On integer points in polyhedra *

V. N. Shevchenko
Lobachevsky State University of Nizhni Novgorod, shev@uic.nnov.ru

1. Let $a_{i j}$ be integer

$$
(i=0, \cdots, m ; j=0, \cdots, n)
$$

$\alpha=\max \left\{\left|a_{i j}\right|, i=1, \cdots, m ; j=1, \cdots, n\right\}$,
$\beta=\max \left\{\left|a_{i j}\right|, i=0, \cdots, m ; j=1, \cdots, n\right\}$,
$\gamma=\max \left\{\left|a_{i j}\right|, i=1, \cdots, m ; j=0, \cdots, n\right\}$.
Suppose that $a_{i .}=\left(a_{i 1}, \cdots, a_{i n}\right)$ is the i-th row $(i=1, \cdots, m)$ of the matrix $A ; a_{.1}, \cdots, a_{. n}$ are its columns; r is rank of the matrix $A ; A(I, I)=\left(a_{i j}\right)$ is submatrix of the matrix A, where $i \in I \subseteq$ $\{1, \cdots, m\}$, and $j \in J \subseteq\{1, \cdots, n\}$.

We consider the system in the rational variables $x_{j}(j=1, \cdots, n)$

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j} \leq a_{i 0} \quad(i=1, \cdots, m) \tag{1}
\end{equation*}
$$

the set P of its solutions and the set $M=Z^{n} \cap P$ of integer points of the polyhedron P.
Let C be set of the rational solutions of the homogeneous system

$$
\begin{gather*}
u_{0} a_{0 j}-\sum_{j=1}^{m} u_{i} a_{i j}=0(i=1, \cdots, n) \tag{2}\\
u_{i} \geq 0(i=0, \cdots, m) \tag{3}
\end{gather*}
$$

It is well known $[1,2]$ that extremal vectors of cone C are connected with optimal plans of the couple of duality linear programming problems (LPP) and there exists a polynomial algorithm for following problem

Pr 0: to get $x \in P$ or to prove that $P=\varnothing$.
Let us consider the problem

[^0]Pr 1: to get $x \in M$ or to prove that $M=\oslash$.
No algorithms are known for solution of P_{1} which is bounded from above by a polynomial of the lengt l of the input date where l may be defined as $m n \log (\beta+2)$.

Theorem 1 [1, 2]. The problem Pr1 is NPhard.
2. Now we shall assume that $r=n$. Then convex hull convM of the set M is polyhedron too, so, it can be described by a finite system of linear inequalities and its vertex set N is bounded. Let F be facet set of the convM.

Theorem 2 [2]. If $m=n$, then there is a polynomial algorithm for finding $x \in N$.

Theorem 3 [3]. If $m=n+1$, then the problem P_{1} is polynomially complete.

Therefore, it's reasonable to call this problem to be simplest complete problem among integer linear programming problems.

In connection with the Theorem 1 the paper [4] introduced the concept of a pseudopolynomial algorithm, that requires a time bounded by a polynomial in n and β (but not in $\log \beta$).
For any fixed m it is not hard to construct [5] a pseudopolynomial algopithm \mathcal{A}_{1} for solving the problem P_{1} by using the method of dynamic programming.

We call an algorithm quasipolynomial if for any n there exists a polynomial $f_{n}(x)$ such that when being applied to any n-dimensional problem which absolute values do not exceed α the algorithm has complexity that is bounded above by $f_{n}(\log \alpha)$. In 1981 Lenstra [6] proposed a quasipolynomial algorithm \mathcal{A}_{2} for the problem $\operatorname{Pr} 1$.

Theorem 4 [3]. If $r=n$, then for any fixed n

1) the number $|N|$ is bounded above by a polynomial of degree n in \sqrt{m} and $\log \alpha$,
2) the numbers $|N|$ and $|F|$ are bounded above by some polynomial in n and $\log \alpha$.

We consider the problem
$\operatorname{Pr} 2$: to get N,
and the problem
Pr3: to get F.
Corollary. There are a quasipolynomial algorithm for $\operatorname{Pr} 2$ and $\operatorname{Pr} 3$.

For a natural number d we denote by $A(d)$ the set of matrices $A \in \mathbf{Z}^{m \times n}$ for which any minors does not exceed d in absolute value.

The new results are the following theorems.
Theorem 5 If a matrix A is in $A(d)$ and rank of A is equal to n, then there exists a polynomial algorithm for the problem Pr1.

Theorem 6 If a matrix A is in $A(d)$, rank of A is equal to n and $m=n+1$, then there exists a polynomial algorithm for the problem Pr3.

This results are formulated as the hypothesis in [3].

In prooving the Theorem 5 we used $[7-13]$ and the following result.

Lemma 1 [3]. The change problem is polynomially complete.

References

[1] Garey M. R., Johnson D.S. Computers and Intractability. Freeman, San Francisco, CA, 1979.
[2] Schrijver A. The theory of linear and integer programming. Wiley-Interscience, New York, 1986.
[3] Shevchenko V.N. Qualitative Topics in Integer Linear Programming. AMS, Providence, Phode Island, 1996.
[4] Garey M. R., Johnson D.S. Strong NPcompleteness results: motivation, exemples, and implications. // J.Assoc. Comput. Mach. 25 (1978), P. 499-508.
[5] Papadimitriou C. H. On the complexity of integer programming. // J.Assoc. Comput. Mach. 28 (1981), P. 765-768.
[6] Lenstra H. W. Integer programming with a fixed number of variables. / Report 8103, Dept. Math. Univ. Amsterdam, Amsterdam, 1981.
[7] Barany I., Howe R., Lovasz L. On integer points in polyhedra: a lower bound. // Combinatorica. 1992. V. 12, N 2. P. 135-142.
[8] Cook W., Hartmann M., Kannan R., Tardos E. Sensitivity theorems in integer linear programming. // Mathematical Programming. 1986. V. 34, N. P. 27-37.
[9] Cook W., Hartmann M., Kannan R., McDiarmid C. On integer points in polyhedra. // Combinatorica. 1992. V. 12, P. 27-37.
[10] Shevchenko V.N. An algebraic approach in integer programming. // Cybernetics 20. 1984. P. 36-41.
[11] Chirkov A. Yr. On a lower bound to the number of vertices of the convex hull of integer and partially integer points of a polyhedron. Proceedings of First International Conference "Mathematik Algorithms", NNSU Publischers, Nizhny Novgorod, 1995, P. 128-134. (Russian)
[12] Chirkov A. Yr., Pavluchonok A. A. An upper bound to the number of a integer vertices on the polyhedron. Proceedings of First International Conference "Mathematik Algorithms", NNSU Publischers, Nizhny Novgorod, 1995, P. 135.(Russian)
[13] Schevchenko V.N. The polynomial algorithm in the integer programming. (ibid) P . 136-137.

[^0]: *This research was supported by the Russian Foundation for Basic Research (Grant 09-01-00545a)

