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In many practical applications of global opti-
mization, the objective function f(x) is defined
over a hyperinterval D ⊂ RN and can be black-
box, multiextremal, and requiring high computa-
tional resources to be evaluated (see, e.g., [1, 3, 8,
10, 17, 16, 18, 19]). Such problems often can not
be solved by traditional optimization techniques
making strong suppositions about the problem
(convexity, differentiability, etc.).

Numerous iterative processes proposed in liter-
ature (see, e.g.,[1, 2, 6, 9, 10, 11, 14, 15, 18, 19])
for solving such problems can be distinguished de-
pending on the way they combine the following
features:

(i) the strategy used for partitioning the search
region D;

(ii) the way to choose one or more elements for
the next partition;

(iii) the number of evaluation points over the
new subregions obtained after each partition;

(iv) the location of these points within each of
the new subregions.

For example, one-point-based, diagonal and
simplicial algorithms can be considered relatively
to the properties (i) and (iii). One-point-based
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algorithms subsequently subdivide the search re-
gion in smaller ones and evaluate the objective
function at one point within each subregion (see,
e.g., [1, 2, 4, 12]). In the case of diagonal al-
gorithms, the multidimensional domain is parti-
tioned adaptively into a set of hyperintervals, and
the objective function is evaluated only at the ver-
tices corresponding to the main diagonal of each
new hyperinterval (see, e.g., [7, 10, 11, 13, 14]).
Simplicial algorithms partition the region in sim-
plexes and evaluate the objective vector function
at all their vertices (see, e.g., [3, 5, 19]).

In this communication, it will be shown that
partition strategies themselves, independently of
feature (ii), can influence significantly the num-
ber of computationally extensive function evalu-
ations made by an algorithm. For example, in
the framework of widely used diagonal algorithms,
traditional partition strategies (like bisection or
partition on 2N subintervals; see, e.g., [3, 7, 10])
do not fulfill the requirements of computational
efficiency because of the execution of many re-
dundant evaluations of the objective function. A
new diagonal adaptive partition strategy (see, e.g.,
[11, 12, 13, 14]) allowing one to avoid such a com-
putational redundancy will be discussed. In con-
trast to the traditional diagonal partition strate-
gies, the new one produces regular meshes of the
function evaluation points and significantly out-
performs the traditional strategies in terms of the
number of function evaluations.
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It will be shown how this partitioning strategy
can be used in both the frameworks of one-point-
based algorithms and diagonal algorithms. Par-
ticularly, several examples of global optimization
methods based on the efficient partitioning strat-
egy will be presented, their convergence proper-
ties will be discussed, and results of numerical
comparisons with some numerical methods (see,
e.g., [3, 4, 14]) frequently used for solving real-life
global optimization problems will be reported.
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