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Introduction

Decision problems with multiple criteria and inte-
ger or mixed integer variables often arise in differ-
ent areas such as forest planning and management,
water resources management, telecommunication
network planning, transportation and investment
problems, etc ([1],[2],[3]).

Consider the following problem:

max f1(x) = c1x
... (MOILP)

max fm(x) = cmx
subject to
x ∈ X = {x | Ax ≤ b, x integer}

where x is an n-dimensional vector of variables, A
is an m × n matrix, b is the RHS vector and the
vectors ci (i = 1, ...,m) represent the coefficients
of the objective functions (criteria).

Let’s denote yi = fi(x), i = 1, ...,m, and let
y = (y1, ..., ym) be a vector in the criteria space.
The set Y ⊂ Rm composed by all possible crite-
rion vectors y = f(x) when x ∈ X, is known as
Feasible Criteria Set (FCS).

A point y′ ∈ Y is non-dominated or Pareto op-
timal (efficient) if and only if there is no y′′ ∈ Y,
y′′ ̸= y′, such that y′′j ≥ y′j , j = 1, ...,m. The set
P(Y ) of all non-dominated points y ∈ Y is called
Pareto frontier.

A dominance cone for a point v ∈ Rm is defined
as D(v) = {z ∈ Rm : z = v −w, w ∈ Rm

+}, where
Rm
+ is the non-negative cone in Rm.

The information about the Pareto frontier can
be very useful for Decision Makers (DM) in De-

cision Support Systems (DSS) based on multiob-
jective models. Some examples of such DSSs are
given in [4].

When we are only interested in Pareto frontier
it is worth considering the Edgeworth-Pareto Hull
(EPH) of Y defined as EPH(Y ) = {z ∈ Rm : z =
y − w, y ∈ Y, w ∈ Rm

+}. The set EPH(Y ) has
the same Pareto frontier that Y but its struc-
ture is simpler and therefore EPH(Y ) is easier for
constructing and visualizing.

Some effective algorithms for constructing and
approximating EPH of convex sets are described
in chapter 6 in [4]. These algorithms can be
applied also for constructing and approximating
EPHs of non-convex sets. It is important to
remark that it is possible to know the vertices
and hyperplanes corresponding to each facet of
EPH(Y ) since these algorithms describe the EPH
of a set, simultaneously, as a list of vertices and as
a system of linear inequalities.

When multiobjective programming problems
have integer variables, even if the restrictions are
linear, the set Y can be non-convex. Unsupported
efficient solutions of MOILP, i.e. solutions that do
not belong to the frontier of the convex hull of the
feasible region, cannot be obtained by optimizing
scalar surrogate functions consisting in weighted-
sums of the objective functions (Weighted Ob-
jective Function Method). The other traditional
techniques, such as methods based on the Tcheby-
cheff Metric, epsilon-Constraining Method, and
some others, have difficulties in the case of MOILP
with more than three objective functions [3].

The Convex Edgeworth-Pareto Hull (CEPH) of
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a non-convex set U is defined as EPH(conv(U)),
where conv(U) denotes the convex hull of U . To
calculate CEPHs, the algorithms described in [4]
can be successfully applied. Here we describe
a new iterative method that approximates the
Pareto frontier in MOILP by pairs of interior and
exterior estimates which converge each other dur-
ing the iterations. These estimates are obtained
by combining CEPHs constructed for a number
of subsets Yk into which the original Y is decom-
posed.

Decomposition method based on
CEPHs

We approximate P(Y ) using a pair of sets
(I(k), E(k)) such that I(k) ⊆ EPH(Y ) ⊆ E(k) and
d(I(k), E(k)) → 0, k → ∞, where d(., .) means
a distance between two sets. Let’s illustrate the
main ideas of the method using a small bicriteria
example. Figure 1 displays a set Y in the cri-
teria space {y1, y2}. When maximizing y1 and y2,
the Pareto frontier P(Y ) has eight non-dominaded
points {P1, ..., P8} .

Figure 1

In the initial iteration, the CEPH(Y ) is cal-
culated using the algorithms described in chap-
ter 6 of [4]. These algorithms provide the dou-
ble description of the CEPH – as a system of
linear inequalities and as full list of its ver-
tices. All vertices of CEPH(Y ) (supported points)
form the initial list of the found Pareto frontier

points – PFP (0). In our example, PFP (0) =
{P1, P5, P7, P8}. Now we assume E0 =CEPH(Y ),
and I0 =

∪
∀vi∈PFP (0))D(vi), i.e. I0 is the union

of the dominance cones constructed for all sup-
ported points of P(Y ).

Figure 2

In Figure 2, the boundary of E0 is given by solid
line, and the boundary of I0 is given by dashed line
(the interior of I0 is colored). It is obvious that
I(0) ⊆ EPH(Y ) ⊆ E0, and all unsupported points
of P(Y ), not found yet, (P2, P3, P4 and P6) belong
to the difference E(0)\I(0), i.e. they are located
between solid and dashed lines in Figure 2. The
set E(0)\I(0) can be divided into a number of not
intersected subsets – ”search zones” correspond-
ing to the facets of CEPH(Y ). In our example, we
have 3 search zones – triangles P1O1P5, P5O2P7

and P7O3P8. The search zones are denoted as
SZ(v1, ...,vs) where (v1, ...,vs) is the list of ver-
tices which belong to the corresponding facet, for
example SZ(P5, P7).

Now, the original problem is decomposed into a
number of the problems of finding the Pareto fron-
tier points in relatively small disjoint search zones.
At each iteration of the algorithm, we choose one
of such zones and try to find new Pareto fron-
tier points located on it. Finding new points, we
change the boundaries of the interior and exte-
rior estimates, I(k) and E(k), and, probably, create
new, smaller in size, search zones.

Let’s consider the k-th iteration in more de-
tail. Suppose we have I(k−1) and E(k−1) esti-
mates, and we want to analyze the search zone
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SZ(v1, ...,vs). The SZ(v1, ...,vs) can be described
as SZ(v1, ...,vs) = D(v1, ...,vs) \ I(k−1) where
D(v1, ...,vs) denotes the variety of dominated
points for the facet defined by (v1, ...,vs):

D(v1, ...,vs) =


z ∈ Rm :
z = u−w, w ∈ Rm

+

u = λ1v1 + ...+ λsvs

λ1 + ...+ λs = 1,
0 ≤ λi ≤ 1, i = 1, ..., s.

The geometric illustration of D(P1, P5) is given
in Figure 3a and the corresponding SZ(P1, P5) is
shown in Figure 3b.

Figure 3a Figure 3b

To find new Pareto points, we consider the sub-
variety Y (k) = Y ∩ SZ(v1, ...,vs)\D(v1)\...\D(vs)
and construct CEPH(Y (k)) defined as follows:

CEPH(Y (k)) =



z ∈ Rm :
z = y −w′, w′ ∈ Rm

+

y = f(x), x ∈ X
z = u−w′′, w′′ ∈ Rm

+

u = λ1v1 + ...+ λsvs

λ1 + ...+ λs = 1,
0 ≤ λi < 1, i = 1, ..., s.

z /∈ I(k−1)

Assuming that SZ(P1, P5) was selected, the re-
sulting CEPH(Y (k)) is presented in Figure 4. Its
vertices P2 and P4 give two new points of P(Y ).

It is easy to see that all the points of P (Y )
situated in SZ(P1, P5), and still unknown (in our
example − P3), belong to the colored area, i.e.
CEPH(Y (k))\ I(k), and none of these can be-
long to the dominance cones of the vertices of
CEPH(Y (k)), i.e. D(P2) and D(P4). Using this
observation, we can refine the interior and exte-
rior estimates I(k−1) and E(k−1) and get a more

detail description of the Pareto frontier P(Y ) (see
Figure 5).

Figure 4

Figure 5

More precisely, 1) the vertices v∗
1, ...,v

∗
q

of the constructed CEPH(Y (k)) are in-
cluded into the list of the Pareto frontier
points: PFP (k) = PFP (k−1) ∪

{
v∗
1, ...,v

∗
q

}
;

2) I(k) = I(k−1)∪ D(v∗
1) ∪ ...∪ D(v∗

q); and

3) E(k) = E(k−1) \ SZ(v1, ...,vs)∪ CEPH(Y (k)).

For each facet of CEPH(Y (k)), a new search
zone is created. In our example, it is SZ(P2, P4),
i.e. the triangle P2O4P4.

Here the k-th iteration terminates.�
Repeating the iteration for search zones

SZ(P2, P4) and SZ(P5, P7), we find the points P3

and P6. The analysis of SZ(P7, P8) does not give
any new point. Now we have the situation shown
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in Figure 6. The interior estimate coincides with
the exterior estimate. This means that the list of
the search regions is empty and all the points of
P(Y ) have been found already.

Figure 6

In practice, it does not necessarily to continue
the construction of the Pareto frontier until the
end. In many practical applications, its approxi-
mate description is sufficient.

To select a search zone for the next iteration,
the different strategies can be used. For example,
it is possible to choose the search zone with largest
size or to take into account the preferences of the
DM.

Now we give a formal description of the pro-
posed algorithm.

Algorithm

Step 1:

• construct CEPH(0) = CEPH(Y )

• include all vertices of CEPH(Y ) into PFP (0)

• set I(0) =
∪

(∀vi∈PFP (0))D(vi)

• set E(0) = CEPH(Y )

• set k = 0, SZ List=∅.
Step 2:

• create search zones for all facets of CEPH(k)

and include them into SZ List.

Step 3:

• if SZ List =∅ then STOP

• if (max size of search zones in SZ List ≤ eps)
then STOP

• select one search zone from SZ List.

Step 4:
• update k = k + 1
• construct CEPH(k) for the search zone
• update:

– PFP (k) = PFP (k−1)∪
{
vertices of CEPH(k)

}
– I(k) =

∪
(∀vi∈PFP (k))D(vi)

– E(k) = E(k−1) \ [search zone]∪ CEPH(Y (k))
• go to Step 2

Conclusion

The proposed algorithm generates the approx-
imated description of the non-convex Pareto
frontier combining a number of partial Convex
Edgeworth-Pareto Hulls. It can be useful in DSSs
based on MOILP with up to 5 criteria.
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