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1 Introduction

In the area of discrete optimization the problem
of analyzing the behavior of algorithms on the av-
erage by solving various NP-hard problems is im-
portant. In particular it concerns finding polymo-
mially solvable on the average classes of problems
(see [1, 3, 6, 8]).

Some classes of the multi-dimensional knapsack
problem with Boolean variables and set packing
problem were described in [6], where the algorithm
of dynamic programming (DP) is polynomial on
the average, that is, the mathematical expecta-
tion of the operations number is bounded by the
polynomial of the input length of the problem.

The approach to finding the upper bounds on
the average number of iterations for some known
algorithms of integer linear programming (ILP)
using the continuous optimization was presented
earlier in [9]. The idea of the approach lies in the
usage of some determinated bounds on the number
of algorithms iterations obtained by the regular
partition method [4] and the upper bounds of the
average cardinality of the feasible solutions set of
the problem. The approach mentioned above was
applied to the first Gomory cutting plane algo-
rithm, the branch-and-bound method (the Land
and Doig scheme) [7], L-class enumeration algo-
rithm [4] for solving both the set packing problem
and the multi-dimensional knapsack problem with
Boolean variables.

In this paper we introduce the review of the
results obtained earlier. Some new bounds for the

set covering problem are presented as well.

2 Description of approach and
review of results

Consider the problem of ILP:

max{cx | Ax ≤ b, x ≥ 0, x ∈ Zn}. (1)

Here A = ||aij || is the matrix of the order
m × n; c = (c1, ..., cn); b = (b1, ..., bm); 0 is the
n-dimensional vector and x = (x1, ..., xn)

T is the
vector of the variables. The input data of the
problem are integer-valued. Next suppose the set
of the feasible solutions of the corresponding lin-
ear programming problem to be bounded. Denote
by M the polyhedron of the problem.

Some results in the method of regular parti-
tions are obtained on the basis of L-partition
of the space Rn. The partition is defined as
follows. Each point in Zn forms the separate
L-class, that is, the element of partition. The
points x, y ∈ Rn (x ≻ y and x, y ̸∈ Zn) be-
long to the same fractional L-class if no z ∈ Zn

exists such that x ≻ z ≻ y. Here ≻ is the symbol
of lexicographical comparison. Let X ⊂ Rn. The
factor set X/L is called the L-structure of X, and
its cardinality is denoted by |X/L|.

The subset Q = {Vs, Vs+1, ..., Vt} of the frac-
tional classes in X/L is called an L-complex if no
z ∈ X ∩ Zn exists such that xs ≻ z ≻ xt for any
xs ∈ Vs, xt ∈ Vt. Denote by Ψ(X) the maximal
cardinality of L-complexes induced by X.
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Denote by IA the number of iterations per-
formed by the algorithm A for solving the ILP
problem. Let us formulate some necessary deter-
minate upper bounds on the iterations number for
the being investigated algorithms. The bounds are
obtained by the regular partition method [4].

Let f∗ be the optimal value of the objective
function of the problem (1), f̃ is the optimal value
of the objective function of the corresponding lin-
ear programming problem. Denote by D(n) the
set of feasible solutions of the problem (1). For
the first Gomory cutting plane algorithm (G1) it
holds the following

IG1 ≤ (⌊f̃⌋ − f∗ + 1)(|M/L| − |D(n)|+ 1).

For the iterations number for the L-class enu-
meration algorithm (LCE) the upper bound is as
follows

ILCE ≤ |M/L|.

The iteration here means the transition to the next
L-class.

Using the definition of the Ψ(X) it is not diffi-
cult to prove the inequality

|M/L| ≤ |D(n)|+ (|D(n)|+ 1)Ψ(M).

Therefore, if it holds the polynomial upper
bounds on maximal cardinality of L-complexes for
M , the average number of iterations for the algo-
rithms G1 and LCE may be obtained by means of
the upper bounds on the average number of feasi-
ble solutions of the problem.

Let the matrix A and the vector b in the prob-
lem (1) be nonnegative. The number of solvable
linear programming problems will further be con-
sidered as the number of iterations for the Land
and Doig (LD) algorithm. Using the lower cubic
partition of the space Rn it was estimated (see
[4, 10]), that

ILD ≤ (2n+ 1)|D(n)|.

Note that the analogous bounds for the algo-
rithms hold for the ILP problem of the form:

min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}.

Now we present the bounds of the average num-
ber of iterations for both the set packing prob-
lem and the multi-dimensional knapsack problem.
The bounds are obtained within the approach de-
scribed above along with the bounds on the value
|D(n)| on the average in [6].

The model of ILP for the set packing problem
(SPP) looks as follows:

max{cx|Ax ≤ e, x ∈ {0, 1}n},

where A is the Boolean matrix of the order m×n
and e = (1, ..., 1) is the m-dimensional vector.
Here and further c > 0. Let us consider the class
P(n, p) of the SPP, where all the elements of the
matrix A are independent random variables, no-
tably

P{aij = 1} = p, P{aij = 0} = 1− p, (2)

where p ∈ (0, 1). If the parameters of the problem
satisfy the condition mp2 ≥ lnn, then it holds the
bound [6]:

E|D(n, p)| ≤ 2n+ 1. (3)

Here and further E|D(n, p)| is the mathematical
expectation of the cardinality of D(n, p) for the
ILP problems in the being investigated classes.

It is known that it holds Ψ(M) = 1 for the set
packing problem [4]. Hence, taking into account
the above property and some other factors of the
problem polyhedron in [5] on the basis of (3) the
following theorems are proved

Theorem 1 For the algorithm G1 and un-
weighted problems from P(n, p) the estimate

EIG1 ≤ 3n2 − 2n− 1

takes place.

Theorem 2 For the problems from P(n, p)
and the algorithm LCE with the initial
value of the objective function equal to
max{cj |j = 1, ..., n} it holds the bound

EILCE ≤ 3n+ 1.
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Now consider the multi-dimensional knapsack
problem, where all the variables are Boolean and
A ≥ 0, b > 0, contrary to (1). Let bi ≤ B,
i = 1, ...,m, where B > 0. All the elements of
the matrix A are the independent random vari-
ables, where P{aij = t} = p for t = 1, ..., B and
P{aij = 0} = 1− pB > 0. The parameters of the
problem satisfy the condition m(pB)2 ≥ γ lnn,
where the constant γ ≥ 13. For the average value
of |D(n, p)| of such problem it holds the bound (3)
as well [6].

Consider the knapsack problem class K(n, p),
which includes also the case with the uniform dis-
crete distribution of the elements of the matrix A
in the set {1, ..., B}. The bound (3) takes place
for the K(n, p) [11].

It is known that Ψ(M) ≤ n for the knapsack
problem (see [4]). Using this and other properties
of the problem the upper bounds on the average
number of iterations for the considered algorithms
are obtained in [11]. For example, it holds

Theorem 3 For the problems from P(n, p) and
K(n, p) the inequality

EILD ≤ 4n2 + 4n+ 1

takes place.

In the case of the weighted problems of both
types the algorithm G1 becomes pseudopolyno-
mial. In [9] the revised version of this algo-
rithm is developed, having the polynomial upper
bound on the average number of iterations for the
problems from K(n, p) and P(n, p) at random
cj , j = 1, ..., n.

3 New polynomially solvable
cases for SPP and SCP

In analyzing the problems with random input data
the finding of classes, where E|D(n, p)| = O(nk)
is of interest. Let us remind that for P(n, p) and
K(n, p) it holds E|D(n, p)| = O(n).

For the SPP problem the upper bounds on the
average number of feasible solutions are obtained

in [2]. Let us define the function for the fixed n, p

u(k) =
ln n−k

k+1

ln 1+(k−1)p
(1−p)(1+kp)

, k = 1, ..., n.

Theorem 4 For every integer k ≥ 1 and SPP
with n ≥ k + 1, m ≥ u(k) it holds the inequality

E|D(n, p)| ≤ nk − 1

n− 1
+ nk+1. (4)

Above all, under certain relations between
the problem parameters the lower bounds for
E|D(n, p)| are obtained in [2]. On the basis of
these bounds the new class of SPP problems is
yielded, q ≤ E|D(n, p)| ≤ q̃, where q = O(n2) and
q̃ = O(n3).

We have also investigated the set covering prob-
lem (SCP):

min{cx|Ax ≥ e, x ∈ {0, 1}n}.

Let the elements of the Boolean matrix of A be
the independent random variables satisfying the
distribution (2).

Collaboratively with Gofman N.G. we got the
analogous upper bounds for the SCP.

In agreement with the described approach from
theorem 4 with fixed k we obtain the polyno-
mial upper bounds on the average number of
iterations for the Land and Doig algorithm,
L-classes enumeration algorithm and for the un-
weighted problems for the first Gomory cutting
plane algorithm. In addition, the classes of prob-
lems described in theorem 4 prove to be polynomi-
ally solvable on the average by the DP algorithms.

It is worth mentioning that the bound (4) is
valid enough to describe the new polynomially
solvable classes of SPP and SCP on average in
spite of being quite the high one.

In the present report the results of the exper-
imentation for the algorithms and problems un-
der review are also given including the results ob-
tained by means of IBM ILOG CPLEX.
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