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In the mill pricing problem (MP) we are given
two finite sets: a set of facilities and a set of
customers. Each customer has a budget and
a demand. He patronizes a facility providing
the lowest sum the travel cost to the facility
and price for its product. The objective is to
determine the price for each facility to maximize
the overall revenue. We present the problem as
a linear integer programming problem and study
its computational complexity. Exact and approxi-
mate algorithms are developed for this problem.
Computational results for random generated test
instances are discussed.

Mathematical model

Let us introduce the following notations:
I = {1, ..., n} is the set of facilities;
J = {1, ...,m} is the set of customers;
bj ≥ 0 is the budget of customer j;
cij ≥ 0 is the travel cost for each pair of

customer j and facility i.

Now we define the decision variables:

pi ≥ 0 is the price of facility i;

xij =

{
1 if customer j patronizes facility i,
0 otherwise.

Using these variables we may present the prob-
lem as a mixed integer quadratic program:

max
p,x

∑

i∈I
pi
∑

j∈J
xij (1)

∑

i∈I
(bj − cij − pi)xij ≥ 0, i ∈ I, j ∈ J ; (2)

∑

i∈I
(cij + pi)xij ≤ ckj + pk, i, k ∈ I, j ∈ J ; (3)

∑

i∈I
xij ≤ 1, j ∈ J ; (4)

pi ≥ 0, xij ∈ {0, 1}, i ∈ I, j ∈ J. (5)

The objective function (1) defines the total rev-
enue of the facilities. Constraints (2) ensure that
each customer does not exceed his own budget.
Constraints (3) guarantee that each customer pa-
tronizes a facility providing the lowest sum the
travel cost to the facility and price for its product.
Constraints (4) ensure that each customer can be
served by at most one facility. The following the-
orems characterize the computational complexity
of the problem.

Theorem 1. [1, 2] The MP problem is strongly
NP-hard.

Theorem 2. The problem MP belongs to the class
log-APX.

Theorem 3. If P 6= NP , then no polynomial
time absolute approximation algorithm exists for
the MP problem.

Let us consider the following decision problem
Opt(MP ). For given value k and given input data
of the MP problem, we need to check whether the
optimal value of the problem is k. This decision
problem belongs to the class ∆P

2 [3]. The following
theorem claims that Opt(MP ) problem is more
difficult than arbitrary problem from the classes
NP and co-NP.

1



Theorem 4. If NP 6= co−NP , then the problem
Opt(MP ) is a proper-∆P

2 problem.

Linear programming reformulation

Let pi be the most possible price of facility i:

pi := max
j

(bj − cij).

We introduce new decision variables zij as the rev-
enue of facility i from customer j:

zij := pixij .

Now we can rewrite the MP problem as a linear
mixed integer program:

max
p,x,z

∑

i∈I

∑

j∈J
zij (6)

∑

i∈I
(bj − cij)xij −

∑

i∈I
zij ≥ 0, j ∈ J ; (7)

ckj + pk ≥
∑

i∈I
cijxij +

∑

i∈I
zij , k ∈ I, j ∈ J ; (8)

(1− xij)pi − zij + pi ≥ 0, i ∈ I, j ∈ J ; (9)
(1− xij)pi + zij − pi ≥ 0, i ∈ I, j ∈ J ; (10)
zij ≤ pixij , i ∈ I, j ∈ J ; (11)∑

i∈I
xij ≤ 1, j ∈ J ; (12)

pi ≥ 0, xij ∈ {0, 1}, zij ≥ 0, i ∈ I, j ∈ J. (13)

For given x, the problem (6)–(13) is a linear
programming problem. Let λ be the vector of dual
variables for constraints (7) – (12). Denote by
δ(x, λ) the objective function of the dual problem
D(x) which can be obtained from the problem (6)
– (13) for given x. Moreover, denote by δ1ij(x, λ)

and δ2i (x, λ) the constraints of the dual problem
which are corresponding to variables zij and pi.
Below we apply the Benders decomposition ap-
proach and present an exact hybrid decomposition
method [4,5].

The Basic method

Step 1: Apply an approximate algorithm for
the problem (6) – (13) in order to get a family
of feasible solutions xr, r = 1, R. For each solution
we solve the following problem:

ρ(xr) = min
λ

δ(xr, λ)

δ1ij(x
r, λ) ≤ 0, i ∈ I, j ∈ J ;

δ2i (x
r, λ) ≤ 0, i ∈ I.

If the problem is solvable, then we find the
optimal values of dual variables λr. Otherwise,
we define λr as the direction vector of an infinite
edge. Let LB := max{δ(xr, λr), r = 1, R}. It is a
lower bound for (6).

Step 2: Solve the relaxed master problem:

max
xij∈{0,1},y≥0

y

y ≤ δ(x, λq), q = 1, Q;
δ(x, λu) ≥ 0, u = 1, U ;
1− ∑

i∈I
xij ≥ 0, j ∈ J,

where U is the number of the direction vectors
for the infinite edges, and Q is the number of
corresponding vertices. Let (y, x) be the optimal
solution, then UB := y is an upper bound.

Step 3: Solve the subproblem ρ(x) with x = x.
Case 1. The subproblem is solvable. If UB = ρ(x),
then stop, the optimum is found. Otherwise we
put Q := Q + 1, λQ := λ, where λ is the optimal
values of dual variables. If ρ(x) > LB, then
LB := ρ(x) is the new lower bound. Go to Step 2.
Case 2. The subproblem is unsolvable. We define
λ as the direction vector of an infinite edge and
put U := U + 1, λU := λ. Go to Step 2.

This algorithm is finite but shows slow conver-
gence [4–9]. Therefore, in this paper we suggest
new decomposition schemes to accelerate the con-
vergence to global optimum. In [4,10] the random-
ized metaheuristics were applied for this end at
Step 1. In this paper we propose some two-phase
decomposition methods. The main idea is follow-
ing. At the first stage, we solve the linear program-
ming relaxation of (6) – (13) by a hybrid decompo-
sition algorithm and use continuous variables xij
at Step 2 in the relaxed master problem. At the
second stage, we consider the mixed integer prob-
lem (6) – (13) and include the optimal family of
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cuts from the first stage into the family of feasi-
ble solutions xr, r = 1, R at Step 1 of the Basic
method.

Actually, we consider the following algorithmic
schemes:

1. Basic scheme.
2. Two-phase scheme.
3. Scheme 2 with an approximate algorithm at

the first phase.
4. A simplified scheme 2.
5. Scheme 2 with control of constraints.

The schemes 1,2,3,5 are exact, the scheme 4 is
approximate.

Computational results

These five schemes were coded in Delphi 7.0 en-
vironment and tested on random generated test
instances. For all experiments the values of pa-
rameters bj and cij are taken from the interval [1,
99] at random with uniform distribution. Tables 1
– 4 show the results of experiments for n ≤ 50,
m ≤ 50. As we can see, the scheme 2 is the fastest
exact scheme, and scheme 1 is the slowest.

Table 1. Running time of schemes 1, 2
Scheme 1 Scheme 2

n m time time
5 10 23" 10.2"
5 15 302" 30.2"

Table 2. Running time of scheme 3
Deviation at the first stage

n m ε=0.02 ε=0.05 ε=0.10 ε=0.20
5 10 9.4" 9.2" 8.6" 12"
5 15 40.2" 57.8" 71.6" 164.8"

Table 3. Running time of scheme 5
Number of constraints

n m 20 30 60
5 10 15.6" 17.2" 12.6"
5 15 85.8" 82.4" 71.2"

In the scheme 3 we modify the first phase of
the method. We break the computation at the
first stage if the inequality (UB − LB)/UB < ε
holds. Computational experiments were carried

out for the following values of parameter ε =
0.02, 0.05, 0.1, 0.2. The scheme 3 was always faster
than scheme 1. It is interesting that the running
time grows when ε increases. Thus the correct
choose of the parameter can accelerate the compu-
tations. Note that scheme 3 is an improved version
of the approach from [8].

The idea of the scheme 5 is to control the num-
ber of cuts. For this end we use three lists: two lists
with fixed lengths (Q and U) and the third list
with an arbitrary length. The first list with length
Q is used to store the optimal cuts. The second
list with length U is used to storage the feasibility
cuts. When a new cut is added to corresponding
list, the oldest cut is dropped and placed in the
unrestricted list. If new upper bound, defined the
current relaxed master problem, is less than the
previous value then we return back the dropped
cut. Computational experiments were carried out
with a total number of optimality and feasibility
cuts equals to 20, 30 and 60. As we can see from
Table 3, the running time decreases when the total
number of cuts grows. This scheme is better than
scheme 1, but worse than scheme 2. Therefore, it
is important to achieve high quality of approxima-
tion in the first phase to reduce the total running
time of the two-phase scheme.

Table 4. Running time of scheme 4
n m ε1 ε2 time
5 10 0.0651 0.0651 5.4"
5 15 0.0686 0.0686 9"
5 30 0.123 0.123 146.8"
5 50 0.196 0.196 1639.6"
10 20 0.114 0.114 116.2"
10 30 0.151 0.145 1194.6"
20 20 0.106 0.106 1164.6"
20 40 0.334 0.298 3885"
30 30 0.249 0.217 3105.6"

In experiments with the approximate scheme
4, the quality of approximation in the first phase
helps us to improve upper bound. In scheme 4 cal-
culations terminate at Step 2, the second iteration
of the second phase. Table 4 presents computation-
al results of our experiments for the scheme. The
third and fourth columns present the deviations
ε1 = (UB − LB)/UB and ε2 = (UB −Opt)/UB.

3



The fifth column shows the running time. Table
4 shows that the time complexity of this scheme
is significantly less than the time complexity of
other schemes. Moreover, the deviation from the
optimum is not large.
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