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1. Let aij be integer

(i = 0, · · · ,m; j = 0, · · · , n),

α = max {|aij |, i = 1, · · · ,m; j = 1, · · · , n} ,
β = max {|aij |, i = 0, · · · ,m; j = 1, · · · , n} ,
γ = max {|aij |, i = 1, · · · ,m; j = 0, · · · , n} .

Suppose that ai. = (ai1, · · · , ain) is the i-th row
(i = 1, · · · ,m) of the matrix A; a.1, · · · , a.n are its
columns; r is rank of the matrix A;A(I, I) = (aij)
is submatrix of the matrix A, where i ∈ I ⊆
{1, · · · ,m}, and j ∈ J ⊆ {1, · · · , n}.

We consider the system in the rational variables
xj (j = 1, · · · , n)

n∑
j=1

aijxj ≤ ai0 (i = 1, · · · ,m), (1)

the set P of its solutions and the set M = Zn ⋂
P

of integer points of the polyhedron P .
Let C be set of the rational solutions of the ho-
mogeneous system

u0a0j −
m∑

j=1

uiaij = 0 (i = 1, · · · , n) (2)

ui ≥ 0 (i = 0, · · · ,m). (3)

It is well known [1,2] that extremal vectors of cone
C are connected with optimal plans of the cou-
ple of duality linear programming problems (LPP)
and there exists a polynomial algorithm for follow-
ing problem

Pr 0: to get x ∈ P or to prove that P = �.

Let us consider the problem
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Pr 1: to get x ∈ M or to prove that M = �.
No algorithms are known for solution of P1

which is bounded from above by a polynomial of
the lengt l of the input date where l may be de-
fined as mn log(β + 2).

Theorem 1 [1, 2]. The problem Pr1 is NP -
hard.

2. Now we shall assume that r = n. Then
convex hull convM of the set M is polyhedron
too, so, it can be described by a finite system of
linear inequalities and its vertex set N is bounded.
Let F be facet set of the convM .

Theorem 2 [2]. If m = n, then there is a poly-
nomial algorithm for finding x ∈ N .

Theorem 3 [3]. If m = n + 1, then the problem
P1 is polynomially complete.

Therefore, it‘s reasonable to call this problem
to be simplest complete problem among integer
linear programming problems.

In connection with the Theorem 1 the paper [4]
introduced the concept of a pseudopolynomial al-
gorithm, that requires a time bounded by a poly-
nomial in n and β (but not in log β).

For any fixed m it is not hard to construct [5]
a pseudopolynomial algopithm A1 for solving the
problem P1 by using the method of dynamic pro-
gramming.

We call an algorithm quasipolynomial if for any
n there exists a polynomial fn(x) such that when
being applied to any n-dimensional problem which
absolute values do not exceed α the algorithm has
complexity that is bounded above by fn(logα). In
1981 Lenstra [6] proposed a quasipolynomial algo-
rithm A2 for the problem Pr1.
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Theorem 4 [3]. If r = n, then for any fixed n

1) the number |N | is bounded above by a poly-
nomial of degree n in

√
m and log α,

2) the numbers |N | and |F | are bounded above
by some polynomial in n and log α.

We consider the problem
Pr2: to get N ,
and the problem
Pr3: to get F .
Corollary. There are a quasipolynomial algo-

rithm for Pr2 and Pr3.
For a natural number d we denote by A(d) the

set of matrices A ∈ Zm×n for which any minors
does not exceed d in absolute value.

The new results are the following theorems.

Theorem 5 If a matrix A is in A(d) and rank
of A is equal to n, then there exists a polynomial
algorithm for the problem Pr1.

Theorem 6 If a matrix A is in A(d) , rank of A
is equal to n and m = n + 1, then there exists a
polynomial algorithm for the problem Pr3.

This results are formulated as the hypothesis in
[3].

In prooving the Theorem 5 we used [7 - 13] and
the following result.

Lemma 1 [3]. The change problem is polynomi-
ally complete.
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