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We consider the standard form semidefinite pro-
gramming (SDP) problem:

min C •X,
Ai •X = bi, i = 1, . . . , m,

X º 0,
(1)

and its dual

max bT u,∑m
i=1 uiAi + V = C,

V º 0,
(2)

where C, X and Ai, 1 ≤ i ≤ m belong to the space
Sn of n×n real symmetric matrices, the operator
• denotes the standard inner product in Sn, i.e.,
C•X := tr(CX) =

∑
i,j CijXij , and the inequality

X º 0 means that X is positive semidefinite. We
write also X Â 0 to indicate that X is positive
definite.

In what follows we assume that the matrices
Ai, 1 ≤ i ≤ m, are linear independent. We sup-
pose also that the Slater constraint qualification is
fulfilled for both problems (1) and (2), i.e. there
are feasible matrices X and V such that X Â 0,
V Â 0. In this case the strong duality holds and
both problems (1), (2) have nonempty compact
sets of solutions [1].

If X∗ and V∗ are optimal solutions of problems
(1) and (2), respectively, then X∗•V∗ = 0, and the
matrices X∗ and V∗ must commute. Hence, there
exists an orthogonal matrix Q such that

X∗ = QDiag(η∗)QT , V∗ = QDiag(θ∗)QT ,

where η∗ = [η1∗, . . . , ηn∗ ] and θ∗ = [θ1∗, . . . , θn∗ ] are
the eigenvalues of X∗ and V∗ respectively. The

eigenvalues ηi∗ and θi∗ satisfy the complementar-
ity conditions ηi∗θi∗ = 0, 1 ≤ i ≤ n. The strict
complementarity condition means that, for each
1 ≤ i ≤ n, one of the values ηi∗ or θi∗ is strictly
positive.

Denote by X ∗ V the symmetrized product of
square matrices X and V defined by the formula
X ∗ V = (XV + V T XT )/2. The well-known opti-
mality conditions for (1) and (2), having the form

X • V = 0,
Ai •X = bi, 1 ≤ i ≤ m,

V = C −∑m
i=1 uiAi,

X º 0, V º 0,

can be written in the following way

X ∗ V = 0nn,
Ai •X = bi, 1 ≤ i ≤ m,

V = C −∑m
i=1 uiAi,

X º 0, V º 0.

(3)

Let the symbol vecX denote the direct sum of
the columns of X ∈ Sn, that is, the column vector
of dimension n2 that consists of the columns of
X written one after another from top to bottom.
For symmetric matrices, it is more convenient to
deal with the column vector vechX of dimension
k4(n) = n(n+1)/2. It also consists of the columns
of X written one after another; however, these are
not the entire columns but their parts beginning
with the diagonal entry. The operation vecsX is
defined similarly. It differs from the preceding op-
eration vechX only in that the off-diagonal en-
tries of X are multiplied by two before placing
into vecsX.

Let also Ln and Dn are the elimination and du-
plicated matrices respectively [2]. The matrix Ln
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for an arbitrary square matrix X effects the trans-
formation LnvecX = vechX. By contrast, the
matrix Dn acts on an arbitrary symmetric matrix
X so that DnvechX = vecX.

Using the vectorization operators vech and
vecs, the optimality conditions (3) can be rewrit-
ten as

LnX⊗DnvechV = 0k4(n),

AvecsvechX = b,
vechV = vechC −AT

vechu,
X º 0, V º 0,

(4)

where X⊗ = [X⊗ In + In⊗X]/2 is the Kronecker
sum of a matrix X, and In is the identity matrix of
order n. By Avech and Avecs we denote the m×n2

matrices with vechAi and vecsAi respectively as
their rows, 1 ≤ i ≤ m.

We consider at first the primal affine scaling
Newton’s method. For its deriving from (4) we
substitute the expression for vechV from the third
equality to the first one and multiply both sides of
that resulting equality by the matrix Avecs from
the left. Adding also to this equality the second
equality from the (4) multiplied by some parame-
ter τ > 0, we obtain the following system of linear
algebraic equations with respect to the vector u:

Γ(X)u = AvecsX̃
⊗vechC + τ (b−AvecsvechX) ,

(5)
where

Γ(X) = AvecsX̃
⊗(Avech)T , X̃⊗ = LnX⊗Dn.

If the matrix Γ(X) is nonsingular, then solving
system (5), we obtain

u(X) = Γ−1(X)
[
AvecsX̃

⊗vechC+
+ τ (b−AvecsvechX)] .

Denote V (u) = C − ∑m
i=1 uiAi, V (X) =

V (u(X)). Substituting V (X) into the first equal-
ity from (3), we obtain the nonlinear system of
equations with respect to X:

X ∗ V (X) = 0nn. (6)

Let F (X) = X ∗ V (X). Since the matrix function
F (X) is symmetric, the system (6) can be written
in the form

vechF (X) = 0k4(n).

Now we apply the Newton method for solving this
system

vechXk+1 = vechXk−[LnFX(Xk)Dn]−1 vechF (Xk).
(7)

Here FX(X) is the Jacobian matrix of a symmetric
matrix function F (X).

Lemma 1 The matrix FX(X) has the form:

FX(X) = V ⊗(X) + X⊗VX(X).

Therefore, to calculate FX(X) we need to know
the Jacobian matrix VX(X) of the matrix function
V (X). Since VX(X) = −AT

vecuX(X), the calcu-
lation of VX(X) is reduced to calculation of the
Jacobian matrix uX(X). In the case, where the
matrix Γ(X) is nonsingular, we obtain

uX(X) = Γ−1(X)
(AvecV

⊗(X)− τAvec
)
,

where V ⊗ = [V ⊗ In + In ⊗ V ] /2 is a Kronecker
sum of V .

To simplify our formulas we use the notation
P(X) = X⊗AT

vecΓ
−1(X)Avec. Then after substi-

tuting uX(X) into VX(X), we have

FX(X) = [In2 − P(X)]V ⊗(X) + τP(X).

Thus, the iterative process (7) can be written in
more detailed form as

vechXk+1 = vechXk−
−

[(
Ik4(n) − P̃k

)
Ṽ ⊗

k + τ P̃k

]−1 ·
· vechF (Xk),

(8)
where P̃k = LnP(Xk)Dn, Ṽ ⊗

k = LnV ⊗(Xk)Dn.
Let T (X) denote the tangent space of Sn at the

point X. We denote also by RA the subspace of
Sn generated by matrices Ai, 1 ≤ i ≤ m. Let R⊥A
be the orthogonal complement of RA. Following
[3], we give definitions of nondegenerate points in
primal and dual problems (1), (2).

Definition 1 A feasible point X of primal prob-
lem (1) is nondegerate if T (X) +R⊥A = Sn. Sim-
ilarly, a feasible point V of dual problem (2) is
nondegenerate if T (V ) +RA = Sn.
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Lemma 2 Let X be a nondegenerate feasible
point of primal problem (1). Then the matrix
Γ(X) is nonsingular.

We assume that the problem (1) is nondegener-
ate, i.e. all feasible points X are nondegenerate.
Then, due to continuity, there exists a neighbor-
hood of the feasible set such that the iterative pro-
cess (7) is completely determined in this neighbor-
hood.

Theorem 1 Assume that solutions X∗ and V∗ of
primal and dual SDP problems (1) and (2) are
strictly complementary. Let also the points X∗ and
V∗ be nondegenerate. Then the method (7) locally
converges to X∗ at a superlinear rate.

Now let us consider the dual analogue of the pri-
mal Newton method (7). With this aim we rewrite
optimality conditions (3) as

LnV ⊗DnvechX = 0k4(n),

AvecsvechX = b,
vechV = vechC −AT

vechu,
X º 0, V º 0.

(9)

Multiplying both sides of the second equality in
(9) by the matrix AT

vec and adding this equality to
the first one we comes to the following equation

Φ(V )vechX = AT
vechb, (10)

where

Φ(V ) = AT
vechAvecs + LnV ⊗Dn.

If the matrix Φ(V ) is invertible, then, solving
equation (10), we obtain

vechX = Φ−1(V )AT
vechb. (11)

Thus X = X(V ).
After substituting the expression (11) for vechX

at the second equality from (9) and taking V =
V (u) we derive the system of m nonlinear equa-
tions with respect of m variables u1, . . ., m:

[
AvecsΦ−1(V (u))Avech − Im

]
b = 0m.

We apply also Newton’s method for solving this
system

uk+1 = uk + Λ−1(uk) (b−AvecsvechXk) , (12)

where u0 ∈ Rm, Xk = X(uk), X(u) = X(V (u)),
and the matrix Λ(u) is as follows

Λ(u) =
d

du
AvecsΦ−1(V (u))AT

vechb.

It is possible to derive that

Λ(u) = AvecsΦ−1(V (u))LnX⊗(u)DnAT
vech.

Therefore, the iterative process (12) can be writ-
ten as

uk+1 = uk +
{
AvecsΦ−1(Vk)LnX⊗

k DnAT
vech

}−1 ·
· (b−AvecsvechXk) ,

(13)
where Vk = V (uk).

Lemma 3 Let V = V (u) be a nondegenerate fea-
sible point of dual problem (2). Then the matrix
Φ(V ) is nonsingular.

Similarly to previous case we assume that the
dual problem is nondegenerate, i.e. all feasible
points V = V (u) of the dual problem (2) are non-
degenerate. In this case, due to continuity, the
iterative process (13) is fully determined in some
neighborhood of the feasible set.

Theorem 2 Assume that solutions X∗ and V∗ =
V (u∗) of primal and dual SDP problems (1), (2)
are strictly complementary. Let also the points X∗
and V∗ be nondegenerate. Then the method (13)
locally converges to u∗ at a superlinear rate.

Methods (7) and (13) can be regarded as exten-
sions onto semidefinite programming the barrier-
Newton methods, which was previously proposed
for solving linear programming problems [4], [5].
The properties of these methods are given in [6],
[7].
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