Conjugate subgradient method revisited
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Almost 40 years ago P. Wolfe in one of the pioneer-
ing papers on convex nondifferentiable optimization [1]
suggested a conjugate subgradient algorithm similar to
the well-established conjugate gradient (CG) method
of Hesten-Stiefel [2] for solving quadratic optimization
problems. However, unlike the famous predecessor,
Wolfe’s method remained practically unused. Here we
provide certain justification for this and suggest a mod-
ification of this algorithm to overcome its problems.

The following basic problem of convex nondifferen-
tiable optimization

min f(z) = f, = f(z7),

pASIO} (1)
where F is a finite-dimensional euclidian space with the
inner product zy and corresponding norm ||z|| = \/zz
is considered. It is assumed that solution z* of (1)
exists. The main intention is to introduce conju-
gate gradient-like algorithm, prove it convergence and
present some promising results of numerical experi-
ments.

Typically computational algorithms for (1) rely on
the use of subgradient oracles which provide at arbi-
trary point = the value of objective function f(x) and
some subgradient g from subdifferental set df(x). The
simplest algorithms for (1) are subgradient methods of
the kind

df =gk —\gb gF e af(ab), k=0,1,... (2)
which were under intensive study since 1960’s. It was
shown that (2) converges under very mild conditions
for step-size A\ satisfying ”divergence series” condi-
tion Zk A = 00, A\ — +0. However numerical ex-
periments and theoretical analysis demonstrated that
this step-size rule results as a rule in slow convergence
and further development went along the lines of quasi-
newton ideas [3], space dilatation [4], proximal-type,
bundle and level methods [7, 6], etc. On the other
hand subgradient algorithms still demonstrated quite
satisfactory performance under special conditions, f.i.
when f, in (1) is known or well-estimated so special
step-size control rules can be engaged.

1 CSGrad-algorithm

Similar to the subgradient algorithm (2) a conjugate
subgradient (CSG) algorithm generate the sequence of
points

bt =gk —\2R P eaf(xb), k=0,1,... (3)

alongside with the corresponding sequence of g* €
of(z¥), k = 0,1,.... The set of subgradients
{g®°,m < s < n} (bundle) will be denoted as G(m, s)
and the difference between (2) and (3) is that 2% is
determined as a solution of the problem

112,

min - |2[|* = |z

z€G(my,k)
where my < k is a certain restart moment, preceeding
k. The precise rules for defining my, are given below.
The corresponding algorithm can be generally stated
in the following form.

Initialization Set ¢° € 4df(zY), G(0,0) =
co{g’}, mo = 0. Set iteration counters to zero k =
t=0.

The main ¢-th iteration of the algorithm consists
of the following 2 steps:

Step 1. If t — k > N set k = ¢ (restart). Solve the
least distance problem

min |z]|* = [|2"F]]*.
z€G(k,t)

If || z5F|| < 6y, increment k : k — k+1 set my, = t,
clear G(k,t) = {g'}, ¢' € Of(z") and repeat Step
1. Otherwise continue with Step 2.

Step 2. Solve line-search problem

mgnf(xt _ )\Zt’k) _ f(.’L't _ )\tzt,k) _ f(xt—i-l)

and pick g't' € 9f(z**!) such that gt+1ztF = 0.
Complement the set G(k,t) with ¢g"*1: G(k,t +
1) = co{G(k,t), '™}, increment iteration counter
t — t+ 1 and continue with Step 1.



It should be noted that this algorithm reminds dual
form of bundle methods [5], but we disregard lineariza-
tion errors to simplify direction-finding problem. From
our experience it does not hinder too much the perfor-
mance of the algorithm. We also make use of strong
convexity of objective function to establish some use-
ful properties of minimizing sequence. As to the con-
vergence of the algorithm, the following result can be
obtained.

Theorem 1 Let f is a strongly convex function with
bounded level sets Lc = {z : f(x) < C}. Then the
sequence of {x*} with x* generated by (3) converges to
a unique solution of (1).

Strong convexity seems to be unnecessary, at least for
nondifferentiable problems with unique solution, but
so far is required for technical reasons.

The major difference with [1] is that in the presented
algorithm the size of the bundle is restricted by some
preselected constant N. It should be noted that Wolfe’s
algorithm accumulates the bundle of subgradients un-
til certain conditions are satisfied. Resulting estimates
for the number of accumulated subgradients are quite
high and it causes memory problems. In our experi-
ence it also hinders convergence of the algorithm due
to presence in the bundle of obsolete subgradients.

1.1 Connection with conjugate gradi-
ent algorithm

It is interesting to remark, that by augmenting
this algorithmic idea with line-search in directions
™0 il 2™S we obtain for strongly convex
quadratic functions exactly classic conjugate gradient
algorithm of [2]. Indeed, consider the problem P,:

1 n ) n
mm§§:ﬁmw{ dDAi=1, A20, i=12,...
=1 =1

If g >0, i=1,2,...,n are mutually orthogonal, then
solutions of P, and P, 1 are mutually conjugate.

To demonstrate it consider the solution of P,y;
which is defined by the system of equations

AP +0=0,i=1,2....n+1,
n+1

0> lg'll™* =-1.
i=1
n+1
It follows that A, = [o/|72(> g™, j =
i=1
1,2,...,n + 1 and non-negativity constraints are ful-

filled automatically.

Convex piece-wise linear function tr48.
objective function of this problem is

n+1
Denote op11 = Z "1 7% = oy + [|g" | "% Then
i=1

n+1 n

2V = Z Aig' = Z Aig' 4 Ans1g" T =
=1 i=1

S gl (0n + g™ M%) g+

=1
1972+ ™) =
(on + 1g™ 177 @™ + g™ 172D gl =
1%:1
O (g™ + g™ 12" T P Alg™ 12D 'l ~29Y)) =

=1
O0n(g" " + 119" 129" T IP2") = On (g™ + pnsa2™),

which differs from conjugate gradient update schema
[2] only by scaling factor 6,,.
2 Numerical experiments

To demonstrate computational efficiency of CSGrad re-
sults of numerical experiments with two well-known
test problems from [11]:

Convex piece-wise quadratic function maxquad.

f(z) = max ¢i(x),

1<k<5

where ¢, (z) = zApz —bFz, A®) k=1,2,...,5  sym-
metric positive definite matrices 10 x 10 such that for
i,j=1,2,...,10 hold

i # J,

exp(min(s, j)/ max(, j))cos(ij) sin(k),
A = i =

. k
i i|sin(k))/10+ > 1Ay,
1=1,2,...,10,l#4
i=1,2,...,10,

bf :exp(i/k)sin(ik), k=1,2,...,5.

The

n n

flz)=-— E 8% + E d; min (a;; —x;)
: : i=1,3,....,n
=1 j=1

with n = 48. The data for this problem and octave
code for computing function value and subgradient can
be found on [13].
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