Primal and dual affine scaling Newton's methods for linear semidefinite programming problems

V. G. Zhadan*
*Dorodnicyn Computing Centre of RAS, zhadan@ccas.ru

We consider the standard form semidefinite programming (SDP) problem:

$$
\begin{align*}
& \min C \bullet X \\
& A_{i} \bullet X=b^{i}, \quad i=1, \ldots, m \tag{1}\\
& X \succeq 0,
\end{align*}
$$

and its dual

$$
\begin{align*}
& \max b^{T} u \\
& \sum_{i=1}^{m} u^{i} A_{i}+V=C \tag{2}\\
& V \succeq 0
\end{align*}
$$

where C, X and $A_{i}, 1 \leq i \leq m$ belong to the space \mathcal{S}^{n} of $n \times n$ real symmetric matrices, the operator - denotes the standard inner product in \mathcal{S}^{n}, i.e., $C \bullet X:=\operatorname{tr}(C X)=\sum_{i, j} C_{i j} X_{i j}$, and the inequality $X \succeq 0$ means that X is positive semidefinite. We write also $X \succ 0$ to indicate that X is positive definite.

In what follows we assume that the matrices $A_{i}, 1 \leq i \leq m$, are linear independent. We suppose also that the Slater constraint qualification is fulfilled for both problems (1) and (2), i.e. there are feasible matrices X and V such that $X \succ 0$, $V \succ 0$. In this case the strong duality holds and both problems (1), (2) have nonempty compact sets of solutions [1].

If X_{*} and V_{*} are optimal solutions of problems (1) and (2), respectively, then $X_{*} \bullet V_{*}=0$, and the matrices X_{*} and V_{*} must commute. Hence, there exists an orthogonal matrix Q such that

$$
X_{*}=Q \operatorname{Diag}\left(\eta_{*}\right) Q^{T}, \quad V_{*}=Q \operatorname{Diag}\left(\theta_{*}\right) Q^{T}
$$

where $\eta_{*}=\left[\eta_{*}^{1}, \ldots, \eta_{*}^{n}\right]$ and $\theta_{*}=\left[\theta_{*}^{1}, \ldots, \theta_{*}^{n}\right]$ are the eigenvalues of X_{*} and V_{*} respectively. The
eigenvalues η_{*}^{i} and θ_{*}^{i} satisfy the complementarity conditions $\eta_{*}^{i} \theta_{*}^{i}=0,1 \leq i \leq n$. The strict complementarity condition means that, for each $1 \leq i \leq n$, one of the values η_{*}^{i} or θ_{*}^{i} is strictly positive.

Denote by $X * V$ the symmetrized product of square matrices X and V defined by the formula $X * V=\left(X V+V^{T} X^{T}\right) / 2$. The well-known optimality conditions for (1) and (2), having the form

$$
\begin{aligned}
X \bullet V= & 0 \\
A_{i} \bullet X= & b^{i}, \quad 1 \leq i \leq m \\
V= & C-\sum_{i=1}^{m} u^{i} A_{i} \\
X \succeq 0, & V \succeq 0
\end{aligned}
$$

can be written in the following way

$$
\begin{align*}
X * V= & 0_{n n} \\
A_{i} \bullet X= & b^{i}, \quad 1 \leq i \leq m \\
V= & C-\sum_{i=1}^{m} u^{i} A_{i} \tag{3}\\
X \succeq 0, & V \succeq 0
\end{align*}
$$

Let the symbol $\operatorname{vec} X$ denote the direct sum of the columns of $X \in \mathcal{S}^{n}$, that is, the column vector of dimension n^{2} that consists of the columns of X written one after another from top to bottom. For symmetric matrices, it is more convenient to deal with the column vector vech X of dimension $k_{\triangle}(n)=n(n+1) / 2$. It also consists of the columns of X written one after another; however, these are not the entire columns but their parts beginning with the diagonal entry. The operation $\operatorname{vecs} X$ is defined similarly. It differs from the preceding operation vech X only in that the off-diagonal entries of X are multiplied by two before placing into vecs X.

Let also \mathcal{L}_{n} and \mathcal{D}_{n} are the elimination and $d u$ plicated matrices respectively [2]. The matrix \mathcal{L}_{n}
for an arbitrary square matrix X effects the transformation $\mathcal{L}_{n} \operatorname{vec} X=\operatorname{vech} X$. By contrast, the matrix \mathcal{D}_{n} acts on an arbitrary symmetric matrix X so that $\mathcal{D}_{n} \operatorname{vech} X=\operatorname{vec} X$.

Using the vectorization operators vech and vecs, the optimality conditions (3) can be rewritten as

$$
\begin{align*}
& \mathcal{L}_{n} X^{\otimes} \mathcal{D}_{n} \text { vech } V=0_{k_{\Delta}(n)}, \\
& \mathcal{A}_{\text {vecs }} \text { vech } X= b, \tag{4}\\
& \text { vech } V= \text { vech } C-\mathcal{A}_{\text {vech }}^{T} u, \\
& X \succeq 0, V \succeq 0,
\end{align*}
$$

where $X^{\otimes}=\left[X \otimes I_{n}+I_{n} \otimes X\right] / 2$ is the Kronecker sum of a matrix X, and I_{n} is the identity matrix of order n. By $\mathcal{A}_{\text {vech }}$ and $\mathcal{A}_{\text {vecs }}$ we denote the $m \times n^{2}$ matrices with vech A_{i} and $\operatorname{vecs} A_{i}$ respectively as their rows, $1 \leq i \leq m$.

We consider at first the primal affine scaling Newton's method. For its deriving from (4) we substitute the expression for vech V from the third equality to the first one and multiply both sides of that resulting equality by the matrix $\mathcal{A}_{\text {vecs }}$ from the left. Adding also to this equality the second equality from the (4) multiplied by some parameter $\tau>0$, we obtain the following system of linear algebraic equations with respect to the vector u :

$$
\begin{equation*}
\Gamma(X) u=\mathcal{A}_{\text {vecs }} \tilde{X}^{\otimes} \operatorname{vech} C+\tau\left(b-\mathcal{A}_{\text {vecs }} \operatorname{vech} X\right), \tag{5}
\end{equation*}
$$

where

$$
\Gamma(X)=\mathcal{A}_{\text {vecs }} \tilde{X}^{\otimes}\left(\mathcal{A}_{\text {vech }}\right)^{T}, \quad \tilde{X}^{\otimes}=\mathcal{L}_{n} X^{\otimes} \mathcal{D}_{n}
$$

If the matrix $\Gamma(X)$ is nonsingular, then solving system (5), we obtain

$$
\begin{aligned}
u(X)=\Gamma^{-1}(X) & {\left[\mathcal{A}_{\text {vecs }} \tilde{X}^{\otimes} \text { vech } C+\right.} \\
& \left.+\tau\left(b-\mathcal{A}_{\text {vecs }} \operatorname{vech} X\right)\right] .
\end{aligned}
$$

Denote $V(u)=C-\sum_{i=1}^{m} u^{i} A_{i}, \quad V(X)=$ $V(u(X))$. Substituting $V(X)$ into the first equality from (3), we obtain the nonlinear system of equations with respect to X :

$$
\begin{equation*}
X * V(X)=0_{n n} . \tag{6}
\end{equation*}
$$

Let $F(X)=X * V(X)$. Since the matrix function $F(X)$ is symmetric, the system (6) can be written in the form

$$
\operatorname{vech} F(X)=0_{k_{\Delta}(n)}
$$

Now we apply the Newton method for solving this system

$$
\begin{equation*}
\operatorname{vech} X_{k+1}=\operatorname{vech} X_{k}-\left[\mathcal{L}_{n} F_{X}\left(X_{k}\right) \mathcal{D}_{n}\right]^{-1} \operatorname{vech} F\left(X_{k}\right) . \tag{7}
\end{equation*}
$$

Here $F_{X}(X)$ is the Jacobian matrix of a symmetric matrix function $F(X)$.

Lemma 1 The matrix $F_{X}(X)$ has the form:

$$
F_{X}(X)=V^{\otimes}(X)+X^{\otimes} V_{X}(X) .
$$

Therefore, to calculate $F_{X}(X)$ we need to know the Jacobian matrix $V_{X}(X)$ of the matrix function $V(X)$. Since $V_{X}(X)=-\mathcal{A}_{v e c}^{T} u_{X}(X)$, the calculation of $V_{X}(X)$ is reduced to calculation of the Jacobian matrix $u_{X}(X)$. In the case, where the matrix $\Gamma(X)$ is nonsingular, we obtain

$$
u_{X}(X)=\Gamma^{-1}(X)\left(\mathcal{A}_{\text {vec }} V^{\otimes}(X)-\tau \mathcal{A}_{\text {vec }}\right),
$$

where $V^{\otimes}=\left[V \otimes I_{n}+I_{n} \otimes V\right] / 2$ is a Kronecker sum of V.
To simplify our formulas we use the notation $\mathcal{P}(X)=X^{\otimes} \mathcal{A}_{\text {vec }}^{T} \Gamma^{-1}(X) \mathcal{A}_{\text {vec }}$. Then after substituting $u_{X}(X)$ into $V_{X}(X)$, we have

$$
F_{X}(X)=\left[I_{n^{2}}-\mathcal{P}(X)\right] V^{\otimes}(X)+\tau \mathcal{P}(X) .
$$

Thus, the iterative process (7) can be written in more detailed form as

$$
\begin{align*}
\operatorname{vech} X_{k+1} & =\operatorname{vech} X_{k}- \\
& -\left[\left(I_{k_{\Delta}(n)}-\tilde{\mathcal{P}}_{k}\right) \tilde{V}_{k}^{\otimes}+\tau \tilde{\mathcal{P}}_{k}\right]^{-1} . \\
& \cdot \operatorname{vech} F\left(X_{k}\right), \tag{8}
\end{align*}
$$

where $\tilde{\mathcal{P}}_{k}=\mathcal{L}_{n} \mathcal{P}\left(X_{k}\right) \mathcal{D}_{n}, \tilde{V}_{k}^{\otimes}=\mathcal{L}_{n} V^{\otimes}\left(X_{k}\right) \mathcal{D}_{n}$.
Let $\mathcal{T}(X)$ denote the tangent space of \mathcal{S}^{n} at the point X. We denote also by \mathcal{R}_{A} the subspace of \mathcal{S}_{n} generated by matrices $A_{i}, 1 \leq i \leq m$. Let \mathcal{R}_{A}^{\perp} be the orthogonal complement of \mathcal{R}_{A}. Following [3], we give definitions of nondegenerate points in primal and dual problems (1), (2).

Definition $1 A$ feasible point X of primal problem (1) is nondegerate if $\mathcal{T}(X)+\mathcal{R}_{A}^{\perp}=\mathcal{S}^{n}$. Similarly, a feasible point V of dual problem (2) is nondegenerate if $\mathcal{T}(V)+\mathcal{R}_{A}=\mathcal{S}^{n}$.

Lemma 2 Let X be a nondegenerate feasible point of primal problem (1). Then the matrix $\Gamma(X)$ is nonsingular.

We assume that the problem (1) is nondegenerate, i.e. all feasible points X are nondegenerate. Then, due to continuity, there exists a neighborhood of the feasible set such that the iterative process (7) is completely determined in this neighborhood.

Theorem 1 Assume that solutions X_{*} and V_{*} of primal and dual SDP problems (1) and (2) are strictly complementary. Let also the points X_{*} and V_{*} be nondegenerate. Then the method (7) locally converges to X_{*} at a superlinear rate.

Now let us consider the dual analogue of the primal Newton method (7). With this aim we rewrite optimality conditions (3) as

$$
\begin{align*}
& \mathcal{L}_{n} V^{\otimes} \mathcal{D}_{n} \text { vech } X=0_{k_{\Delta}(n)} \\
& \mathcal{A}_{\text {vecs }} \text { vech } X=b \\
& \text { vech } V=\operatorname{vech} C-\mathcal{A}_{\text {vech }}^{T} u \tag{9}\\
& X \succeq 0, V \succeq 0
\end{align*}
$$

Multiplying both sides of the second equality in (9) by the matrix $\mathcal{A}_{v e c}^{T}$ and adding this equality to the first one we comes to the following equation

$$
\begin{equation*}
\Phi(V) \operatorname{vech} X=\mathcal{A}_{v e c h}^{T} b \tag{10}
\end{equation*}
$$

where

$$
\Phi(V)=\mathcal{A}_{v e c h}^{T} \mathcal{A}_{v e c s}+\mathcal{L}_{n} V^{\otimes} \mathcal{D}_{n}
$$

If the matrix $\Phi(V)$ is invertible, then, solving equation (10), we obtain

$$
\begin{equation*}
\operatorname{vech} X=\Phi^{-1}(V) \mathcal{A}_{v e c h}^{T} b \tag{11}
\end{equation*}
$$

Thus $X=X(V)$.
After substituting the expression (11) for vech X at the second equality from (9) and taking $V=$ $V(u)$ we derive the system of m nonlinear equations with respect of m variables u_{1}, \ldots, m :

$$
\left[\mathcal{A}_{\text {vecs }} \Phi^{-1}(V(u)) \mathcal{A}_{\text {vech }}-I_{m}\right] b=0_{m}
$$

We apply also Newton's method for solving this system

$$
\begin{equation*}
u_{k+1}=u_{k}+\Lambda^{-1}\left(u_{k}\right)\left(b-\mathcal{A}_{v e c s} \operatorname{vech} X_{k}\right) \tag{12}
\end{equation*}
$$

where $u_{0} \in \mathbb{R}^{m}, X_{k}=X\left(u_{k}\right), X(u)=X(V(u))$, and the matrix $\Lambda(u)$ is as follows

$$
\Lambda(u)=\frac{d}{d u} \mathcal{A}_{v e c s} \Phi^{-1}(V(u)) \mathcal{A}_{v e c h}^{T} b
$$

It is possible to derive that

$$
\Lambda(u)=\mathcal{A}_{v e c s} \Phi^{-1}(V(u)) \mathcal{L}_{n} X^{\otimes}(u) \mathcal{D}_{n} \mathcal{A}_{v e c h}^{T}
$$

Therefore, the iterative process (12) can be written as

$$
\begin{align*}
u_{k+1} & =u_{k}+\left\{\mathcal{A}_{\text {vecs }} \Phi^{-1}\left(V_{k}\right) \mathcal{L}_{n} X_{k}^{\otimes} \mathcal{D}_{n} \mathcal{A}_{\text {vech }}^{T}\right\}^{-1} \\
& \left(b-\mathcal{A}_{\text {vecs }} \operatorname{vech} X_{k}\right) \tag{13}
\end{align*}
$$

where $V_{k}=V\left(u_{k}\right)$.
Lemma 3 Let $V=V(u)$ be a nondegenerate feasible point of dual problem (2). Then the matrix $\Phi(V)$ is nonsingular.

Similarly to previous case we assume that the dual problem is nondegenerate, i.e. all feasible points $V=V(u)$ of the dual problem (2) are nondegenerate. In this case, due to continuity, the iterative process (13) is fully determined in some neighborhood of the feasible set.

Theorem 2 Assume that solutions X_{*} and $V_{*}=$ $V\left(u_{*}\right)$ of primal and dual SDP problems (1), (2) are strictly complementary. Let also the points X_{*} and V_{*} be nondegenerate. Then the method (13) locally converges to u_{*} at a superlinear rate.

Methods (7) and (13) can be regarded as extensions onto semidefinite programming the barrierNewton methods, which was previously proposed for solving linear programming problems [4], [5]. The properties of these methods are given in [6], [7].

ACKNOWLEDGEMENTS. This study was supported by Russian Foundation for Basic Research (project no. 11-01-00786), by the Program for Support of Leading Scientific Scholls (project no NSh-4096.2010.1), and by the Program of Presidium of RAS (project No. Pi-14).

References

[1] E. De Klerk Aspects of semidefinite programming. Interior point algorithms and selected applications. Dordrecht etc.: Kluwer Acad. Publs, 2004.
[2] J. R. Magnus, N. Neudecker Matrix Differential Calculas with Applications in Statistics and Econometrics. Chichester, New York, Toronto: John Willey \& Sons, 1988.
[3] F. Alizadeh, J.-P. F. Haeberly, M. L. Overton Complementarity and nondegeneracy in semidefinite programming. Mathematical Programming., Series B. 77, 129-162 (1997).
[4] Yu.G.Evtushenko, V.G. Zhadan Stable Barrier-Projection and Barrier-Newton Methods in Linear Programming. Comput. Optimaz. and Appl., 3, 289-304 (1994).
[5] Yu.G. Evtushenko, V.G. Zhadan Dual BarrierProjection and Barrier-Newton Methods for Linear Programming. Comp. Maths Math. Phys., 36, 847-859 (1996).
[6] V.G. Zhadan Primal Newton's method for a linear problem of semidefinite programming Proceedings of Steklov Institute of Mathematics, 263, Nu. 2 suppl., (2008).
[7] V.G. Zhadan, A.A. Orlov On convergence of the dual Newton method for linear semidefinite programming problem. Proceedings of Irkutsk state University, Mathematica, 4, Nu. 2, 7590 (2011), in Russian.

