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This work deals with numerical methods of
parameter optimization for asymptotically stable
systems. We formulate a special mathematical
programming problem that allows us to determine
optimal parameters of a stabilizer. This problem
involves solutions to a differential equation. We
show how to chose the mesh in order to obtain
discrete problem guaranteeing the necessary ac-
curacy. The developed methodology is illustrated
by an example concerning optimization of param-
eters for a satellite stabilization system [5, 6, 1].
Some of the results presented here are published
in [3].

Consider differential equation

ẋ = f(x, u), x ∈ Rn, t ≥ 0, (1)

where u ∈ U ⊂ Rk is a parameter. It is assumed
that 0 = f(0, u) for all u ∈ U and the zero equi-
librium position of system (1) is asymptotically
stable whenever u ∈ U . The parameter u should
be chosen to optimize, in some sense, the behavior
of the trajectories. It is impossible to construct a
stabilizer optimal in all aspects. For example, for
a linear controllable system, the pole assignment

theorem guarantees the existence of a linear feed-
back yielding a linear differential equation with
any given set of eigenvalues. One can choose a sta-
bilizer with a very high damping speed. However,
such a stabilizer is practically useless because of
so-called pick-effect (see [4, 9, 8]). Namely, there
exists a large deviation of the solutions from the
equilibrium position at the beginning of the stabi-
lization process, whenever the module of the eigen-
values is big. The aim of this work is to develop
a numerical tool oriented to optimization of sta-
bilizer parameters according to different criteria
that appear in the engineering practice.

In what follows we denote the set of real num-
bers by R and the usual n-dimensional space of
vectors with components in R by Rn. The space
of absolutely continuous functions defined in [0, T ]
with values in Rn is denoted by AC([0, T ], Rn).
We denote by ⟨a, b⟩ the usual scalar product in
Rn and by ∣ ⋅ ∣ the Euclidean norm. By B we de-
note the closed unit ball, i.e., the set of vectors
x ∈ Rn satisfying ∣x∣ ≤ 1. The transpose of a ma-
trix A is denoted by A∗. We use the matrix norm
∣A∣ = max∣x∣=1 ∣Ax∣. If P and Q are two subsets
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in Rn and � ∈ R, we use the following notations:
�P = {�p ∣ p ∈ P}, P +Q = {p+q ∣ p ∈ P, q ∈ Q}.

Statement of the problem. Denote by
x(t, x0, u) the solution to the Cauchy problem

ẋ = f(x, u), x ∈ Rn, t ∈ [0, T ],
x(0) = x0,

(2)

where u is a parameter from a compact set U ⊂
Rk. Let f(0, u) = 0 for all u ∈ U . Consider the
functions

'i(u) = max
t∈Δi

max
x0∈Bi

∣x(t, x0, u)∣i, i = 0,m. (3)

Here Δi ⊆ [0, T ] are compact sets, ⋅i are norms in
Rn, and Bi = {x ∈ Rn ∣ xi ≤ bi}. Consider the
following mathematical programming problem

'0(u) −→ min,
'i(u) ≤ '̄i, i = 1,m,
u ∈ U.

(4)

Many problems of stabilization systems’ parame-
ters optimization can be written in this form.

Minimization of the final deviation. The
problem is to determine the optimal values of the
system parameters that guarantee minimal devia-
tion of the system state from the zero equilibrium
position at the final moment of time. This prob-
lem can be formalized as follows:

max
x0∈B

∣x(T, x0, u)∣ −→ min,

u ∈ U

For linear systems ẋ = A(u)x with T ≫ 1, this
problem is an approximation for the maximization
of the degree of stability (see [10]).

Minimization of the maximal deviation.
This problem consists in determination of pa-
rameters that correspond to minimization of
the maximum deviation of trajectories and sat-
isfy certain restrictions at the final moment of
time. This problem can be formalized as follows:

max
t∈ [0,T ]

max
x0=1

x(t, x0, u) → min,

max
x0=1

x(T, x0, u) ≤ �,
u ∈ U.

Both of the above problems are of interest for
stabilization theory and have form (4). Problem
(4) has some special features and its study can be
useful for stabilization systems parameters opti-
mization; however its analytical study can hardly
be performed for more or less complex systems.
For this reason, we focus on the numerical aspects
of this problem.

Numerical methods. Let " > 0 be small
enough. We approximate problem (4) by the fol-
lowing problem

'̄0 −→ min,

x̃(tik, x
i
j , u)

i
≤ '̄i + ", i = 0,m, (5)

u ∈ U,

where ti0 = 0, tik ∈ Δi, xij ∈ Bi,

j = 1, J , and x̃(tik+1, x
i
j , u) = x̃(tik, x

i
j , u) +

�f(x̃(tik, x
i
j , u), u), � = tik+1 − tik, k = 0, N, is the

Euler approximation for the solution x(⋅, xij , u).
Problem (4) can be approximated by problems (5)
with any given accuracy.

Assume that

f(x, u) = A(u)x+ g(x, u),

where matrix A(u) = ∇xf(0, u) has eigenvalues
with negative real part and the function g(⋅, u)
satisfies g(0, u) = 0 and the Lipschitz condition
g(x1, u) − g(x2, u) ≤ Lug max{∣x1∣, ∣x2∣}x1 − x2

with Lug > 0 for all x1 and x2 in a neighborhood of
the zero equilibrium position. Consider functions
'i(⋅) defined by (3), assuming that the balls Bi
are contained in a sufficiently small neighborhood
of the origin. Consider � > 0. Let Ki(�) and Ji(�)
be sets of indices such that the points tik ∈ Δi,
k ∈ Ki(�), and xij ∈ Bi, j ∈ Ji(�) form a �-net
in Δi and Bi, i = 1,m, respectively. Define the
functions

'�i (u) = max
k∈Ki(�)

max
j∈Ji(�)

x̃(tik, x
i
j , u), i = 0,m.

Problem (5) can be written as

'�0(u) −→ min,
'�i (u) ≤ '̄i + ", i = 1,m,
u ∈ U.

(6)
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Denote by û and u� the optimal parameters for
problems (4) and (6), respectively.

For any � > 0 there exists � > 0 such that u� is
an admissible solution to the following problem

'0(u) −→ min,
'i(u) ≤ '̄i + 2", i = 1,m,
u ∈ U,

and

'0(u�) ≤ '0(û) + 2".

This theorem allows one to choose the param-
eters of discretization in order to obtain optimal
stabilizer parameters with a necessary precision.
A rigorous formulation of this claim is the follow-
ing. Denote by V (�) the value of the problem

'0(u) −→ min,
'i(u) ≤ '̄i + �, i = 1,m,
u ∈ U.

Assume that problem (4) is calm in Clarke’s sense
(see [2]). Then, there exists a constant K > 0
satisfying the inequality

V (2")− V (0)

2"
> −K,

for all " > 0 sufficiently small. It follows from
Theorem that

Ṽ − V (0) ≤M",

where Ṽ = '0(ũ), ũ is the solution of problem (5),
and M = 2 max {1,K}.

The exact formulas for � = �(�) leading to the
proof of Theorem are presented in Appendix. The
main tool used to obtain them is the following
version of Filippov-Gronwall inequality [7].

Let P = {p ∈ Rn∣ ⟨p, V p⟩ ≤ 1}, where V is a
symmetric positive definite matrix. Consider
the functions y(⋅) ∈ AC([0, T ], Rn) and �(⋅) ∈
AC([0, T ], R), �(t) ≥ 0, satisfying the following
condition

max
⟨p,V p⟩=1

(⟨ẏ(t), V p⟩ − ⟨f(y(t)− �(t)p), V p⟩) ≤ �̇(t),

for almost all t ∈ [0, T ]. Then x(t) ∈ y(t) + �(t)P
for all t ∈ [0, T ], whenever x0 ∈ y(0) + �(0)P ,
where x(t) is the solution to the Cauchy problem
ẋ = f(x), x(0) = x0.

Note that the use of this theorem allows us to
obtain a more precise estimates for the number of
points in the meshes needed to achieve a given dis-
cretization accuracy. The estimates based on the
usual Gronwall inequality can be significantly im-
proved for asymptotically stable systems if we take
into account the behaviour of the trajectories for
large values of time. Theorem is a natural tool
for this. For example, according to the classical
estimates, the number of points in the mesh in t
needed to esure a given precision, grows exponen-
tially with the length of the time interval. How-
ever, the estimates obtained from Theorem for
asymptotically stable systems give a linear growth
of the number of points in the mesh. This is of
practical importance. Optimization problem (6)
is a hard nonsmooth problem. Our computational
experience shows that the NelderMead method is
the most adequate method to solve it. The nu-
merical solution of this problem significantly de-
pends on the structure of the involved functions.
Sometimes the computational effort is very seri-
ous. However, the problem of optimal choice of
parameters is solved only once, at the stage of the
control system development, and the time needed
for its solution is not so important. Moreover, our
estimates for the number of points of discretiza-
tion allow us to construct an adequate mesh and
to significantly reduce the CPU time.

The methods usually applied to optimize the
parameters of a stabilization system are based on
the idea of the maximum stability degree, that is,
the minimization of the system’s transition time.
These methods, however, face the problem of so-
called peak effect when the deviation of the system
trajectory from the equilibrium increases with the
decrease of the time of response. The approach
suggested in this work (see also [3]) consists in a
numerical analysis of a stabilization system based
on a more complete and flexible description of the
system behaviour capable to take into account not
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only the stability degree, but also the maximum
deviation of the trajectory on a given time interval
or at a given moment. For this optimization prob-
lem, we develop a numerical method and prove
that it can guarantee a given accuracy for the
problem solution. This method is applied to op-
timization of a stabilization system for a satellite
with a gravitational stabilizer [5, 6, 1]. The ob-
tained results show that the above approach can
offer solutions more adequate for practical imple-
mentation than those given by optimization of the
stability degree.
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