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1. Introduction. Nowadays, the bilevel opti-
mization problems, arising in various applications
[1, 2], seem to be one of the most attractive fields
for many experts [1, 3, 4, 5]. Bilevel problems are
such optimization problems, which – side by side
with ordinary constraints such as equalities and
inequalities [6] – include a constraint described as
an optimization subproblem, called the lower-level
problem or follower problem.

In course of investigation of bilevel optimization
problems the difficulty arises already at the stage
of defining the concept of solution. The optimistic
and pessimistic (guaranteed) definitions of a solu-
tion are known to be the most popular [1, 3, 4].
During the three decades of intensive investigation
of bilevel optimization problems there were pro-
posed various methods for finding an optimistic
solution by different authors (see the survey [5]).
But there was a few for finding pessimistic solu-
tions [7, 8].

From the computational point of view difficul-
ties with numerical solving bilevel problems arise
due to the fact that even the simpliest linear
bilevel problem (with linear goal functions on both
levels of hierarchy) in its optimistic setting is an
equivalent to a nonconvex optimization problem
(in terms of global solution) [4]. So, only results on
finding optimistic solutions in bilevel problems of
dimension up to 220 (at both upper and lower level
variables) are known from literature [9, 10, 11]. As
for more difficult problem of finding guaranteed
solutions to bilevel optimization problems, only
results on numerical solving of illustrative exam-
ples of dimension up to 4 are known [8].

In this paper we deal with new methods for find-
ing optimistic and pessimistic solutions to linear
and quadratic-linear (where the upper-level goal

function is a quadratic function, the lower-level
goal function is linear and the feasible sets are
polyhydrons) bilevel problems, in which we strive
for solving problems of high dimension.

The paper is organized as follows. First, we
present a method of solving linear bilevel prob-
lems in its optimistic setting based on a reduc-
ing of bilevel problem to an optimization problem
with d.c. constraint (with nonconvex constraint
equality, given by a difference of two convex func-
tions) and Global Search Theory for such prob-
lems [12, 13, 14]. Further, we present a method
for solving quadratic-linear bilevel problems in its
optimistic setting based on a reduction of the ini-
tial problem to a family of d.c. minimization prob-
lems and Global Search Theory for such problems
[12, 13, 15]. Finally, we present an approach for
finding guaranteed solutions to quadratic-linear
bilevel problems which is based on a reduction of
the bilevel problem to a family of auxiliary bilevel
problems in optimistic setting and employing the
approach for finding optimistic solutions to initial
quadratic-linear bilevel problems.

2. Solving the optimistic linear bilevel
problem via d.c. constraint problem. Let
us consider the following linear bilevel optimiza-
tion problem in its optimistic setting:

〈c, x〉+ 〈c1, y〉 ↓ min
x,y

,

(x, y) ∈ D 4
= {(x, y) ∈ IRm × IRn |

| Ax+By ≤ a, x ≥ 0},
y ∈ Y∗(x)

4
= Argmin

z
{〈d, z〉 | z ∈ Y (x)},

Y (x)
4
= {y ∈ IRn | A1x+B1y ≤ b,

y ≥ 0},


(LBP)

Replacing the lower-level problem in (LBP) by
its necessary and sufficient Karush–Kuhn–Tucker
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optimility conditions we obtain the problem [1, 4],
as follows,

〈c, x〉+ 〈c1, y〉 ↓ min
x,y,v

,

(x, y, v) ∈ S 4= {(x, y, v) |
| Ax+By ≤ a, A1x+B1y ≤ b,

d+ vB1 ≥ 0, x ≥ 0, y ≥ 0, v ≥ 0},
h(x, y, v) := 〈d, y〉 − 〈A1x− b, v〉 = 0.


(P)

Note that (P) is equivalent to the problem
(LBP) in the sense of coincidence of global so-
lutions [4]. It is easy to see that the problem (P)
is nonconvex due to the d.c. equality constraint
including bilinear function h(·).

Furthermore, for the numerical solving the
problem (P) we advanced a global search algo-
rithm [16] based on Global Search Strategy for
d.c. constraint optimization problems [12, 14].

Recall that, the global search algorithm consists
of two main stages:

1) Local search providing a critical point;
2) Procedures of escaping from critical points,

based on Global Optimality Conditions (GOC)
[12].

During numerical simulations the global search
algorithm showed itself rather effective and
promising, for example the all randomly gener-
ated linear bilevel problems [18] of dimension up
to 1000 were successfully solved [16].

In the next section we describe another ap-
proach for finding optimistic solutions to bilevel
problems.

3. Solving the optimistic quadratic-linear
bilevel problem via d.c. minimization prob-
lem. Consider the following quadratic-linear
bilevel optimization problem in its optimistic set-
ting:

f(x, y)
4
=

1
2
〈x,Cx〉+ 〈c, x〉+

+
1
2
〈y, C1y〉+ 〈c1, y〉 ↓ min

x,y
,

(x, y) ∈ X 4
= {(x, y) ∈ IRm × IRn |

| Ax+By ≤ a, x ≥ 0},
y ∈ Y∗(x)

4
= Argmin

z
{〈d, z〉 | z ∈ Y (x)},

Y (x)
4
= {y ∈ IRn | A1x+B1y ≤ b,

y ≥ 0},



(BP)

Replacing the lower-level problem with its
Karush–Kuhn–Tucker conditions and using
penalty method the problem BP can be reduced
to a family of the following problems [1, 17]:

Φ(x, y, v)
4
= f(x, y) + µh(x, y, v) ↓ min

x,y,v
,

(x, y, v) ∈ S.

 (P(µ))

It can be readily seen, that in this case the hid-
den nonconvexity of the initial problem has been
moved to the goal function, and a penalty param-
eter µ > 0 appeared.

Further, for the numerical solving of the prob-
lem (P(µ)) we proposed a global search algorithm
[17] based on Global Search Strategy for d.c. min-
imization problems [12, 13].

Here the main stages of the global search algo-
rithm are ideologically the same as in the previous
section.

As to results of numerical simulations with
global search algorithm, one can say that all the
randomly generated quadratic-linear bilevel prob-
lems [18, 19] of dimension up to 300 were solved
[17]. So, the approach turned out to be rather
successful and promising.

4. Solving the pessimistic quadratic-
linear bilevel problem. In this section the fol-
lowing quadratic-linear bilevel optimization prob-
lem with guaranteed (pessimistic) solution is con-
sidered:

sup
y
{F (x, y) | y ∈ Y∗(x)} ↓ min

x
,

x ∈ X, Y∗(x)
4
= Argmin

y
{G(y) |

| y ∈ Y (x)},

 (BPg)

where F (x, y)
4
=

1
2
〈x,Cx〉 + 〈c, x〉 − 1

2
〈y, C1y〉 +

〈c1, y〉, G(y)
4
= 〈d, y〉, X

4
= {x ∈ IRm | Ax ≤ a,

x ≥ 0}, Y (x)
4
= {y ∈ IRn | A1x+B1y ≤ b, y ≥ 0}.

Along with (BPg) let us consider the following
auxiliary bilevel optimization problem in its opti-
mistic setting:

F (x, y) ↓ min
x,y

, x ∈ X,
y ∈ Argmin{G(y)− νF (x, y) |

| y ∈ Y (x)},

 (BPo(ν))
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where ν > 0.

Suppose, feasible sets of upper level and lower
level are bounded so that

(H) :
X is a bounded set, and

∃Y : Y ⊇ Y (x) ∀x ∈ X, Y is a compact set.

The following assertion develops the correspond-
ing result from [7].

Theorem 1 [20] Suppose the conditions (H)
hold, the number sequences {νk}, {τk} tend to
zero: νk ↓ 0, τk ↓ 0. Let, in addition, the pair
(xk, yk) be an approximate (τk-)solution to prob-
lem (BPo(νk)), k = 1, 2, ... Then any accumula-
tion point of the sequence {xk, yk} turns out to be
a pessimistic solution to problem (BPg).

So, in order to solve bilevel problem in pes-
simistic setting (BPg) theorem 1 suggests to solve
the series of bilevel problems in optimistic state-
ment (BPo(νk)) corresponding to the sequence
{νk} : νk ↓ 0.

Therefore the approaches of the previous sec-
tions, were developed to construct the global
search algorithm for the problem (BPo(ν)) [21],
which has been applied for finding a solution to
(BPg). In the numerical experiments the algo-
rithm was capable to solve all randomly generated
test problems of dimension up to 105. Besides
for generating the test problems with known so-
lutions we proposed a method [21], developing an
approach from [18, 19] in the case of pessimistic
solution. Thus, the developed algorithm showed
itself rather effective.

5. Conclusion. In the paper we described new
methods for finding optimistic and pessimistic so-
lutions to bilevel problems, based on the Global
Search Theory. Numerical experiments showed
that the methods are capable to solve optimistic
and pessimistic bilevel problems of record dimen-
sions. So, the developed approaches and methods
turned out to be competitive and operating for
bilevel problems.
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