, x〉,
〈b1, x〉(B1z) ≤ αen1 ,
〈b2, x〉(yB2) ≥ βen2 ,

〈y, (B1 + B2)z〉 = α + β.


(PB)

Also, the following theorem takes place.

Theorem 4 The triplet (x∗, y∗, z∗) is a global op-
timistic solution of the bilevel problem (BPΓB), if
and only if there exist numbers α∗ and β∗ such that
the 5-tuple (x∗, y∗, z∗, α∗, β∗) is a global solution of
problem (PB).

The problem (PB) is a global optimization
problem with a nonconvex feasible set too. And a
nonconvexity in the d.c. constraint problem (PB)
generated by a group of (n1 +n2 +1) bilinear con-
straints. Besides, each set of bilinear constrains in
the problems (PM) and (PB) is bilinear w.r.t. its
pair of variables.
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For the purpose of solving the d.c. constraint
problems formulated above, we intend to con-
struct the algorithms based on the Global Search
Theory in d.c. optmization problems elaborated
in [9], [13]. The approach allows to build efficient
methods for finding global solutions in various
d.c. optimization problems [9], [12], [15]. Global
Search Algorithms based on Global Search Theory
consist of two principal stages:
1) a special local search methods, which takes
into account the structure of the problem under
scrutiny [9], [12], [14];
2) the procedures, based on Global Optimality
Conditions [9], that allow to improve the point
provided by the Local Search Method [9].

This work is carried out under financial support
of Russian Foundation for Basic Research (project
no. 11-01-00270-a).
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