
Knapsack problems: Linear relaxations

and greedy algorithms

A.A.Korbut∗, I. Kh. Sigal †

∗Institute for Economics and Mathematics RAS, korbut@emi.nw.ru
†Dorodnicyn Computing Center RAS, isigal@ccas.ru

Introduction. Discrete optimization plays an in-
creasingly important role in various control problems.
One of the most well-known discrete optimization prob-
lems is the knapsack problem [1] which models a broad
range of practical problems (distribution of indivisible
resources, choice of projects, cutting-stock problems,
cryptography, financial decisions etc.). The exact so-
lution of knapsack problems can be very laborious due
to their NP -hardness [1]. Therefore the main atten-
tion nowadays is payed to the development of approx-
imate methods (and this tendency is characteristic for
the entire domain of discrete optimization). One of
the possible approaches consists in solving the linear
relaxation of the problem (its optimal value yields a
good upper bound for the optimal value of the original
problem). Another approach is connected with the use
of greedy algorithms [1, 2, 4–7]. The first approach
was investigated in [4] where the ratio ∆ of the val-
ues of objective functions for the optimal solution of
the linear relaxation and the optimal integer solution
was considered. The paper [6] is dedicated to the sec-
ond approach. Here the ratio δ of the objective func-
tion values for the optimal and the greedy solutions
was analyzed. In both papers some estimates for these
ratios were established and the connections between
them were found. These results generalize some results
from [5]. A series of numerical experiments (for one-
dimensional and multidimensional knapsack problems)
was also performed. All these experiments showed that
the actual behavior of ∆ and δ was much better than it
could be expected from theoretical estimates. For ex-
ample, for randomly generated one-dimensional prob-
lems with 3000 variables the average (over 10 instances)
value of ∆ was 1.000002, while for the third estimate
from (9) it was 1.000780 (which is also more than sat-
isfactory). For these problems the average value of δ
was 1.000239. Consequently, both approaches men-
tioned above can be used for finding good approximate
solutions (which can be subsequently used for finding
optimal solutions).

1. One-dimensional Boolean knapsack. It con-
sists in finding

f∗ = max

n∑
j=1

cjxj (1)

subject to
n∑
j=1

ajxj ≤ b, (2)

xj ∈ {0, 1}, j = 1, 2, . . . , n. (3)

Here all aj , cj and b are positive. The coefficients in
(2) are such that

aj ≤ b, j = 1, 2, . . . , n, (4)

n∑
j=1

aj > b. (5)

The variables xj are numbered in a non-increasing or-
der of the ratios cj/aj , i.e.

c1
a1
≥ c2
a2
≥ · · · ≥ cn

an
. (6)

The condition (6) is called the regularity condition. We
denote cmax = max cj , cmin = min cj , j = 1, 2, · · · , n.
(1) and (4) imply that f∗ ≥ cmax. The linear relax-
ation of the problem (1) – (3) is the linear programming
problem defined by (1), (2) and

0 ≤ xj ≤ 1, j = 1, 2, . . . n. (7)

Let the optimal solution of (1), (2), (7) be xLR =
(xLR1 , xLR2 , · · · , xLRn ) and its optimal value fLR. If (6)
is satisfied then xLR can be found explicitly (the the-
orem of Dantzig, cf. [2]). We find the critical index s

from the inequalities
∑s−1
j=1 aj ≤ b <

∑s
j=1 aj and let

xLRk = 1, k = 1, . . . s− 1, xLRk = 0, k = s+ 1, . . . , n and
xs = (b−

∑s
j=1 aj)/as.
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It is evident that

f∗ ≤ fLR, (8)

that is, fLR yields an upper bound for the optimal
value. A natural measure of the quality of this bound
is the ratio ∆ = fLR/f∗. It turns out that this ratio
can be in general arbitrarily close to 2 (cf. [1]). In [4]
the following estimates for ∆ were obtained:

∆ < 1+
cmax

f∗
; ∆ = 1+O

(
1

n

)
; ∆ < 1+

cmax

scmin
. (9)

Here s is the critical index.
Now we consider primal greedy methods for the

problem (1) – (3). The greedy method starts with a
feasible solution x = (0, 0, . . . , 0) and consecutively re-
places zeroes by ones in the order defined by (6) if
each such replacement retains feasibility. Let xG =
(xG1 , x

G
2 , . . . , x

G
n ) be the last feasible solution, fG – the

corresponding objective function value. More formally,
the greedy solution xG is obtained in the following way.
We set xG1 = 1 (it is possible in view of (4)) and for
k = 2, . . . , n

xGk =

{
1,

∑k−1
j=1 ajx

G
j + ak ≤ b,

0,
∑k−1
j=1 ajx

G
j + ak > b.

(10)

It is clear that fG ≤ f∗ ≤ fLR. We suppose that the
greedy value satisfies

fG ≥ cmax. (11)

Now we demonstrate some estimates for the ratio δ =
f∗/fG. In [6] the following conditions were obtained
which guarantee that δ ≤ 2:

1) if cmax/cmin ≤ 2, fG ≥ scmin and the regularity
condition (6) holds then

δ =
f∗

fG
≤ 2; (12)

2) if the conditions (6) and (10) are satisfied then
the inequality (12) holds;

3) δ = 1 +O(1/n).
In [6] the relations between ∆ and δ were also con-

sidered. In particular, it was proved that for every
problem (1) – (3) the validity of (6) and (11) implies
the inequality ∆ < 1 + 1

δ .
2. One-dimensional integer knapsack. This

problem is the problem (1) – (3) where (3) is replaced
by

xj are non-negative integers, j = 1, 2, . . . , n. (13)

The validity of the regularity condition (6) is supposed
for this formulation too. The linear relaxation of this
problem is determined by (1), (2) and the condition

xj ≥ 0, j = 1, 2, . . . , n. (14)

The optimal solution xLR of the linear relaxation can
be found by a straightforward generalization of the the-
orem of Dantzig (cf. above).

It was shown in [6] that 1 ≤ ∆ < 1 + cmax

f∗ < 2. In

other words, the estimate (9) holds also for the one-
dimensional integer knapsack.

3. Multidimensional Boolean knapsack. This
problem consists in finding

f∗ = max

n∑
j=1

cjxj (15)

subject to

n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (16)

xj ∈ {0, 1}, j = 1, 2, . . . , n. (17)

Here all aij , cj and b are positive, aij ≤ bj . Besides, we
suppose that m < n and

∑n
j=1 aij > bi, i = 1, 2, . . . ,m.

In the linear relaxation of this problem the condi-
tions (17) are replaced by

0 ≤ xj ≤ 1, j = 1, 2, . . . , n. (18)

The optimal solution of the linear relaxation we de-
note again by xLR and the corresponding optimal value
by fLR. We recall (cf. [1]) that xLR contains at most
m components with a non-zero fractional part.

We consider now the estimates ∆ = fLR/f∗ and
δ = f∗/fG for the problem (15) – (17). In [6] it was
shown that the inequalities 1 ≤ ∆ < m + 1 hold. For
m = 1 we get the corresponding inequalities for the
one-dimensional problem. If we impose an additional
assumption that every set of m items can be put in the
knapsack (that is, each Boolean vector with m compo-
nents equal to one is feasible) then 1 ≤ ∆ < 2.

Let x be a feasible vector obtained by replacing all
fractional components of xLR by zeroes, fx – the cor-
responding objective function value. In the greedy so-
lution xG the components are set to 1 according to the
sequence defined by the inequalities cj1 ≥ cj2 ≥ . . . ≥
cjn . It was shown in [6] that if fG ≥ fx then

1 ≤ δ =
f∗

fG
≤ m+ 1. (19)

As we mentioned in the Introduction, for the one-
dimensional and multidimensional knapsack problems
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a series of numerical experiments was performed.
These experiments suggest (and in a certain sense con-
firm) the following hypothesis: ∆ = ∆n = 1 + αn,
where αn is positive and decreasing with the growth
of n. It is reasonable to suppose that αn → 0 when
n → ∞, and analogously for δ. In other words, this
means that these algorithms are in a certain sense
asymptotically optimal. Therefore the use of greedy
methods can be recommended for practical computa-
tion, especially for large-scale problems.
4. The average behavior of greedy algo-

rithms. Another justification for the recommended
use of greedy algorithms is given by the results about
their average behavior. This analysis concerns simulta-
neously primal (cf. (10)) and dual greedy algorithms.
Informally, the dual greedy solution xDG for the prob-
lem (1) – (3) is the optimal solution xLR of the lin-
ear relaxation in which the fractional component is re-
placed by zero. Dual greedy solutions are in general
not better than the primal ones. The analysis of the
average behavior requires some probabilistic structure
on the set of data. We shall suppose that (cf. [7])

1) the coefficients cj , aj , j = 1, 2, . . . , n are indepen-
dent random variables uniformly distributed on [0, 1],

2) the right-hand side b is proportional to the number
of variables: b = λn where 0 < λ < 1.

Thus all objective function values become random
variables too. Let An be an approximate algorithm for
the problem with n variables, fAn – the objective func-
tion value for An. We say that An has an asymptotic
tolerance t > 0 if P(f∗ − fAn ≤ t)→ 1 when n→∞.
It has been proved (cf. [7] and the references therein)
that if λ > 1

2 −
t
3 then both the primal and the dual

greedy algorithms for (1) – (3) have asymptotic toler-
ance t. We call 1/2− t/3 the critical value and denote
it by λ0. Thus, for all λ > λ0 both greedy methods are
in a certain sense asymptotically good.

A series of numerical experiments was performed
(their results are summarized in [7]). The goal was the
comparison of the behavior of primal and dual greedy
methods in dependence on the number of variables n
and on the values of λ < λ0. For this purpose a pro-
gram was developed which generated and solved series
of N instances. In this program the approximate objec-
tive function values were compared not with the opti-
mal value f∗ (which is difficult to find) but with its up-
per bound fLR which can be computed with complex-
ity O(n log n). The tolerance t varied from 0.01 to 0.03,
the sample size N – from 100 to 500. Several dozens
of instances were solved. The results were very similar.
For all values of λ the values of fDG, fG, fLR differed
insignificantly. For relatively small λ the growth of the
objective functions when λ increased was very rapid,

and this growth delayed when λ was approaching its
critical value. This empirical fact needs a theoreti-
cal explanation. We stress once more that we took
fLR/fG = ∆δ as the deviation measure. E.g., for an
instance with n = 3700, t = 0.01, N = 500 the val-
ues of this measure were 1.0000098 for λ = 0.30 and
1.0000047 for λ = 0.45. This means that the actual
behavior of greedy methods is still better. This is an-
other confirmation of the recommendations we made
above.

The generalization of this approach for the case of
arbitrary distributions is presented in [3]. No experi-
ments were performed.
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