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We consider a scheme for a multisectoral decen-
tralized economy to reach a cyclical growth. In our
case, the economy is closed and consists of n sectors.
The output vector x(t) ∈ Rn satisfies the inequality
Y x(t) ≤ x(t−1) at step t, t = 1, 2, . . ., where Y = {yij}
is a technological matrix.
As is shown in [1], if the matrix Y is indecomposable

and primitive, then the economic system can have a
balanced growth x(t) = γtx(0) at all steps t ≥ 1 if and
only if x(0) is the Frobenius vector of Y . In this case we
have γ = 1/λY where λY is the Frobenius eigenvalue
of Y . The balanced growth is also called a turnpike
regime.
Further, we consider the case when the vector x(0)

is not Frobenius of Y and the system is decentralized.
Let us introduce some notation.
By yji(t) denote the volume of product j that may be
used by sector i at step t,
by xp

i (t) denote the plan of output for sector i at step t
(this plan must be fix by the sector before the start of
step t) ,
by xd

i (t) denote the total demand for the product i that
was produced at step t,
by xs

i (t) denote the total sale of the product i produced
at step t.
Variables xd

i (t) and xp
j (t+ 1) are related as

xd
i (t) =

n∑
j=1

yijx
p
j (t+ 1), i = 1, . . . , n.

Further we consider a scheme for a decentralized
planning.
First, assume that the plan of output of any sec-

tor at step t is determined unambiguously by the total
sale of products produced at step t − 2. Specifically,
suppose that the economic system adopted the scale,
which contains L band for estimation the success of
sales. For example, if L = 5, this scale might be as
follows: level l = 1 corresponds to the case when the
sales are no more than 60% of output, implementation
level l = 2 corresponds to the range of (60%70%], . . .,
level l = 5 corresponds to the range (90%100%]. Ac-
cordingly, defining the plan to step t+1, the sector i

uses a formula

xp
i (t) = klx

s
i (t− 2), t > 2, i = 1, . . . , n, (1)

where coefficient kl is the same for all sectors at all
steps if the sales correspond to the range l. We assume
that k1 < k2 < · · · < kL−1 < kL.

Second, the produced products are distributed ac-
cording to the following procedure. Sector i having
received orders from consumers calculates coefficient

ηi(t) = xd
i (t− 1) /xi(t− 1)

characterizing endowment of the production plans with
the resource that it has produced. Then these coeffi-
cients are made known to all sectors of the system. On
the basis of the obtained data, each sector (or a cer-
tain information center) calculates the maximum value
of these indicators:

ηmax(t) = max
i

ηi(t).

If it turns out that ηmax(t) ≤ 1, the demand of each
sector for resources is satisfied fully, and volumes of
deliveries are enough to fulfil the outlined plans:

yij(t) = yijx
p
j (t), i, j = 1, . . . , n.

In this case the volumes of production equal the plans:
xi(t+ 1) = xp

i (t+ 1). But if ηmax(t) > 1, then the full
fulfilment of plans becomes impossible. In this case all
sectors decrease the plan of output using this parame-
ter:

xp
i (t) := xp

i (t) /ηmax(t) , i = 1, . . . , n.

The demand for all resources decreases accordingly
ηmax(t) times. In this case the corrected plans are fully
provided with resources, and the newly calculated in-
dicator ηmax(t) equals unity.

A plan allowable by resources determines unambigu-
ously the total sale of product i produced at the pre-
vious step:

xs
i (t− 1) =

n∑
j=1

yijx
p
j (t), i = 1, . . . , n.
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Then the production cycle begins at step t, after which
by (1) the vector xp(t+ 1) is determined, etc.
To sum, a necessary condition for functioning of this

scheme is the determination of vector xp(1) and the
rule for using the set of parameters {kl}.

Theorem 1 If matrix Y is primitive, vectors x(0) and
xp(1) are strictly positive and inequalities

√
k1 ≥ γ > 1

hold, then this scheme of planning either brings the sys-
tem asymptotically to the turnpike, or the normalized
sequence of outputs has a finite number of limit points.
In the latter case, choosing a neighbourhood of these
points is arbitrarily small, we can specify the number of
steps, starting from which all members of the sequence
will belong to the neighbourhoods repeatedly.

Denote by m the number of these limit points. If
m > 1, then it means that starting from step T , we
have a cyclical use in a certain order m sets of coeffi-
cients {kl}. Denote by Kj , j = 1, . . . ,m the diagonal
matrix whose non-zero elements are the set of coeffi-
cients {kl}, appearing at step j of the cycle. In general,
a similar matrix, the diagonal elements of which were
used in calculating plans for step t denote by K(t),
t ≥ 2. We introduce the parameter β(t), which shows
what proportion of from initial production plans im-
plemented at step t. It is clear that

β(t) =

{
1, ηmax(t− 1) ≤ 1,

1/ηmax(t− 1), ηmax(t− 1) > 1.

Then at step t we have x(t) = β(t)xp(t). Accordingly,
the consumption of products produced at step t − 1
amount to xs(t− 1) = Y x(t) = β(t)Y xp(t).
Using induction, write the relationship between vec-

tors x(t) and xp(1):

x(t) = β(t) · · ·β(1)K(t)Y · · ·K(2)Y xp(1). (2)

Let us represent indices for t ≥ T as t = T +ms + j,
where s = 0, 1, 2, 3, . . ., and j = 0, 1, . . . ,m − 1. Then
we can rewrite (2) as

x(T +ms+ j) =

=

{
β(t) · · ·β(T + 1)Ms

0x(T ), j = 0;

β(t) · · ·β(T + 1)KjY · · ·K1YMs
0x(T ), j > 0,

(3)

where M0 ≡ KmY K(m−1)Y · · ·K1Y . Using Frobenius
eigenvalue λ0 of matrix M0, write the latter equality
at steps corresponding to the index j = 0 as:

x(T +ms) = β(t) · · ·β(T + 1)λs
0

(
M0

λ0

)s

x(T ). (4)

Since the location of zeros in the matrix Y and KjY ,
j = 1, . . . ,m, coincides then the matrix M0 is also

primitive [2]. Thus [2], the sequence

{(
M0

λ0

)s

x(T )

}
as s → ∞ converges to the Frobenius vector of ma-
trix M0. Consequently, the corresponding normal-

ized subsequence

{
x(τ)

∥x(τ)∥

}
converges to the normal-

ized Frobenius vector of the matrix M0, which is de-
noted by x0. Because of cyclic presence of multipliers
KjY · · ·K1Y in the second row of (3) it follows that

the normalized sequence of vectors

{
x(t)

∥x(t)∥

}
as t → ∞

will cyclically strive to m points on the unit sphere in
Rn. These points are uniquely determined by the fol-
lowing vectors:

x0, K1Y x0, . . . , K(m−1)Y · · ·K2Y K1Y x0.

If m = 1, then the formula (4) takes the form

x(T + s) = β(t) · · ·β(T + 1)(λ1)
s

(
K1Y

λ1

)s

x(T ), (5)

where λ1 is Frobenius eigenvalue of the matrix K1Y .
In this case we have the normalized sequence of vectors
converges to a point on the unit sphere which defined
by the Frobenius vector of the matrix K1Y . In the spe-
cial case when all diagonal elements of K1 has the same
value k, the equation (5) can be written as follows:

x(T + s) = β(t) · · ·β(T + 1)(kλY )
s

(
Y

λY

)s

x(T ),

and the normalized sequence converges to the Frobe-
nius issues vector of the matrix Y . In this case the eco-
nomic system will asymptomatically reach the turnpike
of balanced growth.
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