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Almost 40 years ago P. Wolfe in one of the pioneer-
ing papers on convex nondifferentiable optimization [1]
suggested a conjugate subgradient algorithm similar to
the well-established conjugate gradient (CG) method
of Hesten-Stiefel [2] for solving quadratic optimization
problems. However, unlike the famous predecessor,
Wolfe’s method remained practically unused. Here we
provide certain justification for this and suggest a mod-
ification of this algorithm to overcome its problems.

The following basic problem of convex nondifferen-
tiable optimization

min
x∈E

f(x) = f⋆ = f(x⋆), (1)

where E is a finite-dimensional euclidian space with the
inner product xy and corresponding norm ‖x‖ =

√
xx

is considered. It is assumed that solution x⋆ of (1)
exists. The main intention is to introduce conju-
gate gradient-like algorithm, prove it convergence and
present some promising results of numerical experi-
ments.

Typically computational algorithms for (1) rely on
the use of subgradient oracles which provide at arbi-
trary point x the value of objective function f(x) and
some subgradient g from subdifferental set ∂f(x). The
simplest algorithms for (1) are subgradient methods of
the kind

xk+1 = xk − λkgk, gk ∈ ∂f(xk), k = 0, 1, . . . (2)

which were under intensive study since 1960’s. It was
shown that (2) converges under very mild conditions
for step-size λk satisfying ”divergence series” condi-
tion

∑

k λk = ∞, λk → +0. However numerical ex-
periments and theoretical analysis demonstrated that
this step-size rule results as a rule in slow convergence
and further development went along the lines of quasi-
newton ideas [3], space dilatation [4], proximal-type,
bundle and level methods [7, 6], etc. On the other
hand subgradient algorithms still demonstrated quite
satisfactory performance under special conditions, f.i.
when f⋆ in (1) is known or well-estimated so special
step-size control rules can be engaged.

1 CSGrad-algorithm

Similar to the subgradient algorithm (2) a conjugate
subgradient (CSG) algorithm generate the sequence of
points

xk+1 = xk − λkzk, gk ∈ ∂f(xk), k = 0, 1, . . . (3)

alongside with the corresponding sequence of gk ∈
∂f(xk), k = 0, 1, . . .. The set of subgradients
{gs, m ≤ s ≤ n} (bundle) will be denoted as G(m, s)
and the difference between (2) and (3) is that zk is
determined as a solution of the problem

min
z∈G(mk,k)

‖z‖2 = ‖zk‖2,

where mk ≤ k is a certain restart moment, preceeding
k. The precise rules for defining mk are given below.

The corresponding algorithm can be generally stated
in the following form.

Initialization Set g0 ∈ ∂f(x0), G(0, 0) =
co{g0}, m0 = 0. Set iteration counters to zero k =
t = 0.

The main t-th iteration of the algorithm consists
of the following 2 steps:

Step 1. If t − k ≥ N set k = t (restart). Solve the
least distance problem

min
z∈G(k,t)

‖z‖2 = ‖zt,k‖2.

If ‖zt,k‖ ≤ δk, increment k : k → k+1 set mk = t,
clear G(k, t) = {gt}, gt ∈ ∂f(xt) and repeat Step

1. Otherwise continue with Step 2.

Step 2. Solve line-search problem

min
λ

f(xt − λzt,k) = f(xt − λtz
t,k) = f(xt+1)

and pick gt+1 ∈ ∂f(xt+1) such that gt+1zt,k = 0.
Complement the set G(k, t) with gt+1: G(k, t +
1) = co{G(k, t), gt+1}, increment iteration counter
t → t + 1 and continue with Step 1.
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It should be noted that this algorithm reminds dual
form of bundle methods [5], but we disregard lineariza-
tion errors to simplify direction-finding problem. From
our experience it does not hinder too much the perfor-
mance of the algorithm. We also make use of strong
convexity of objective function to establish some use-
ful properties of minimizing sequence. As to the con-
vergence of the algorithm, the following result can be
obtained.

Theorem 1 Let f is a strongly convex function with
bounded level sets LC = {x : f(x) ≤ C}. Then the
sequence of {xk} with xk generated by (3) converges to
a unique solution of (1).

Strong convexity seems to be unnecessary, at least for
nondifferentiable problems with unique solution, but
so far is required for technical reasons.

The major difference with [1] is that in the presented
algorithm the size of the bundle is restricted by some
preselected constant N . It should be noted that Wolfe’s
algorithm accumulates the bundle of subgradients un-
til certain conditions are satisfied. Resulting estimates
for the number of accumulated subgradients are quite
high and it causes memory problems. In our experi-
ence it also hinders convergence of the algorithm due
to presence in the bundle of obsolete subgradients.

1.1 Connection with conjugate gradi-

ent algorithm

It is interesting to remark, that by augmenting
this algorithmic idea with line-search in directions
zm,0, zm,1, . . . , zm,s we obtain for strongly convex
quadratic functions exactly classic conjugate gradient
algorithm of [2]. Indeed, consider the problem Pn:

min
1

2

n
∑

i=1

λ2
i ‖gi‖2,

n
∑

i=1

λi = 1, λi ≥ 0, i = 1, 2, . . . , n.

If gi ≥ 0, i = 1, 2, . . . , n are mutually orthogonal, then
solutions of Pn and Pn+1 are mutually conjugate.

To demonstrate it consider the solution of Pn+1

which is defined by the system of equations

λi‖gi‖2 + θ = 0, i = 1, 2, . . . , n + 1,

θ

n+1
∑

i=1

‖gi‖−2 = −1.

It follows that λj = ‖gj‖−2(
n+1
∑

i=1

‖gi‖−2)−1, j =

1, 2, . . . , n + 1 and non-negativity constraints are ful-
filled automatically.

Denote σn+1 =

n+1
∑

i=1

‖gi‖−2 = σn + ‖gn+1‖−2. Then

zn+1 =
n+1
∑

i=1

λig
i =

n
∑

i=1

λig
i + λn+1g

n+1 =

n
∑

i=1

‖gi‖−2(σn + ‖gn+1‖−2)−1gi+

‖gn+1‖−2(σn + ‖gn+1‖−2)−1gn+1 =

(σn + ‖gn+1‖−2)−1(gn+1 + ‖gn+1‖−2
n

∑

i=1

‖gi‖−2gi) =

θn+1(g
n+1 + ‖gn‖−2‖gn+1‖2(‖gn‖2

n
∑

i=1

‖gi‖−2gi)) =

θn(gn+1 + ‖gn‖−2‖gn+1‖2zn) = θn(gn+1 + µn+1z
n),

which differs from conjugate gradient update schema
[2] only by scaling factor θn.

2 Numerical experiments

To demonstrate computational efficiency of CSGrad re-
sults of numerical experiments with two well-known
test problems from [11]:

Convex piece-wise quadratic function maxquad.

f(x) = max
1≤k≤5

φk(x),

where φk(x) = xAkx− bkx, A(k), k = 1, 2, . . . , 5 – sym-
metric positive definite matrices 10 × 10 such that for
i, j = 1, 2, . . . , 10 hold

A
(k)
ij =







exp(min(i, j)/ max(i, j))cos(ij) sin(k), i 6= j,

i| sin(k)|/10 +
∑

l=1,2,...,10,l 6=i

|A(k)
il |, i = j,

bk
i = exp(i/k) sin(ik), i = 1, 2, . . . , 10, k = 1, 2, . . . , 5.

Convex piece-wise linear function tr48. The
objective function of this problem is

f(x) = −





n
∑

i=1

sixi +

n
∑

j=1

dj min
i=1,2,...,n

(aij − xi)





with n = 48. The data for this problem and octave

code for computing function value and subgradient can
be found on [13].
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