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In the paper the integer linear programming
problem (ILP) in standard form is considered:

max (c, x)
{

Ax 6 b

x ∈ Zn
+

A ∈ Zm×n, b ∈ Zm, c ∈ Zn,

where Z, Z+, Zm, Zm×n are set of integers, set of
non-negative integers, integer columns of size m,
integer m× n matrices correspondingly.

One of the common methods for solving ILP
is well-known branch-and-bound algorithm [1, 4]
that solves initial problem by dividing it to smaller
subproblems. The algorithm uses finiteness of fea-
sible solutions set and it performs directed search
by evaluation and rejection unpromising variants.

The main idea of the suggested method can be
formulated as follows. Let P ′ be LP-relaxation of
current subproblem and x̃ be optimal solution of
P ′. In classical branch-and-bound method [2] non-
integer component x̃i is selected and subproblems
P ′

0 and P ′
1 are generated by adding inequalities

xi 6 bx̃ic and xi > dx̃ie. We suggest to pro-
duce P ′

0 and P ′
1 subproblems by adding common

inequalities
n∑

i=1
a1ixi 6 b1 and

n∑
i=1

a2ixi > b2 such

that
n∑

i=1

a1ix̃i > b1,
n∑

i=1

a2ix̃i < b2 (1)

∀x : Ax 6 b, x ∈ Zn
+ ⇒(

n∑

i=1

a1ixi 6 b1

)
∨

(
n∑

i=1

a2ixi > b2

)
(2)

Conditions (1) denote that optimal non-integer
vector x̃ isn’t in feasible region of P ′

0 and P ′
1 sub-

problems, conditions (2) guarantee the absence of
feasible integer points in region constrained by in-

equalities
n∑

i=1
a1ixi > b1

n∑
i=1

a2ixi < b2.

The method of generating common inequalities
that satisfy to (1), (2) is based on cutting theory
and theory of linear comparison systems [3].

Let B ∈ Zn×n, b ∈ Zn, and W =
{x ∈ Rn | Bx 6 b}. We assume that matrix B is
nonsingular, ∆ = |B| 6= 0. In this case there is
the only extreme point w = B−1b in the set W .

Denote B = {u : uB ≡ 0 (mod ∆)}, B̄ =
{u ∈ B : 0 6 ui < ∆, i = 1, . . . , n}. One of the
common approaches to describe B̄ is to use Smith
normal diagonal form of the matrix B. Let D
be Smith normal form for matrix B such that
D = PBQ, where P , Q are unimodular matrices
and Q = (q1, . . . qn), D = diag(d1, . . . dn), then

B̄ =

{
u = res∆

(
n∑

i=1

∆
di

βiqi

)
: 0 6 βi < di

}

It is known [3] that if u ∈ B, u > 0, ub 6≡ 0
(mod ∆) then inequality uBx

∆ 6
⌊

ub
∆

⌋
is regular

cut that cuts extreme point w from set W . If we
omit limitation on non-negativeness of vector u
components then we get two inequalities:

uBx

∆
6

⌊
ub

∆

⌋
(3)

uBx

∆
>

⌈
ub

∆

⌉
(4)

which satisfy to (1), (2).
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So branching algorithm can be formulated as
follows. Let x̃ is solution of current subproblem
P ′:

max (c, x)

A′x 6 b′

where matrix A′ contains both constraints of the
initial problem (including non-negativeness of the
vector x components) and new branching inequal-
ities.

Branching includes next steps:

1. Select submatrix B ∈ Zn×n and vector b ∈
Zn such that x̃ = B−1b. It is possible as
x̃ is extreme point for feasible region of the
problem.

2. Calculate Smith normal form for matrix B:
D = PBQ.

3. Select vector u ∈ B using (ADD REF) B:
coefficients β1, . . . βn are selected from sets
{0, . . . , d11 − 1} , . . . , {0, . . . , dnn − 1} accord-
ingly.

4. Select subset of variables N ⊂ {1, . . . , n} with
cardinality k : 1 6 k 6 n − 1. ∀i ∈ N : ui :=
ui −∆.

5. Create 2 new subproblems by adding inequal-
ities uBx

∆ 6
⌊

ub
∆

⌋
and uBx

∆ >
⌈

ub
∆

⌉
to con-

straints of P ′ subproblem.

The question how to select vector u on step 3
and subset N is still open.

Experimental evaluation of the suggested
method has been done. There are several exam-
ples of ILP problems where the algorithm per-
forms less iterations versus classical branch-and-
bound approach.
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