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The new Fast Automatique Differentiation tech-
nique of calculating the gradient of the cost func-
tion in a controlled system governed by partial dif-
ferential equations is applied for the optimization
of melting and solidification process [1].

The process of melting and solidification of ma-
terial in a cylindrical domain is described by a
two-phase Stefan problem. A heat source with
a time-varying strength (the control function) is
given. The problem is to find a control function
such that no less than a prescribed portion of the
sample is melted, solidification proceeds at a rate
not exceeding a prescribed magnitude and the to-
tal heat supplied by the source is minimal. The
heat source is located on the symmetry axis and
can be either distributed or point like.

One essential feature of this problem is the mov-
ing melting front between two phases. The law of
motion of this surface is not known and must be
determined. It is the surface where the heat ab-
sorption or release associated with the phase tran-
sition is taking place. The thermal properties of
the phases can be different on both sides of the
melting front.

Fig. 1

The radially symmetric time-dependent case of
this problem was analyzed. Assuming cylindri-
cal symmetry, then in the plane of the indepen-
dent variables (r, t) we consider the domain Q=
{(r, t) : 0 < r < R, 0 < t ≤ Θ} (Fig. 1). A smooth
curve AB with the equation r = ξ(t) divides Q
into two subdomains: L (liquid domain) and S
(solid domain). The curve AB is the trajectory of
the melting front. Let t0 ≥ 0 be the time at which
AB originates. Then L and S are defined by

L = {(r, t) : 0 < r < ξ(t), t0 < t ≤ Θ},

S = {(r, t) : ξ(t) < r < R, 0 < t ≤ Θ}.

In Q we consider the two-phase Stefan problem
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Here, the subscripts L and S denote the liquid and
solid phases, respectively;
T (r, t) is the temperature at the point with coor-
dinates (r, t);
ρ, C, and k are the density, specific heat capacity,
and thermal conductivity, respectively;
λ is the specific heat of fusion;
Tpl is the melting temperature;
Tin(r) is the initial temperature of the substance,
Tin(r) ≤ Tpl;
α is the heat exchange coefficient with the sur-
rounding medium;
Tex is the ambient temperature.
The source F (r, t) of input heat can be represented
as F (r, t) = φ(r)f(t) with φ(r) given.

Let ξ(t) be the interface corresponding to the
source f(t), t ∈ [0,Θ], and let ξf be the maximum
of ξ(t) over t0 ≤ t ≤ Θ. The function f(t) is said
to belong to class K(Θ) if it satisfies the following
conditions:

(I) it is defined and piecewise continuous on
[0,Θ];

(II) it has а piecewise continuous derivative;
(III) it satisfies 0 ≤ f(t) ≤ fmax for all t ∈ [0,Θ];
(IV) the corresponding number ξf ≥ Rpl, where

Rpl is given and such that Rpl < R;
(V) the inequality ξ

′
(t) ≥ −d2 holds for all t ∈

[0,Θ− β2].
The variational problem to be solved is posed as

follows: among the functions f(t) in K(Θ), find
fopt(t) that minimizes the functional

J =

Θ∫
0

f(t)dt. (9)

The algorithm that solves the direct problem
(determination of temperature distribution and in-
terface separating the phases when control func-
tion - supplied heat - is given) is designed to deal
with a distributed source, when φ(r) ̸= δ(r). Es-
sentially, it is a non front-capturing algorithm.

The main idea of the algorithm was proposed by
M. Rose in [2] and was developed by R.E. White
in [3], [4]. Here the path of the interface is not

regarded as an explicitly imposed interior bound-
ary condition. M. E. Rose suggested a generalized
formulation of the problem and shows that clas-
sical solution of the problem is its weak solution.
On the other hand two classical solutions whose
domains of definition are separated by a smooth
curve will constitute a weak solution if and only if
the Stefan conditions (4), (5) connecting solid and
liquid phases on the line takes place.

In accordance with [2] we change from the un-
known temperature T (r, t) to the enthalpy func-
tion E(r, t) defined in terms of temperature as

E(T )=

{
ρSCST, T <Tpl,
ρLCL(T−Tpl)+ρSCSTpl+ρSλ, T ≥Tpl.

Note that the function E(T ) has a jump at the
melting point Tpl. Treating the enthalpy E(r, t)
as a basic variable and the temperature T (E) as
defined by the relation

T (E) =


Eρ−1

S C−1
S , E < E−,

Tpl, E− ≤ E ≤E+,
E+(ρLCL−ρSCS)Tpl−ρSλ

ρLCL
, E+ < E,

(E− = ρSCSTpl, E+ = E−+ρSλ)

one can consider temperature as a continuous func-
tion of enthalpy.

In the general case, the heat conductivity de-
pends on temperature and has a jump at the melt-
ing point, which corresponds to a transition from
solid to liquid phase. In the proposed algorithm,
the heat conductivity is a function of enthalpy de-
fined as

Ω(E) = k(T (E)) =

=


kS , E < E−,

kS + (E−E−)(kL−kS)
(E+−E−) , E− ≤ E ≤ E+,

kL, E > E+.

Problem (1)-(8) is reformulated in terms of the
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enthalpy function E(r, t) as
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To approximate this boundary value problem in
the domain Q, we use the implicit approximation
with respect to time and the integro-interpolation
method ([5]). A nonuniform computation grid was
used. The received system of nonlinear algebraic
equations was solved by applying iteration and
tridiagonal Gaussian elimination ([6]).

The variational problem was solved by reducing
the original problem to a nonlinear programming
problem. The control function was approximated
by a piecewise constant function.

To pick comparison functions from the set of
class K(Θ) functions, we used the method of exter-
nal penalty functions. In this approach, the set of
admissible comparison functions is much broader
then K(Θ), but the cost functional is minimized
by an element of the class K(Θ). This reduces
the constraint minimization of the cost functional
J in (9) to the unconstraint minimization of the
generalized functional I = J + g(ξf ) + Ξ, where
g(r) = A0(r − Rpl)

2 (with a constant A0) is the
penalty functional responsible for the fulfillment
of the condition ξf = Rpl and
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is the penalty functional ensuring an admissible
cooling rate.

The received nonlinear programming problem
was solved by various gradient methods. The ef-
ficiency of the gradient methods depends essen-
tially on the accuracy which the gradient of the
cost functional is calculated with.

An approach to the exact evaluation of cost
functional gradients is based on the generalized
Fast Automatic Differentiation (FAD) technique
[7], which is a natural generalization and develop-
ment of methods used in nonlinear programming.
The generalized FAD technique can be described
as follows. The goal of any optimal control prob-
lem is to optimize a cost functional depending on
controls and state variables. The controls and
state variables are connected by certain relations
(for example, for given controls, the state variables
are determined by solving a boundary value prob-
lem for a system of partial differential equations).
The first step in the generalized FAD technique
involves the discretization of the functional and
the constraints. As a result, the cost functional
is associated with a function of a finite number
of variables, while the constraints are associated
with a set of algebraic equations. Thus, we have
to optimize a function of several variables that are
related by a set of algebraic equations. The second
step is to evaluate the gradient of the discrete cost
function that is subjected to the constraints.

The FAD technique delivers a unique finite-
difference scheme for the adjoint problem and a
unique formula for determining the gradient of the
cost functional. The value of the gradient of the
cost function, calculated according to formulas of
the FAD-methodology, is precise for the selected
approximation of the optimal control problem. Let
us especially note that the machine time needed for
calculation the gradient components in the consid-
ered problem is not more than half of machine time
needed for solving the direct problem.

An analysis of the numerical results obtained
suggests the following conclusions about the struc-
ture of the optimal control (Fig. 2):

(I) The optimal control consists of two basic
components. Figure 2 shows the temporal depen-
dencies of the optimal control obtained by solving
the variation problem. The plots correspond to
fmax = 10 and d2 = 0.3.

(II) The first optimal-control component (re-
sponsible primarily for melting) coincides with the
upper bound f(t) ≡ fmax.

(III) The second optimal-control component (re-
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sponsible for solidification) is smaller than the first
(if we compare their averages) and is separated
from the latter by а short interval with f(t) ≡ 0 .

(IV) The time ton for which the source is turned
on at the phase of solidification depends on both
fmax and the limit cooling rate d2. Depending on
these parameters, ton either precedes the time t∗∗
at which the extent of the melted domain reaches
its maximum possible value ξ(t∗∗) = Rpl (for small
values of d2), succeeds t∗∗ (for large values of d2),
or coincides with it.

Fig. 2

(V) The second part of the optimal control de-
pends on the parameter d2. This relationship is
represented at Fig. 3.

Fig. 3

The investigations of the problem permit to
make following conclusions. In the parameter

range that was used while investigations took part,
the optimal control could be determined from the
solution of two successive problems. First, we solve
the melting problem and then, using its results as
the initial data for the second one, we examine the
solidification problem. Usage of such splitting at
the solution of the full variational problem essen-
tially economizes expenditures on deriving of the
optimal solution.
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